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Abstract— To approach the level of advanced human players
in table tennis with robots, generating varied ball trajectories
in a reproducible and controlled manner is essential. Current
ball launchers used in robot table tennis either do not provide
an interface for automatic control or are limited in their
capabilities to adapt speed, direction, and spin of the ball.
For these reasons, we present AIMY, a three-wheeled open-
hardware and open-source table tennis ball launcher, which can
generate ball speeds and spins of up to 15.4 ms−1 and 192.0 s−1,
respectively, which are comparable to advanced human players.
The wheel speeds, launch orientation and time can be fully
controlled via an open Ethernet or Wi-Fi interface. We provide
a detailed overview of the core design features, and open-source
the software to encourage distribution and duplication within
and beyond the robot table tennis research community. We also
extensively evaluate the ball launcher’s accuracy for different
system settings and learn to launch a ball to desired locations.
With this ball launcher, we enable long-duration training of
robot table tennis approaches where the complexity of the ball
trajectory can be automatically adjusted, enabling large-scale
real-world online reinforcement learning for table tennis robots.

I. INTRODUCTION

Table tennis is a fast-changing and uncertain challenge
for robots, where current systems do not reach professional
human performance. In modern competitive table tennis,
effective command of ball speed and spin is crucial both
for offensive and defensive play. While current state-of-the-
art table tennis robots can cope with increasing reliability
with medium to high-paced shots, ball trajectories with
considerable spin remain a significant obstacle on the way
to reach the “AlphaGo moment” of robot table tennis.

Recent successes in robot table tennis [1], [2], [3], [4]
show that Reinforcement Learning (RL) has the potential to
significantly increase the performance of table tennis robots.
However, training with large-scale real-world interactions of
robot and ball – as required with RL – is hard to carry out
practically and hence these approaches rely on simulations
in some form. Simulating contacts between racket and ball
and in the bounce with the table require an increasingly
complex rebound model, which is more difficult to identify
with increasing speed and spin of the ball. This limitation
restricts progress in achieving performance comparable to
advanced human players.

Consequently, rich real-world data created during train-
ing under competitive conditions holds great potential for
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Fig. 1: AIMY, an open-source table tennis ball launcher
capable of generating speeds and spins comparable to ad-
vanced human players. The five independent degrees of
freedom allow launching balls with arbitrary target positions,
orientations, and spins.

acquiring even more sophisticated table tennis skills. For
meaningful use of this data in sample-intensive learning,
replications of a wide range of challenging but reproducible
game situations are of great importance. Therefore, a reliable
method is needed to generate versatile, high-fidelity ball
trajectories.

For this purpose, we developed the high-precision table
tennis ball launcher that we name AIMY and depict in
Figure 1. In experiments, we show that AIMY reliably
generates arbitrary trajectories with translational speeds up
to 15.4 ms−1 and spins of approximately 192.0 s−1 with high
accuracy. For comparison, Lee et al. [5] measured average
ball speeds of 16.8 ms−1 and ball spins with 113.9 s−1

among players on national table tennis team level, which
used maximum strength to hit a defined target.

To make AIMY as adjustable and easy to use as possible,
the user can adjust the wheel velocities and the orientation of
the ball launch unit via a remote low-latency Ethernet inter-
face. We provide a Python API to modify these parameters
and enable controlled and precisely timed launching.

The contribution of this paper is four-fold: We (i) open-
source the hardware and the software interface1, (ii) quan-
tify the accuracy of our new ball launcher under varying

1AIMY project web page: https://webdav.tuebingen.mpg.de/aimy/
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hardware considerations, (iii) learn to return a ball to a
desired landing position on the table with a supervised
learning approach and (iv) provide a rich and big data set
of 3761 ball trajectories of various ball speeds and spins for
benchmarking model learning approaches. In this manner,
we hope to facilitate research on more complex scenarios in
robot table tennis.

In the following, we provide an overview of the core
design features and components, along with the correspond-
ing low-level control software, in Section III. Subsequently,
Section IV reports the evaluations on repetition accuracy for
different system parameters. Furthermore, AIMY is validated
for different target distances compared to commercially
available products. Section V describes a supervised learning
approach to target shooting, as well as the data set of various
ball trajectories for model learning.

