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Abstract— Occupancy mapping has been widely utilized to
represent the surroundings for autonomous robots to perform
tasks such as navigation and manipulation. While occupancy
mapping in 2-D environments has been well-studied, there
have been few approaches suitable for 3-D dynamic occupancy
mapping which is essential for aerial robots. This paper presents
a novel 3-D dynamic occupancy mapping algorithm called DS-
K3DOM. We first establish a Bayesian method to sequentially
update occupancy maps for a stream of measurements based
on the random finite set theory. Then, we approximate it
with particles in the Dempster-Shafer domain to enable real-
time computation. Moreover, the algorithm applies kernel-
based inference with Dirichlet basic belief assignment to enable
dense mapping from sparse measurements. The efficacy of the
proposed algorithm is demonstrated through simulations and
real experimentsi.

I. INTRODUCTION

Understanding the surroundings is of great importance
for autonomous robots deployed in unknown or partially
known environments to perform tasks such as navigation
and manipulation. One of the most central information about
the surroundings is occupancy status for the area of interest
to recognize target objects or find safe paths to destina-
tions without any collisions. For these purposes, occupancy
map is often employed by estimating whether each cell
of discretized space or a point over continuous space is
occupied by an object or not. When the occupying object is in
motion, it is also essential to estimate its dynamic states such
as velocity in addition to the occupancy to enable further
missions such as collision avoidance and target tracking.

While occupancy mapping in two-dimensional (2-D) en-
vironments has been well-studied for ground vehicles, there
have been few approaches suitable for 3-D dynamic oc-
cupancy mapping which is crucial for aerial robots. Prior
to handling dynamic objects, occupancy mapping for static
environments already introduces difficulty with sparse and
noisy sensor measurements that cause inaccurate occupancy
estimation. The problem is more severe in 3-D mapping
compared to the 2-D cases as the same number of sensor rays
results in sparser coverage in 3-D space. To resolve the issue,
various studies have considered spatial correlation among
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(a) Indoor Environment (b) DS-PHD/MIB

(c) K3DOM (d) DS-K3DOM

Fig. 1: Results of indoor experiments. (a) shows the envi-
ronment in which a person walking around the LiDAR. (b-
d) present the occupancy map estimated by each algorithm.
They indicate estimated occupancy with different colors: blue
and green for dynamic and static objects, respectively.

cells, for instance, using Gaussian process regression [1],
logistic regression with hilbert maps [2], [3], and Bayesian
kernel inference [4]. Nevertheless, they are incapable of
updating the occupancy map along with the movements of
dynamic objects and limited to static environments.

For dynamic environments, several methods have been
proposed to accommodate dynamic objects by sequentially
updating occupancy maps with a stream of measurements.
[5], [6] proposed dynamic occupancy mapping in continuous
space using Gaussian process regression, and [7] took a
variational Bayesian approach on Hilbert mapping to learn
occupancy maps sequentially. While these methods suffer
from high computational cost, [8] proposed a real-time
solution by employing a particle filter. [9], [10] also utilized
particle filters in the Dempster-Shafer domain and showed
satisfactory performance. Theoretically, [11] proposed a rig-
orous Bayesian method of occupancy mapping, called the
PHD/MIB filter, based on the random finite set theory. Also,
the authors presented its real-time viable approximation
in the Dempster-Shafer domain with particles. However,
those methods mainly target 2-D environments, and simply
applying them to 3-D environments demands vast memory
and computation capabilities due to the higher degree of
freedom of 3-D environments. Recently, [12] proposed a real-
time solution for 3-D dynamic occupancy mapping, called
K3DOM. It efficiently restricts the usage of particles on
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potential dynamic objects through a kernel-based inference
on Dirichlet distribution. Nonetheless, the method is based
on heuristics and lacks in rigorous foundation.

