
Just Round: Quantized Observation Spaces Enable
Memory Efficient Learning of Dynamic Locomotion

Lev Grossman1 and Brian Plancher2

Abstract— Deep reinforcement learning (DRL) is one of the
most powerful tools for synthesizing complex robotic behaviors.
But training DRL models is incredibly compute and memory
intensive, requiring large training datasets and replay buffers to
achieve performant results. This poses a challenge for the next
generation of field robots that will need to learn on the edge to
adapt to their environment. In this paper, we begin to address
this issue through observation space quantization. We evaluate
our approach using four simulated robot locomotion tasks and
two state-of-the-art DRL algorithms, the on-policy Proximal
Policy Optimization (PPO) and off-policy Soft Actor-Critic
(SAC) and find that observation space quantization reduces
overall memory costs by as much as 4.2× without impacting
learning performance.

I. INTRODUCTION

Deep reinforcement learning (DRL) continues to see in-
creased attention by the robotics community due to its
ability to learn complex behaviors in both simulated and
real environments. These methods have been successfully
applied to a host of robotic tasks including: dexterous ma-
nipulation [1], quadrupedal locomotion [2], and high-speed
drone racing [3]. Despite these successes, DRL remains
largely sample inefficient, depending on enormous amounts
of training data to learn. As much of this data is kept in
replay buffers during training, DRL is extremely memory
intensive, limiting the number of computational platforms
that can support such operations, and largely confining state-
of-the-art model training to the cloud. For example, OpenAI
used 400 compute devices and collected two years worth of
experience data per hour in simulation in order to train a
physical dexterous robot hand to solve a Rubik’s cube [4].

At the same time, there has been a recent push to enable
learning on physical robot hardware [5]. Using environment
experience collected directly on-device and sending this
batched data over Ethernet to a workstation, researchers have
shown that DRL, and off-policy methods in particular, hold
promise in learning robust locomotive policies on physical
robot hardware [6], [7].

Unfortunately, for such real-world robots, a virtually un-
limited compute and memory budget is unrealistic. Still,
many robots, especially those involved in tasks as conse-
quential as search-and-rescue and space exploration [8], will
have to adapt to ever-changing environmental conditions and
continue to optimize and update their internal policies over
the course of their lifetime [9]. As such, to untether these
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methods from the confines of a lab, data collection and
storage must be memory efficient enough to allow for either
low-latency networking [10], [11] or for sufficient experience
data to be stored on-board edge computing devices [12].
As fast and secure updates may not be possible in remote
locations or when using bandwidth-constrained or high-
latency cloud networks [13], it is imperative to find ways
to reduce the overall memory footprint of DRL training.

In this work we begin to address this issue through obser-
vation space quantization. We focus on the observation space
in particular, as the observations stored in a replay buffer
generally consume over 90% of the total memory footprint
of DRL training for state-of-the-art locomotion policies [2],
[14]. Importantly, unlike simply reducing the number of ob-
servations stored in the buffer, which decreases the memory
footprint at the cost of reduced learning performance, our
quantization scheme is able to reduce memory usage without
impacting the training performance. We present experiments
across four popular simulated robotic locomotion domains,
using two of the most popular DRL algorithms, the on-policy
Proximal Policy Optimization (PPO) and off-policy Soft
Actor-Critic (SAC), and find that our approach can reduce
the memory footprint by as much as 4.2× without impacting
training performance. We open-source our implementation
for use by the wider robot learning community.

II. RELATED WORK

Locomotive Learning and Efficiency: Deep reinforce-
ment learning (DRL) methods have been successfully applied
to a variety of complex simulated [15], [16] and real [17]
robotic locomotion tasks. Advances in asynchronous algo-
rithms [18] and massively parallel simulation [19] have en-
abled faster learning. However, DRL algorithms often remain
data intensive and prone to being sample inefficient. This
inefficiency can be especially impactful when transferring
learned policies from simulation to physical robots [20] or
when learning policies directly on hardware [6], [7]. To
address this, some have found success in learning using
substantially reduced buffer sizes and intelligent replay sam-
pling [21]. Others have been able to increase the sample
efficiency of DRL based locomotion by using more power-
ful off-policy algorithms [14]. Still, improving the sample
efficiency and thus memory efficiency of DRL remains a
major area of interest in the robotic learning community.

Compressed and embedded spaces: Previous work on
learning in compressed or embedded spaces has mainly
surrounded model-based techniques [22], [23], often learning
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an embedding directly from images [24], [25]. While model-
based learning has been shown to work well in some complex
dynamic environments [26], model-free methods remain a
popular choice in the dynamic locomotion community [16],
[17]. Others have turned to embedded and more descriptive
action spaces [27], [28], [29], [30] and reduced order mod-
els [23] to enable more robust and sample efficient learning.
However, these efforts have mainly ignored the impact of
observation space compression on model-free learning.