II. RELATED WORK

The majority of past works in robot table tennis focussed
on data-efficient approaches to return table tennis balls of
lower speeds and less spin compared to professional play,
and therefore did not require an automated ball launcher.
For example, multiple studies use real-world data on a small
scale such as in Matsushima et al. [6], Huang et al. [7], Ma
et al. [8], Koç et al. [9], Gomez-Gonzalez et al. [10] and
Mülling et al. [11] that either use some form of iterative
learning control or imitation learning approaches. All these
approaches required only small sample sizes. More recent ap-
proaches that use RL, avoid long-term training with real balls
by using prerecorded data and train in a hybrid sim and real
setting (Büchler et al. [3]), use data efficient approaches and
reduce the task to its minimum complexity (Tebbe et al. [1]),
or leverage sophisticated simulation environments (Yang et
al. [12] and Abeyruwan et al. [13]).

A large number of commercially available table tennis
launchers exist and are tailored for training with humans
ranging from beginners to advanced players but not for
automated long-term training. The TTmatic 303A [14], for
example, accelerates the ball with a single wheel and a
manually exchangeable slide that alters the altitude of the
launching angle. In an azimuthal motion, the launching
frequency as well as the motor speed are adapted via a
physically wired control panel. Usage of this ball launcher
for long-term training is not feasible since launching param-
eters and launching frequency have to be changed manually.
Additionally, it cannot adapt the spin of the ball. Other
models like the Donic Newgy Robo-Pong 2050 [15] feature
the manual rotation of the single wheel launch unit to enable
restricted spin generation. More sophisticated products like
the PowerPong Table Tennis Robot series [16] and the
Butterfly AMICUS series [17] rely on a three-wheel design
concept to generate noteworthy spin. However, neither of
these products provide an API that allows researchers to
control launching parameters and launching.

The number of reports on custom-designed ball launchers
in the scientific literature is fairly limited. For example,
[18], [19] facilitate automated devices for table tennis ball

launching, but neither of them satisfies the need for remote
controlled, high-fidelity ball trajectory generation.

III. DESIGN OVERVIEW

Multiple objectives guided the development of the ball
launcher. This section summarizes them, followed by the
presentation of the core mechanical design features and the
software framework.

A. Design Objectives

The main intention for creating the ball launcher is to
generate versatile ball trajectories in a controlled and repeat-
able fashion to facilitate research in robot table tennis. The
following list contains detailed and specific derivations of
this main goal that steered the development of AIMY:
• Arbitrary Trajectory Generation (R1): Sufficient cov-

erage of target area on an International Table Tennis
Federation (ITTF) compliant table tennis table; capabil-
ity to generate ball speed (approx. 16 ms−1) and spin
(approx. 114 s−1) comparable to professional human
level.

• High-fidelity Launching (R2): Sufficiently repetitive,
low-deviation target point hitting; accuracy should be
equal or better than commercially available products;
low number of trajectories with large deviation (outliers)
for a fixed parameter setting.

• Suitability for Long-duration Usage (R3): Charac-
teristics of the ball trajectory should remain the same
for the same parameters also under long-duration mea-
surement conditions; reliable supply of the launch unit
without clogging of ball supply; reliable launching
without interrupts by the launch unit.

• Remote Controllability (R4): Remote online parame-
ter control in soft real-time (approx. 500 ms); remote
on demand ball launching in soft real-time (approx.
500 ms); launching also in irregular intervals, e.g., due
to computation time of policy optimization after epochs.

• Advanced Trajectory Specification (R5): Automated
launch parameter selection for specification of landing
position, angle of ball impact, ball speed, and ball spin.

• Costs (R6): Material and component costs in total
should not significantly exceed purchase prices of com-
mercial products and should provide a good compromise
between the necessary accuracy, longevity, and price.

• General Handling Aspects (R7): Manufacturability
with regular workshop equipment; assemblability; main-
tainability; extensibility; user-friendly installation and
mechanical parameter adjustment.

B. Hardware Overview

With these design objectives in mind, AIMY is divided
into distinct functional core units, which are depicted in
Figure 2a. The most important of these core units are the
launch unit, the ball feeding system consisting of the ball
feeding unit and the ball supply channel, and the reservoir
stirrer.
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Fig. 2: (a) Overview of AIMY with core functional units. 1 Launch unit in three-wheel configuration. The launch unit
is rotatable due to a ball bearing in combination with a servo motor and adjustable in altitude angle via a linear motor.
2 Ball feeding unit with crank mechanism for supplying the launch unit with balls from the ball supply channel. 3 Ball

supply channel connecting ball supply unit with ball reservoir. The ball supply channel is equipped with an optical sensor
for detecting the state of filling. 4 Reservoir stirrer generates movement in the ball reservoir for resolving ball clogging. 5
The control unit enables hardware control, hosts the ball launcher server for remote controllability, and provides a graphical
user interface via a 7-inch touchscreen. 6 Electronics box with a 5 V and 24 V power supply and ESCs for motor control.
(b) Sectional view of the ball feeding flow from reservoir to launch unit. Ball supply mechanics from ball supply channel
through ball feeding unit towards launch unit and launch, shown in a cross-section view of the respective components. Red
arrows indicate ball flow, blue arrows indicate flow of forces via the crank mechanism.