Inspired by the mathematical foundation of the PHD/MIB
filter and the practicality of K3DOM, this paper presents
a novel 3-D dynamic occupancy mapping algorithm called
DS-K3DOM. We first theoretically extend the PHD/MIB
filter to distinguish dynamic objects from static objects
instead of treating them uniformly as occupying objects.
Then, we approximate the extended PHD/MIB filter in the
Dempster-Shafer domain with particles to enable real-time
computation. Taking advantage of the extended structure, we
employ particles efficiently to represent potential dynamic
objects without unnecessary employment for static objects. In
addition, we propose a kernel-based inference with Dirichlet
basic belief assignment (BBA) [13] to enables dense map-
ping from the spatially sparse sensor measurements. The
efficacy of the proposed algorithm is demonstrated through
simulations and real experiments.

II. PRELIMINARIES

Before introducing the algorithm, we formulate the prob-
lem (II-A) and briefly review the concepts of random finite
set (RFS) and probability hypothesis density (PHD) (II-B).
For solid background, we refer the readers to [11], [14], [15].

A. Problem Formulation

This paper focuses on 3-D dynamic occupancy mapping
in discrete space represented with cells. The main problem
of the paper is to estimate the occupancy state of each cell
among Ω := {D,S,F} at each time-step discretized by step-
size dt ∈R+. ‘D’ (resp. ‘S’) represents the state occupied by
a dynamic (resp. static) object, while ‘F’ represents the un-
occupied (free) state. The ingredients for the state estimation
at time-step k are accumulated range sensor measurements
Z1:k := {Xt ,Yt}k

t=1. Xt is a set of measured locations in R3,
and Yt is a set of corresponding measured values in {0,1}
at each time-step t. The values of ’0’ and ’1’ denote free
and occupied measurement, respectively. Note that range
sensors indirectly measure free space information. Thus, the
closest point on each measurement ray from the query point
is utilized as a free measurement as in [4].

B. Random Finite Set and Probability Hypothesis Density

An RFS X = {x1, ...,xn} is a random variable having a
value as a finite set. The set consists of random vectors xi ∈X
with a random cardinality n which follows the distribution
ρ(n) := P(|X |= n). For each n > 0, let fn(x1, ...,xn) denote
the symmetric joint probability distribution function (PDF)
of the elements of the RFS X . Then, the PDF of X , π(X),
and its integration are defined as below.

π(X = {x1, ...,xn}) = n! ·ρ(n) · fn(x1, ...,xn), (1)∫
π(X)δX = π( /0)+

∞

∑
n=1

1
n!

∫
π({x1, ...,xn})dx1 · · ·dxn. (2)

Note that π(X = /0) = ρ(0). Then, the PHD of the RFS X ,
D(x), is defined over the state-space X as

D(x) = E[δX (x)] =
∫

δX (x)π(X)δX , (3)

where δX (x) := ∑s∈X δs(x) with a Dirac delta function δs(x)
concentrated at each s ∈ X . The integration of D(x) over an
area results in the expected number of objects in the area.

III. EXTENDED PHD/MIB FILTER

In this section, we present the theoretical foundation
of DS-K3DOM by extending the PHD/MIB filter [11].
The PHD/MIB filter estimates a dynamic occupancy map
via Bernoulli RFSs and their joint PHD. It represents the
occupancy status of each cell with a Bernoulli RFS and
dynamically updates the occupancy estimation by repeating
prediction and update steps. For the prediction step, the
filter converts the Bernoulli RFSs of all cells into their
joint PHD and predicts its change due to the movements of
dynamic objects. Then, the joint PHD is approximated back
to separate Bernoulli RFSs to update the estimation based on
the measurement information on each cell. We extend this
PHD/MIB filter to subdivide the feasible occupancy states
of each cell into Ω = {D,S,F}. Note that the original filter
does not distinguish between the dynamic and static states
and treats them uniformly as ‘occupied’.

A. Representation of Objects via Bernoulli RFS and PHD
We represent the multi-object distribution of the surround-

ing objects using Bernoulli RFSs, where an element x =
[pT vT ]T ∈X of an RFS represents the state of a point object
with its position p ∈ R3 and velocity v ∈ R3. Under the
assumption of having at most one object in each cell, the
Bernoulli RFS of each cell (c) is modeled to have PDF as