Quantization: Quantization or discretization of deep neu-
ral network weights and parameters has seen increased
popularity [31], [32]. These methods are able to achieve
competitive performance on classic deep computer vision
tasks while reducing the size footprint of the convolutional
neural network (CNN) models used. More recently, work has
been done to adapt these same techniques to reinforcement
learning (RL) [33], [34]. This work has mainly focused on
the quantization of the parameters of the critic or value
networks, in order to reduce overall model size and speed up
learning. However, little has been done to evaluate the effect
of applying quantization to a task’s observation space.

III. LEARNING BACKGROUND

Reinforcement learning poses problems as Markov de-
cision processes (MDPs), where an MDP is defined by a
set of observed and hidden states, S, actions, A, stochastic
dynamics, p(st+1|st, at), a reward function r(s, a), and a
discount factor, γ. The RL objective is to compute the policy,
π∗(s, a), that maximizes the expected discounted sum of
future rewards, Es,a (

∑
t γ

trt). We train all learning tasks
with two state-of-the-art on- and off-policy reinforcement
learning algorithms: Proximal Policy Optimization (PPO)
and Soft Actor-Critic (SAC).

A. Proximal Policy Optimization (PPO)

Proximal Policy Optimization [35] is an on-policy, policy
gradient [36] algorithm that employs an actor-critic frame-
work to learn both the optimal policy, π∗(s, a), as well as
the optimal value function, V ∗(s). Both the policy πθ and
value function Vφ are parameterized by neural networks with
weights θ and φ respectively. Similar to Trust Region Policy
Optimization (TRPO) [37], PPO stabilizes policy training by
penalizing large policy updates. Additionally, as all updates
are computed with samples taken from the current policy,
PPO often requires high sample complexity.

During training PPO needs to store the parameters of both
its value and policy networks1–usually shallow multilayer
perceptrons (MLPs)–as well as its on-policy rollout buffer
Dk. Dk stores (s, a, r) tuples, which are refreshed during
each iteration of the algorithm.

By combining both the models and rollout buffer, the
general space complexity of PPO can be written as:

size = sizeof(πθ)+sizeof(Vφ)+sizeof(Dk). (1)

1Many PPO implementations save space by using one central MLP with
two additional single-layer policy and value function model heads. We focus
on the standard PPO model approach in this section for clarity.

Importantly, despite throwing out and re-collecting an en-
tirely new rollout buffer during each iteration, Dk dominates
the overall memory footprint of PPO.

For example, Miki et al. [2] uses a student-teacher ap-
proach to bridge the sim-to-real gap and enable robust
quadrupedal locomotion in rough, wilderness terrain. This
process starts by using PPO to train the teacher model–a 3-
layer MLP fed by two smaller encoder networks. Assuming
all parameters are stored as 64-bit floats, the three models
have a combined size of ∼1.3MB. In comparison, the 391-
dimensional observation space, 16-dimensional action space,
and batch size of 8,300 leads to a rollout buffer of over
27MB of space (assuming 64-bit floats). This means that Dk
accounts for 95% of the total memory footprint. Furthermore,
this size is dominated by the stored observations, which
account for 96% of the size of Dk and thus 92% of the
total memory footprint.

B. Soft Actor-Critic (SAC)

Soft Actor-Critic [14], [6] is an off-policy RL algorithm
that generally extends soft Q-learning (SQL) [38] and op-
timizes a “maximum entropy” objective, which promotes
exploration according to a temperature parameter, α:

E(st,at)∼π

[∑
t

γtr(st, at) + αH (π(·|st))

]
. (2)

SAC makes a number of improvements on SQL by auto-
matically tuning the temperature parameter α using double
Q-learning, similar to the Twin Delayed DDPG (TD3) algo-
rithm [39], to correct for overestimation in the Q-function,
and learning not only the Q-functions and the policy, but also
the value function.

Like PPO, SAC’s memory usage comes from its models
and off-policy replay buffer. Shallow MLPs are once again
used to approximate the policy πθ as well as the two Q-
functions Qφ1

, Qφ2
. Unlike PPO, however, the replay buffer,

D, is generally much larger in size as it stores trajectories
from every iteration, usually acting as a size limited queue.

By combining the models and replay buffer, the general
space complexity of SAC can be written as:

size = sizeof(πθ) + 2 ∗ sizeof(Qφ) + sizeof(D).
(3)

As in the case of PPO, D dominates the memory footprint
of SAC. For example, Haarnoja et al. [14] used SAC to train
the quadruped Minitaur to walk. The combined number of
parameters in their policy and two value networks (ignoring
bias terms and again assuming 64-bit floats) was about
2.3MB. With an 112-dimensional observation space, an 8-
dimensional action space, and a replay buffer of size 1e6,2

D consumed about 96.8MB of memory, equating to 97.7% of
the total memory footprint. Again, the size of D is dominated
by the observations, which account for 92.5% of its size and
90.4% of the total memory footprint.