1) Ball Feeding System: The ball feeding system ensures
that the launch unit is supplied with table tennis balls
from the ball reservoir. The ball feeding unit uses a crank
mechanism to transform the rotary motion of the servomotor
(Hitec HSB-9381TH) into a linear motion, pushing the
balls in queue into the engagement point of the throwing
wheels of the launch unit. Figure 2b illustrates this process.
Furthermore, an optical sensor (Pepperl+Fuchs GLV18-8-
400-S) mounted at the ball supply channel detects the state
of filling and triggers the reservoir stirrer if required.

2) Launch Unit: The launch unit receives a ball from
the ball feeding system and accelerates it via three throwing
wheels that are arranged at 120° to each other. Inspired by
commercial products like the Butterfly AMICUS Prime or
the PowerPong Omega, this concept can generate significant
amounts of spin around the launching tube (yaw) and the
horizontal ball axis (pitch). Roll spin can be produced to
a limited extent via suitable selection of orientation and

wheel speed parameters. For actuating the wheels, the high-
performance brushless motor Antigravity MN5008 KV170
of the manufacturer T-MOTOR has been selected. Although
developed for drone propulsion, this series of motors proved
to be reliable in other robotics applications, such as in [20]
and [21]. Hard foam wheels by the manufacturer Butterfly
– also used in the AMICUS table tennis launcher series –
transfer the motor torque to the ball. The compliant body
and the roughened surface reduces slip between the ball and
wheel. The T-MOTOR AIR 40A electronic speed controller
supplies the motors of the launch unit. A regular 5 V
servomotor (Hitec D954SW 32-bit) adapts the azimuthal
orientation, allowing the launch unit to rotate by 17° in both
positive and negative direction. The altitude orientation of the
launch unit can be modified via a linear actuator (Actuoinx
L12-30-210-6-R) enabling angles from 6.5° to 37.0°. The
selected linear actuator provides higher holding torque than
comparable rotary servo motors and is therefore better suited



for the intended use.
3) Reservoir Stirrer: One characteristic of table tennis

balls is a rough surface, which players leverage to their
advantage by creating spin with rubberized table tennis
rackets. However, this surface also promotes clogging of the
balls in the ball reservoir. This issue results in the launch
unit no longer being supplied with balls, which potentially
disrupts the operation of the ball launcher and ends long-term
tests. Therefore, in consideration of objective R3, a reservoir
stirrer is added. The stirrer moves the balls in the reservoir
to resolve potential clogging. The motion is either started
automatically after each launch or optionally by the signal of
the sensor of the ball supply channel. A servo motor (Pololu
SpringRC SM-S4303R) puts the stirrer into motion and can
be equipped with different stirring attachments.

4) Control Unit: A network-compatible terminal device
adjusts the hardware remotely. For this purpose, a Rasp-
berry Pi 4 Model B with Raspberry Pi OS is used, since
it offers a wide range of network interfaces but also enough
GPIOs to directly address sensors and actuators. Xinabox
OC05 servo drivers directly connected to the Raspberry Pi
via the GPIOs control the servomotors for the orientation of
the launch unit, the reservoir stirrer and the ball feeding unit.

C. Software Framework
The software is structured in a client-server scheme, where

the control unit with direct access to the hardware hosts a
server. Any device connected to the network can start a client
for remote controlling the hardware. The server provides
on-request functions for changing the current system state,
such as orientation of the launch unit or wheel speeds, and
can initiate launching at a desired time. While the server
waits for control requests, it observes the state of the ball
queue within the supply channel and activates the reservoir
stirrer if necessary. The client software provides functions
to submit requests to the server to initiate changes of the
ball launcher’s parameters and to initiate launching. For
the client we provide a Python and C++ API, to enable
embedding, e.g., in an RL environment. Server and client
can be connected via regular Ethernet (wired) or Wi-Fi
(wireless) networks. For communication, the open-source
and widely supported messaging library ZeroMQ is used in
a TCP configuration. Additionally, we provide a simple to
use Tkinter graphical user interface for manual operation and
testing of AIMY on a Raspberry Pi 7-inch touchscreen.

IV. DESIGN AND ACCURACY EVALUATION

This section provides a detailed evaluation of the defined
objectives of Section III. We first introduce the experimental
setup, followed by an investigation of the ball launcher’s
accuracy for different hardware settings and distances. We
close this section by comparing AIMY’s capability to gener-
ate ball speed and spin in comparison to professional human
table tennis players.