π
(c)(X) =


1− r(c) if X = /0
r(c) · p(c)(x) if X = {x}
0 if |X | ≥ 2

, (4)

where r(c) and p(c)(x) are the existence probability and PDF
of an object, respectively. Regarding the mutually exclusive
events of the object being static and dynamic, we further
decompose the probabilities and PDFs as

r(c) = r(c)D + r(c)S ,

p(c)(x) = (r(c)D · p
(c)
D (x)+ r(c)S · p

(c)
S (x))/r(c),

(5)

where r(c)D (resp. r(c)S ) is the existence probability of the
dynamic (resp. static) portion, and p(c)D (resp. p(c)S ) is its PDF.
Then, the PHD of the Bernoulli RFS is also decomposed as

D(c)(x) = r(c) · p(c)(x) = D(c)
D (x)+D(c)

S (x), (6)

if we consider separate Bernoulli RFSs for the dynamic and
static portions with their PHDs D(c)

D (x) = r(c)D · p
(c)
D (x) and

D(c)
S (x) = r(c)S · p

(c)
S (x), respectively. Their joint PHD is

D(x) = ∑
c

D(c)(x) = DD(x)+DS(x), (7)

where DD(x) := ∑c D(c)
D (x) and DS(x) := ∑c D(c)

S (x).



B. Bayesian Update of Bernoulli RFS

The extended PHD/MIB filter dynamically updates the
Bernoulli RFSs according to the new measurements in a
Bayesian framework. It first predicts the changes in the joint
PHD of the Bernoulli RFSs of all cells by propagating the
current estimation. Then, it approximately converts the pre-
dicted PHD back to the new Bernoulli RFSs and updates their
posterior distributions with the measurement information.
Unlike the PHD/MIB filter, our extended filter utilizes the
decomposed structures for the dynamic and static portions
that enables efficient particle realization in Section IV.

In the prediction step, the movements of dynamic objects
are the main source of change. Thus, we follow the standard
prediction step of a PHD filter [16] for the dynamic object,
while the static portion remains the same. We represent the
predicted joint PHD at time-step k+1 in a separated structure
D+(xk+1) = DD+(xk+1) +DS+(xk+1) as in (7). Then, each
portion is predicted as:

DD+(xk+1) = Db,+(xk+1)+ pS

∫
fD+(xk+1|xk)DD(xk)dxk,

(8)
DS+(xk+1) = DS(xk+1), (9)

with the persistence probability pS and the transition density
of a dynamic object fD+(xk+1|xk). Db,+(xk+1) is a newly
generated PHD through the birth process that could reduce
false negative occupancy estimation, which is usually more
unfavorable than false positive one in many applications
such as collision avoidance. We denote the last term in (8)
as Dp,+(xk+1) to indicate the predicted PHD for persisting
dynamic object.

Next, we derive new Bernoulli RFSs that corresponds
to the predicted PHD. From the definition of PHD, the
existence probabilities of the persistent dynamic object and
static object in each cell (c) are, respectively,

r(c)p,+ = min(
∫

xk+1∈c
Dp,+(xk+1)dxk+1,1), (10)

r(c)S+ = min(r(c)S ,1− r(c)p,+), (11)

where xk+1 ∈ c indicates that the position of xk+1 is inside the
cell (c). The probabilities are clipped so that each of them
and their sum do not exceed 1. Meanwhile, the existence
probability of new-born dynamic objects is modeled as

r(c)b,+ = pB · (1− r(c)p,+− r(c)S+), (12)

given the prior birth probability pB ∈ [0,1]. Then, we com-
pute the PDF of the predicted objects inside the cell (c) as

p(c)
(·) (xk+1) = D(·)(xk+1)/r(c)

(·) (13)

for nonzero r(c)
(·) where (·) corresponds to ‘b,+’, ‘p,+’, and

‘S+’ for new-born dynamic, persistent dynamic, and static
object, respectively. With these parameters, the Bernoulli
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Fig. 2: Framework of DS-K3DOM

RFS of the object in each cell (c) is predicted to have PDF

π
(c)
+ (Xk+1) =
1− r(c)p,+− r(c)b,+− r(c)S+ if Xk+1 = /0

r(c)b,+p(c)b,+(xk+1)+ r(c)p,+p(c)p,+(xk+1)

+r(c)S+p(c)S+(xk+1)
if Xk+1 = {xk+1}

0 if |Xk+1| ≥ 2

.