2A conservative estimate as they collect 100k-200k samples.



IV. METHOD

In this work, we focus on one particular type of
quantization: numerical rounding. We define the function
round(x,m) to be the result of rounding x ∈ R to m ∈ N
decimal places and extend this operation to all real vectors
X ∈ Rn. Thus, rounding an observed state, round(s,m), to
m decimal places is the same as {round(si,m), ∀si ∈ s}.

We also make use of a clamp operation with bounds a, b:

clamp(s, a, b) = min(max(s, a), b), (4)

This operation is useful for further reducing the number of
bits required to express each individual observation s and is a
popular tool employed in previous quantization efforts [40].

Combining both operations, we transform an input obser-
vation state s into a quantized observation state sq:

sq = round(clamp(s, a, b),m). (5)

In practice, we set a = −b in order to clamp symmetrically
around 0. We can thus calculate the number of bits required
to encode a quantized output as:

1 + dlog2(b)e+ dm log2(10)e, (6)

where 1 bit is needed for the sign, dlog2(b)e bits are needed
to encode the integer left of the decimal, and dm log2(10)e
bits are required to encode m decimal places.

We adapted out quantization scheme to the data from our
baseline experiments. In those experiments we found that
max(|s|) < 128, which allowed us to set our clamping
bounds at a = −127, b = 127 and use 7 integer bits.
Combined with the 1 sign bit and either 4 (m = 1) or 7
(m = 2) decimal bits, we were able to quantize the original
64-bit floating-point values down to either 12 or 15 bits, an
over 5× and 4× reduction in space respectively.

V. EXPERIMENTS AND RESULTS

We evaluate the effectiveness of our quantization
framework across four popular, simulated robotic
locomotion environments made available by OpenAI
Gym [41]: Walker2d-v3, HalfCheetah-v3, Ant-v3,
and Humanoid-v3. Figure 1 depicts the four environments
using the MuJoCo physics engine [42].

A. Implementation Details

Our full implementation is publicly available and can be
found in our GitHub repository: https://github.com/
A2R-Lab/Just-Round.

We train all agents using the stable-baselines3 [43]
implementations of both PPO and SAC, modifying only the
buffer logic in order to accommodate quantization of the
stored observations. Unless otherwise noted, we run all ex-
periments using the default PPO and SAC hyperparameters,
only adjusting the number of total training steps.3

3Training done on an Intel Core i7-8700K CPU and an NVIDIA GeForce
GTX 1080 Ti GPU.

Fig. 1: MuJoCo simulated robotic locomotion environments:
Walker2d-v3 (top-left), HalfCheetah-v3 (top-right),
Ant-v3 (bottom-left), Humanoid-v3 (bottom-right).

B. Memory Efficiency

Figure 2 compares, for all locomotion environments and
for both PPO and SAC, the memory required both with and
without quantizing the observations in the buffer. We break-
down the memory usage into the the policy and value/Q-
value networks (shown in black) and the buffer (shown in
blue). As mentioned in Section III, the memory footprint
is dominated by the buffers, rendering the model’s memory
footprint barely visible in the PPO plots and mostly invisible
in the SAC plots, where it only accounts for less than 2%
of the total memory.

For all experiments we set a = 127, b = −127. For PPO
we set m = 1, and for SAC we set m = 2 after observing
that SAC required extra decimal precision to achieve optimal
convergence. We hypothesize that this discrepancy between
PPO and SAC is a result of the off-policy nature of SAC.
While in each iteration PPO is trained using a smaller
number of rollouts from the most recent policy, SAC utilizes
a larger set of replay data collected from both past and
present policies. This larger buffer may in turn lead to a
higher chance of observation “collisions,” where two rounded
tuples (sq, a, r1) and (sq, a, r2) present the same quantized
observation and action with a different reward, leading to
counterproductive training steps.

Overall, we found that quantizing only the observations
stored in the buffers reduces overall memory footprint by
2.1× to 4.2× for PPO and 2.6× to 3.9× for SAC. In
the Humanoid-v3 environment, this 3.9× reduction in
memory used for SAC decreases a 3GB memory requirement
to just under 750MB. This space savings is significant, al-
lowing real, memory-constrained learning systems the ability
to store much larger replay buffers on-board than would be
possible without quantization.

C. Training Performance

Figure 3 plots the learning curves for the first 500k steps
of training for the Humanoid-v3 environment using both
quantization and the baseline method of reducing the number

https://github.com/A2R-Lab/Just-Round
https://github.com/A2R-Lab/Just-Round


Fig. 2: Memory breakdown of PPO (left) and SAC (right) both without (B) and with (Q) observation space quantization
across environments. The model size is not visible in the SAC chart as it comprises less than 2% of the total memory.