A. Experimental Setup
For the evaluation, four optical high-speed cameras

(Prosilica Gigabit GE640C) record the ball trajectories at 200
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Fig. 3: Standard deviation with respect to ramp-up times,
stroke gain, and pinching diameter. The deviation increases
significantly for ramp-up times lower than 0.5 s. The standard
deviations stay consistent for ramp-up times larger than 0.5 s
up until continuous operation (illustrated as dashed line).
Small stroke gains show small deviations, while high stroke
gain result in large differences between the deviation in x
(along long table edge) and y (along short table edge) direc-
tion. The differences in deviations for ball pinch are small.
High pinching diameters show slightly increased deviations.

frames per second. The tracking system is presented in [22].
For assessing the ball launcher’s accuracy, we evaluate the
standard deviation of the landing points of the respective
ball trajectories. Due to the scatter of measurements and the
discretization of the true trajectory, two polynomials are fitted
before and after the sample with the lowest height. The inter-
section of the polynomials provides a better approximation
of the true landing point than the data point with the lowest
height. First-order polynomials are sufficient for this purpose
and show the most reliable results. Before evaluation, a filter
removes erroneous measurement samples of the recorded ball
trajectories, and we inspected the ball trajectories manually
for plausibility.

B. Evaluation of System Parameters

Besides the control parameters, we identified three system
parameters (the ramp-up time of the motors, the stroke gain
of the ball feeding unit and ball pinching in the launch
unit). We evaluate the influence of these parameters on the
reproducibility of launched ball trajectories in the follow-
ing. Figure 3 depicts the accuracy evaluation of all three
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Fig. 4: Distance accuracy experiment for each ball launcher with medium altitude angle. The standard deviation for different
target positions for each ball launcher is evaluated. Each measurement point represents an approximated landing point of a
ball trajectory on the table and is colored according to the affiliation to each distance measuring series. Additional information
is given for each measuring series, like the number of measurement samples, the mean and confidence ellipses with 4 times
the standard deviation, and the norm of the respective standard deviation ‖σ‖ are indicated for each measuring series.

parameters. The ramp-up time is the time between launch
initiation and actuation of the ball supply unit. During this
time, the motors accelerate from standstill to the required
speed. Figure 3 shows that ramp-up times below 0.5 s have
a negative influence on the accuracy of the ball launcher.
Measurements in continuous operation show comparable
deviations of ramp-up times above 2 s and simultaneously
provide a smoother operation of the motors. The stroke gain
influences the speed at which the balls are fed to the launch
unit via the crank mechanism. With each control pass, the
stroke gain increases the angle of the servo motor, causing
steady insertion of the balls to the throwing wheels in the
launch unit. The evaluation in Figure 3 shows that small
stroke gains result in smaller deviations, while increasing
the total launch time. A stroke gain of 0.05, e.g., requires
4.21 s from actuation until launch, while a stroke gain of 1.0
only takes 1.39 s. Ball pinching refers to the compression
of the ball by the wheels during the launch procedure. The
individual wheel units can be installed on the launch unit
with different radial distances to the center. The smaller the
distance, the higher the pressure generated on the ball during
the launching process. The evaluation shows that increased
pinching results in lower deviation of the landing points.

C. High-fidelity Launching

To assess the fidelity of AIMY, the accuracy is evaluated
in comparison with the commercially available ball launchers
TTmatic 303A and Donic Robo-Pong 2050 for four different
target distances. Since the characteristics of motors powering
the throwing wheels have a major influence on accuracy, we
selected and evaluated two different motors, the T-MOTOR
Antigravity MN4004 KV300 and the T-MOTOR Antigravity
MN5008 KV170 motors. Both motors have been installed

with the same system parameters, control parameters, and
experimental conditions. Launcher-specific differences of the
custom-developed launcher to the commercial launchers due
to different operation principles are reduced by the selection
of comparable launch altitude angles and mechanical guides.
Figure 4 shows that AIMY with both motors has a lower
deviation of the landing points of Target 1, 2 and 4 than
both commercial products. The TTmatic 303A showed an
increased deviation on Target 3, which was caused by a
parameter jump of the ball feed mechanism for low launch
rates. The Robo-Pong 2050 shows a slighly smaller devi-
ation on Target 3 than AIMY with MN4004 motors. The
MN5008 motors have lower deviations on Target 2 to 4 than
the MN4004 version, while MN4004 has higher accuracy on
Target 1. However, the differences of both motors on Target 1
are not significant. Similar results can be observed for the
lowest and highest altitude settings in other measurement
series. In conclusion, based on the experiments, it can be
stated that AIMY has higher fidelity than the commercial
products. In the presented measurement series, no outlier was
detected or manually removed. Therefore, AIMY satisfies
design objective R2 regarding the accuracy, reliable operation
and a low number of outliers.