In the update step, the predicted PDF and new mea-
surements Zk+1 are utilized to update the posterior PDF of
Bernoulli RFS via the Bayes’ rule [15]:

π
(c)(Xk+1|Zk+1) =

η(Zk+1|Xk+1)π
(c)
+ (Xk+1)∫

η(Zk+1|Xk+1)π
(c)
+ (Xk+1)δXk+1

, (14)

where η(Zk+1|Xk+1) denotes the likelihood function for the
measurements Zk+1 given the posterior RFS Xk+1. Omitting
the conditional part for notational simplicity, the joint poste-
rior PHD is given by the sum of all Bernoulli RFS instances:

Dk+1(xk+1) = ∑
c

π
(c)(Xk+1 = {xk+1}). (15)

IV. DS-K3DOM: APPROXIMATION OF EXTENDED
PHD/MIB FILTER IN DEMPSTER-SHAFER DOMAIN

In this section, we propose DS-K3DOM shown in Fig. 2
which is an efficient particle realization of the extended
PHD/MIB filter in the Dempster-Shafer (DS) domain similar
to [11]. It approximates the practically intractable computa-
tions in Section III-B and enables real-time operations of the
filter. By doing so, we economically employ particles only
for potential dynamic objects in the observed area without
their unnecessary usages for the unobserved area or static
objects. Moreover, we exploit the multi-hypothesis structure
of the Dempster-Shafer evidential theory (DST) to deal with
the ambiguous sensor observations which do not distinguish
between dynamic and static statuses. In addition, we adopt
Dirichlet BBA [13] in the DS domain to utilize a kernel-
based inference, as in [12], to enable dense mapping from
the sparse sensor measurements. The omitted information
on the particle management such as its resampling process
follows [11].



A. Dempster-Shafer Evidential Theory

We first briefly review the concept of the DST; for detailed
knowledge, we refer the readers to [17]. Let a hypothesis be
a feasible and exclusive incident in a situation and a frame
of discernment be the finite set Ω that consists of all possible
hypotheses. A mapping called a basic belief assignment
(BBA) or mass m : 2Ω → [0,1] represents the normalized
degree of evidence for a set of hypotheses, satisfying the
following conditions:

m( /0) = 0 and ∑
X⊆Ω

m(X) = 1. (16)

A set X that satisfies m(X) > 0 is called a focal element.
Then, DST provides a rule to update the evidential belief.
Dempster’s rule of combination is an operation that combines
a pair of independent BBAs from multiple data sources
that share the same frame of discernment Ω. The rule of
combination is represented by

(m1⊕m2)(X) =
∑A∩B=X m(A)m(B)

1−∑A∩B= /0 m(A)m(B)
(17)

with A,B,X ⊆Ω.

B. Representation of Cell States in Dempster-Shafer Domain

We consider observations from a range sensor that only
provide evidence on whether a cell is either occupied or free.
Accordingly, the BBA m({D,S}) (resp. m({F})) indicates
the evidences supporting that the cell is occupied (resp. free),
while m(Ω) indicates the degree of uncertainty over the
cell state. Thus, we define the set of all focal elements as
Ξ := {{D},{S},{F},{D,S},Ω} and compute the probability
of each occupancy state for each cell (c) via the pignistic
probabilities [18]:

P(c)(X) = ∑
Y∈Ξ

|X ∩Y |
|Y |

m(Y ) ∀X ∈Ω (18)

Unlike [11], DS-K3DOM employs particles only for dy-
namic objects so that their weights in each cell (c) add up to
the dynamic mass m(c)

k ({D}). The PDF of a dynamic point
object p(c)D,k(xk) is then approximated as below:

m(c)
k ({D}) =

ν
(c)
k

∑
i=1

w(i,c)
k ,

p(c)D,k(xk)≈
1

m(c)
k ({D})

ν
(c)
k

∑
i=1

w(i,c)
k δ (xk− x(i,c)k ),

(19)

where ν
(c)
k indicates the number of particles of each cell (c)

and w(i,c)
k and x(i,c)k are the weight and state of the i-th particle

in the cell, respectively.