Fig. 3: Learning curves of SAC applied to the
Humanoid-v3 environment with (Q, solid) and without (B,
dashed) quantization and with variable replay buffer sizes:
1M, 400k, 250k, 100k. Colors differentiate experiments
based on memory footprint: black ∼3GB, dark/light blue
∼750MB, dark/light green ∼300MB. Parameters m = 2,
a = 127, and b = −127 found through minimal tuning.

of observations in the replay buffer. We ran all experiments
with the same hyperparameters, only varying the buffer
quantization and size. The baseline SAC agents with varied
numbers of observations in the rollout buffer are plotted
using dashed lines, and the quantized agents are plotted with
solid lines. We group and color-code experiments by memory
footprint: black corresponding to ∼3GB in size, dark/light
blue to ∼750MB, and dark/light green to ∼300MB.

First and foremost, we find that the quantized agent with
a buffer size of 1M (in solid dark blue) displays similar
convergence results as the baseline 1M agent (in dashed
black), while only using roughly a quarter of the memory
(∼750MB vs ∼3GB). Holding the memory footprint con-

stant, we find that the quantized agents (solid dark blue
and dark green) converge to significantly higher rewards
than their unquantized counterparts (dashed light blue and
light green). While stark, this difference is not entirely
surprising. For more complex learning tasks, like humanoid
walking, larger replay buffers are often essential in enabling
performant convergence. Overall, this experiment indicates
that observation-based quantization may allow us to retain
large replay buffers and their associated highly performant
training while reducing memory costs by as much as 4.2×.

D. Training Convergence and Speed

To validate the generalizability of this result we show the
learning curves of PPO and SAC across four different sim-
ulated locomotion environments in Figure 4. These figures
report the average of ten random seeds and also display the
standard deviation with the accompanying shaded regions.

We find that convergence is not substantially affected by
the introduction of observation-based quantization. All final
rewards of both quantized and unquantized agents are within
a standard deviation of each other, and in some cases the
quantized models are able to train a policy with a higher total
reward. Furthermore, we show in Table I that the overhead
from performing quantization also does not significantly
impact overall training times and in some cases actually
speeds up overall training through reductions in memory
access overheads.

Walker2d HalfCheetah Ant Humanoid

PPO
B 1.66 1.77 2.16 1.78
Q 1.61 1.76 2.17 1.87
T 0.97× 0.99× 1.00× 1.05×

SAC
B 8.38 8.49 9.00 9.83
Q 8.41 8.44 8.97 9.91
T 1.00× 0.99× 1.00× 1.01×

TABLE I: Wall clock time in milliseconds per step of PPO
and SAC with (Q) and without (B) quantization as well as
the relative total time (T) of training with quantization.



Fig. 4: Learning curves of PPO (left) and SAC (right) with (blue) and without (black) quantization across four simulated
locomotion environments. Rewards are averaged across ten trials and standard deviations are shaded.

VI. CONCLUSION AND FUTURE WORK

This paper presents observation space quantization, a
method for reducing the overall memory requirements of
DRL without impacting training performance.

We evaluated the overall memory footprint and learning
performance for four simulated robotic locomotion tasks us-
ing two state-of-the-art on- and off- policy DRL algorithms.
We found that applying observation space quantization re-
duced the effective memory footprint of DRL training by as
much as 4.2×, while preserving both training convergence
and speed. We believe that this approach can be a powerful
way to reduce the overall memory consumption of DRL.

While we admit that not every learning-based solution
requires memory compression (especially if learning is being
done on a powerful workstation with ample storage), if
we are to achieve lifelong, practical learning on the edge,
curbing memory usage is a must.

In future work, we hope to compare our approach to
other forms of reduced precision (e.g., half-precision floating
point [34]). We also hope to deploy our approach onto
physical robot hardware and test it in the context of real-
world edge RL. Finally, we hope to apply our approach in
the context of tiny robot learning [44] and help usher in a
new era of ubiquitous edge RL.

APPENDIX A: LEARNING HYPERPARAMETERS

All experiments were carried out using the default
stable-baselines3 learning parameters for PPO and
SAC unless otherwise noted. The full hyperparameter list
is given in Table II. Both PPO and SAC used two-layered
feed-forward networks with 64 nodes per layer.

Parameter Value

PPO

MDP steps per update 2048
batch size 64
learning rate 0.0003
gamma 0.99
λ for GAE 0.95
value function cost 0.5
entropy cost 0.0
max gradient norm 0.5
cliprange 0.2

SAC

learning rate 0.0003
buffer size 1000000
entropy coefficient auto
MDP steps between updates 1
batch size 256
tau 0.005
gamma 0.99
gradient steps per update 1

TABLE II: Learning hyperparameters
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