D. Suitability for Reinforcement Learning

The sensor for the state of filling of the ball supply
channel and the reservoir stirrer ensure a continuous and
reliable supply of the launch unit. In the measurement series
presented here, balls could be reliably shot remotely and
at arbitrary times with delay times lower than 500 ms via
the Python API. Based on the ramp-up time evaluation,
we recommend setting a delay of three seconds in case of
noncontinuous operation of the motors. In summary, AIMY



sufficiently satisfies suitability for long-duration operation
(R3) and fully satisfies remote controllability (R4).

E. Comparison to Human Performance

A maximum ball speed of 15.4 ms−1 generated by AIMY
is measured, which is slightly lower than the average max-
imum force serves with 16.8 ms−1 of national team level
players measured by Lee et al. [5]. AIMY generates top
spins up to 192.0 s−1, measured by observing the change of
orientation of marked table tennis balls with 960 frames per
second recordings. This value significantly exceeds the aver-
age of 113.9 s−1 measured for human professional players.
Ball speeds and ball spins have been recorded independently
of each other.

V. TARGET SHOOTING

AIMY enables precise adjustment of training conditions
for learning algorithms. To be able to set the ball trajectories
to meet the demands of controllable training scenarios,
we developed an algorithm which selects suitable control
parameters based on the desired state parameters, e.g., the
landing point, initial rotational yaw, roll of the ball, angle
of impact of the landing point, or rebound direction. The
use of an analytical model introduces approximation errors
of non-linear effects such as inelastic and rolling collision
dynamics at the rebound and friction and slip in the launch
unit. Therefore, we decided to use a feed-forward neural
network for the target shooting algorithm.

A. Training Data

A balanced and rich data set has a decisive influence on
whether suitable control parameters can be found for the
desired state parameters. A grid selects a balanced set of
control parameters for the training data set of the target
shooting algorithm. Table I describes the composition of the
data used for target shooting. The data is biased towards
hitting the opponent’s half of the table. Therefore, higher
velocities and higher angles occur more often. The data set
also includes trajectories that do not bounce on the table. Of
the 3761 trajectories provided, 3250 have a landing point on
the table. Our project web page provides the used data set,

TABLE I: Characteristics of the training data set

# Number
samples

Spin
magnitude

Wheel
speeds

Altitude
angle

1 415 none to
low

all wheels
same various

2 64 high high speeds various

3 364 low to
medium low speeds various

4 1103 low to
high various high

5 1385 low to
medium various medium

6 430 low various low

Total 3761
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Fig. 5: Target shooting experiment. Grey markers represent
the targets. Red markers indicate landing positions of ball
trajectories generated with the neural network approach.
While the landing points roughly match the target locations,
deviations are visible.

the trained model for target shooting along with evaluation
scripts.

B. Evaluation
The model consists of a feedforward, fully connected

neural network with three hidden layers. Input to the model
is the desired landing position in Cartesian coordinates. The
model outputs the set of control parameters. For evaluation,
we selected a grid of 20 points on the opposite half of the
table. Figure 5 illustrates the result. The obtained landing
points indicate that the model can roughly hit desired landing
points.

VI. CONCLUSION

In this work, we provide an open-source table tennis ball
launcher capable of generating versatile ball trajectories in
a reproducible and controlled manner. The design satisfies
the requirements to enable long-duration training of robot
table tennis. AIMY has higher accuracy than commercially
available products and additionally features remote APIs,
crucial for embedding in an RL setting. In a first learning
attempt, we showed that AIMY shoots balls close to a
desired landing position on the table. The limitations of this
work include a missing comparison of AIMY with latest
commercial products like the Butterfly AMICUS Prime and
the precision of the proposed target shooting approach. More
sophisticated approaches using RL or incorporate analytical
knowledge of the ball launcher and the ball dynamics could
fully utilize AIMY’s accuracy. In future work, we will
investigate how to return and generate different kinds of spin
with a real robot. We deeply hope that AIMY will contribute
to increased performance of table tennis robots in the future.
Videos of the experiments, as well as construction details,
can be found on the project webpage.
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APPENDIX
A. Technical Specifications

Table II provides a brief overview of the specifications of AIMY.

TABLE II: Technical Specifications

Specification Value Remarks

Maximum Speed 15.4 ms−1 Average speed in first 0.5 s
Maximum Spin 192.0 s−1 Initial spin
Altitude Angle 6.4° – 37.1°
Azimuthal Angle −15.8° – 15.6°
Supply Voltage 230 V (50 Hz)

Python API X
C++ API (X) Not extensively tested
Ethernet X
Wi-Fi X

B. Third Party Hardware

Table III lists third party hardware selected for AIMY. In Section IV-C, the evaluation assessed two different motors,
both being listed. We recommend the T-MOTOR Antigravity MN5008 KV170, as it provides higher torque in the lower
turning speed region. The ball launcher mainly operates in lower turning speed regions, which results in higher accuracy in
comparison to the T-MOTOR Antigravity MN4004 KV300.

TABLE III

Component Manufacturer Model

Motor Wheels T-MOTOR Antigravity MN4004 KV300
Motor Wheels T-MOTOR Antigravity MN5008 KV170
ESC T-MOTOR AIR 40A
Servomotor Azimuthal Orientation Hitec D954SW
Servomotor Altitude Orientation Actuoinx L12-30-210-6-R
Servomotor Reservoir Stirrer Pololu SpringRC SM-S4303R
Servomotor Ball Feeding Unit Hitec HSB-9381TH
Optical Sensor Ball Feeding Unit Pepperl+Fuchs GLV18-8-400-S
Control Unit Raspberry Pi Foundation Raspberry Pi 4 Model B
Motor Driver Wheels Xinabox OC05
24 V Power Supply Unit Mean Well HDR-150-24
5 V Power Supply Unit Mean Well MDR-40-5
Azimuthal Bearing Franke LEL1 5 0070

Interface Raspberry Pi Foundation Raspberry Pi Touch
Display (7-inch)

Throw wheel Butterfly AMICUS Ball Throw Wheel
Housing item various

C. Experimental Setup

In addition to the description of the experimental setup in Section IV-A, we provide further details on the setup, and
the approach of processing and collecting data for evaluation. After recording and before evaluation, we transform the data
points to a common coordinate system and preprocess the trajectories according to the following procedure.
• Measurement System: The accuracy of the ball tracking system has been evaluated beforehand. We measured a

deviation of 0.024 m in x-direction, 0.011 m in y-direction and 0.001 m in z-direction per meter within the relevant
recording region.

• Table Tennis Launcher: For high-fidelity evaluation, we assess our custom-designed ball launcher in two different
configurations. The first configuration is equipped with the T-MOTOR MN4004 KV300 and the second configuration
equipped with the T-MOTOR MN4004 KV300 for accelerating balls in the desired direction. In addition to the motors,
the structure of the launch unit was made mechanically stiffer in the second configuration, which may have an impact
on accuracy in addition to motor differences. For system parameter evaluation, the second configuration is used. In the
current version of AIMY, there are no sensors installed for measuring turning speeds of the motors and providing closed-
loop control of turning speeds. Individual motor differences in motor speeds for the same actuation are compensated
with measured characteristic motor curves for each motor. The characteristic motor curve maps actuation and resulting
motor speeds and interpolates between each measurement point. Figure 6 shows the characteristic motor curves. Figure 7
shows the measured actuation to angle change relationship of the orientation actuators.
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Fig. 7: Characteristics of the orientation actuators for different actuation signals.

• Setup: For reducing discrepancies between the different structures of the two configurations of the custom designed ball
launcher and the TTmatic 303A, similar altitude angles are chosen for evaluation and specified with the terms ”low”,
”medium” and ”high”. The ball launchers are positioned directly at the front-end of the table. The TTmatic 303A
is not capable of launching the small distance to Target 1 with automatic ball feed. Therefore, the distance of the
TTmatic 303A to the front-end of the table had to be increased by approximately 30 cm. For target shooting, the data
set has been recorded with AIMY in the second configuration with a distance of 80 cm to the front-end of the table.
With increased distance higher speeds and spins can be utilized, however, with a compromise on accuracy.

The provided data sets have been processed before the – in Section IV described – bounce detection is applied. The
processing includes several filter processes addressing either faulty samples or faulty trajectories:
• A time jump filter removes a trajectory from the data set, if there exists a time gap between two consecutive samples

exceeding 0.5 s.
• A rebound filter removes a trajectory from the data set, if there is no rebound on the table. However, trajectories closely

missing the table edges provide important information for target shooting learning. Therefore, the data sets have been
exported with rebound filter applied and without.

• The position jump filter removes samples with position deviations of more than 5 cm between one sample and the
neighborhood of 15 closest samples. This process proved to remove most outliers caused by the ball tracking system.

• The region filter removes all samples outside the table area, with some relaxation in x- and y-direction.
Additionally, all samples have been transformed to fit the defined initial coordinate system, with x increasing along the

long edge of the table and y along the short edge of the table. We set the origin at the frontend of the table in the middle
of the table. The time stamps are converted from nanoseconds to seconds. In addition to jump detection, we inspected all
trajectories visually for rough outliers to ensure plausible training data and evaluation results.



D. Evaluation of Orientation Jumps

Additionally to the system parameters assessed in Section IV, we evaluated the influence of orientation jumps on the ball
trajectories. Orientation jumps are significant changes in altitude and azimuthal angles of the launching tube . For evaluation,
we recorded ball trajectories in which the orientation was not changed beforehand and launches in which an orientation
jump was made beforehand. An altitude angle of 19.9° and an azimuthal angle of 0° define the default launching position
of the orientation actuators. Before each shot, the table tennis launcher moves into the neutral position from a displaced
position with an altitude angle of 6.4° and an azimuthal angle of −15.8°. Table IV and Figure 8 provide the results. The
figure shows no significant deviations of the landing points for trajectories recorded with orientation jumps in comparison
to trajectories without orientation jumps.

TABLE IV: Investigation on the influence of orientation jumps on the landing points accuarcy

Orientation
jump

Number
samples [-] σx [mm] σy [mm]

no 20 0.0155 0.0193
yes 20 0.0195 0.0176
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Fig. 8: Orientation jump experiment. Each measurement point represents a landing point of a ball trajectory. The dimension
of the confidence ellipse is roughly equal between the measurements with and without jump. However, the orientation of
the larger deviation switched between the measurement series.

E. Evaluation of Stroke Gain

Table V lists the standard deviation values in each direction of the table plane of Figure 3 for different stroke gain values.
Stroke gain is briefly defined in Section IV-B. Figure 9 further illustrates the deviation of the landing points.

TABLE V: Investigation on the influence of stroke gain on the landing points accuarcy

Stroke
gain [-]

Number
samples σx [mm] σy [mm] Aσ [mm2] Launch

time [s]

0.05 35 0.0197 0.0143 0.00088 8.83
0.10 50 0.0156 0.0192 0.00095 4.21
0.50 50 0.0241 0.0239 0.00181 1.60
1.00 49 0.0213 0.0223 0.00149 1.39
3.00 46 0.0237 0.0196 0.00146 0.81
5.00 50 0.0227 0.0223 0.00159 0.61
10.00 50 0.0199 0.0215 0.00134 0.67
30.00 50 0.0279 0.0150 0.00132 0.62
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Fig. 9: Stroke gain experiment. Landing points are illustrated for different stroke gain values along the confidence ellipses
of three times the standard deviation, and the mean value given as a cross. One can observe only minor differences of the
deviations between each stroke gain values.

F. Evaluation of Ball Pinching

Table VI lists the standard deviation values in each direction of the table plane of Figure 3 for different ball pinching
values. Section IV-B gives a brief definition of ball pinching. Figure 10 further illustrates the deviations of the landing points.

TABLE VI: Investigation on the influence of ball pinching on the landing points accuarcy

Pinching
diameter [mm]

Number
samples [-] σx [mm] σy [mm] Aσ [mm2]

35.3 51 0.03194 0.03062 0.00307
35.8 48 0.01932 0.02658 0.00161
36.4 49 0.01906 0.02171 0.00130
37.0 49 0.01965 0.02480 0.00153
37.4 49 0.01866 0.02208 0.00129
38.6 49 0.02361 0.02428 0.00180

1.9 2.0 2.1

−0.05

0.00

0.05

0.10

0.15

0.20

35.3 mm

2.0 2.1 2.2

−0.05

0.00

0.05

0.10

0.15

0.20

35.8 mm

2.0 2.1 2.2

−0.05

0.00

0.05

0.10

0.15

0.20

36.4 mm

2.5 2.6 2.7

0.00

0.05

0.10

0.15

0.20

0.25

37.0 mm

1.9 2.0 2.1

0.05

0.10

0.15

0.20

0.25

0.30

37.4 mm

2.0 2.1 2.2

0.00

0.05

0.10

0.15

0.20

0.25

38.6 mm

Fig. 10: Ball pinching experiments. Landing points are illustrated for different ball pinching values along confidence ellipses
of three times the standard deviation, and the mean value given as a cross. It can be seen that small and high pinching
results in slightly increased deviations.



G. Evaluation of Motor Ramp-up

Table VII lists the standard deviation values in each direction of the table plane of Figure 3 for different ramp-up times.
Section IV-B gives a brief definition of the Ramp-up time. Figure 11 further illustrates the deviations. The motors need
a certain time to reach the requested speed. However, under 0.5 seconds of ramp-up time, the motor speeds are not yet
converged at the time of launching. This noisy wheel velocities result in increased deviations of landing points.

TABLE VII: Ramp-up times accuracy experiments

Ramp-up
time [s]

Number
samples [-] σx [mm] σy [mm] Aσ [mm2]

0.01 39 0.0402 0.0166 0.002096
0.05 32 0.0400 0.0143 0.001797
0.10 38 0.0436 0.0174 0.002383
0.50 34 0.0211 0.0150 0.000994
1.00 34 0.0243 0.0172 0.001313
2.00 33 0.0243 0.0134 0.001023
3.00 36 0.0234 0.0134 0.000985
8.00 40 0.0247 0.0173 0.001342

continuous 40 0.0231 0.0150 0.001089
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Fig. 11: Ramp-up time experiments. Landing points are illustrated for different ramp-up times between actuation and launch
of the ball along confidence ellipses of three times the standard deviation, and the mean value given as a cross. It can be
seen that low ramp-up times result in significantly increased deviations in x-direction.

H. Evaluation of Versatility

Table VIII lists the experimentally determined maximum ball speed and topspin of the evaluated ball launchers. AIMY
with the T–Motor N5008 KV170 motors is capable of generating the highest ball speeds and spins.

TABLE VIII: Comparison of maximum ball speeds and topspins of the evaluated ball launchers

Max Speed Max Topspin
Professional Human (average) 16.8 ms−1 113.9 s−1

TTmatic 303A 9.8 ms−1 64.0 s−1

Donic Robo-Pong 2050 10.7 ms−1 106.7 s−1

AIMY (MN4004 KV300) 10.8 ms−1 − s−1

AIMY (MN5008 KV170) 15.4 ms−1 192.0 s−1

I. Evaluation of High-fidelty

In Figure 4, the accuracy of AIMY was compared to the TTmatic 303A and Donic Robo-Pong 2050 for four distances
with the medium altitude setting. Table IX lists the angle values for each altitude setting. Figure 12 extends Figure 4 with
low and high altitude angles.



TABLE IX: Altitude angles of evaluated ball launchers

Low
Angle

Medium
Angle

High
Angle

TTmatic 303A Slide with smallest
curvature

Slide with medium
curvature

Slide with largest
curvature

Donic Robo-Pong 2050 8° 26° 30°
AIMY MN4004 KV300 14° 26° 28°
AIMY MN5008 KV170 6.4° 19.9° 37.1°

J. Data Set

For illustration purposes, Figure 13 shows 415 of the 3761 recorded trajectories for training after preprocessing. The
landing points of the ball trajectories of the training data set are shown in Figure 14. The ball tracking system described
in Section IV records with 200 Hz. Figure 15 depicts a histogram of the time stamp differences of consecutive samples
to verify the equidistance of the recorded samples. We assume, that computation in the ball detection algorithm leads to
slightly reduced recording frequency.
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Fig. 13: Ball trajectories from recorded training data set in three-dimensions. Grey plane illustrates the table tennis table.
Ball trajectories start from the frontend of the table and cover the other side of the table, cone-shaped.
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Fig. 15: Histogram of the time delta between each recorded sample. The time differences are located between 4.5 and 6.5 ms.
The majority of the time differences are between approximately 5.25 and 5.75 ms.

K. Target Shooting
For learning to hit landing position, we trained a feed-forward neural network, as described in Section V-B. For training,

we consider each position measurement of the presented data set and the corresponding control parameters as a training
sample. All training samples after the rebound are not considered. For target shooting, we simplified the problem by only
considering trajectories shot with equal throwing wheel speeds. This simplification reduced the control parameters to the
two orientation angles and one throwing wheel speed applied to all wheels, and herewith the dimensionality of the action
space. Therefore, the target shooting network learns the position to control parameter mapping with a total of 66581 training
samples from 415 recorded trajectories. Table X lists the specifications of the architecture of the neural network.

TABLE X: Specification of the target shooting network

Specification Value

Number of Layers 3
Neurons per Layer 2048, 512, 128

Loss MSE
Activation sigmoid
Dropout 0.1

Optimizer ADAM
Epochs 1400

Mini batch size 4096
Minimum learning rate 1e-4

Normalization standard
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(c) Distance accuracy with high altitude angle

Fig. 12: Distance accuracy experiment for low, medium, and high altitude angles.
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