C. Prediction of Particles and Masses

We adopt a constant velocity (CV) model to propagate
each particle in the prediction step. The state of each
persistent particle at the time-step k+1 is predicted to evolve
as

xp,+ =

[
I3 dt · I3

03×3 I3

]
xk +nx (20)

with a process noise nx = [nT
p nT

v ]
T , np ∼ N(03,σpI3), and

nv ∼N(03,σvI3). As described in III-A, the first three dimen-
sions are for position while the other three are for velocity.
The propagated particles are then newly indexed so that each
cell (c) contains ν

(c)
p,+ particles.

The prediction of each focal element’s mass is designed to
imitate the prediction step in the extended PHD/MIB filter,
(10-11), and to properly distribute m(c)

k ({D,S}) to m(c)
p,+({D})

and m(c)
p,+({S}) as below:

m(c)
p,+({D}) =min

(
1,

ν
(c)
p,+

∑
i=1

w(i,c)
p,+ +δ

(c)
k βγ

dtm(c)
k ({D,S})

)
,

m(c)
p,+({S}) =min

(
1−m(c)

p,+({D}),

γ
dtm(c)

k ({S})+(1−δ
(c)
k )βγ

dtm(c)
k ({D,S})

)
,

m(c)
p,+({D,S}) =min

(
1−m(c)

p,+({D})−m(c)
p,+({S}),

(1−β )γdtm(c)
k ({D,S})

)
,

m(c)
p,+({F}) =min

(
1−m(c)

p,+({D})−m(c)
p,+({S})

−m(c)
p,+({D,S}), γ

dtm(c)
k ({F})

)
,

m(c)
p,+(Ω) =1− ∑

X∈2Ω/Ω

m(c)
p,+(X).

(21)

γ denotes the decaying factor on the beliefs due to
the increased uncertainty as time passed. We distribute
the β ∈ [0,1] portion of the decayed occupied mass
γdtm(c)

k ({D,S}) to the dynamic mass m(c)
p,+({D}) and the

static mass m(c)
p,+({S}). Specifically, the δ

(c)
k portion of the

mass βγdtm(c)
k ({D,S}) is assigned to m(c)

p,+({D}), and the
rest is assigned to m(c)

p,+({S}). Since the mass of the occu-
pied hypothesis m(c)

k ({D,S}) is a potential for the dynamic
and static states, we determine the spliting ratio δ

(c)
k :=

P(c)
k (D)/(P(c)

k (D)+P(c)
k (S)) in proportion to the probability

of each state. The redistribution procedure is critical to spread
out the occupied mass m(c)

k ({D,S}) accumulated from the
sensor observations since all particles are assigned only for
the dynamic mass m(c)

k ({D}). Finally, the clipping on the
masses guarantees the normalization condition (16).

D. Measurement Update using Dirichlet BBA with Kernel
Inference

Given a set of sensor measurements Zk+1 = {Xk+1,Yk+1},
we build an observation BBA m(c)

Zk+1
and combine it with the

predicted BBA to update the posterior BBA through (17):

m(c)
k+1 = m(c)

p,+⊕m(c)
Zk+1

. (22)

However, the sparse range sensor measurements in the 3-D
environment make it hard to generate dense estimation. We
overcome this challenge by inferring the spatial information
around the sensor observations using a kernel method simi-
larly to [12]. While the method in [12] is based on the Bayes’



rule and cannot be applied in the DS domain, we propose a
new kernel inference using Dirichlet BBA [13] to generate
a dense observation BBA m(c)

Zk+1
.

Let Dir(~α(c)) be a Dirichlet distribution of all focal
elements of Ω, where ~α(c) = [α(c)(x1), · · · ,α(c)(xn)]

T is the
parameter vector for all focal elements x1, · · · ,xn ∈ Ξ. Each
element α(c)(xi) is the sum of a prior evidence r0(xi) and
an observation evidence r(c)(xi) given the sum of all prior
evidences R0:

α
(c)(xi) = r0(xi)+ r(c)(xi) and R0 = ∑

Xi∈Ξ

r0(Xi). (23)

We compute the observation evidences from the sensor
measurements Zk+1 using a kernel inference. For a kernel
function k : R3×R3→ R and the center of the cell x(c),

r(c)({D,S}) = ∑
(x,y)∈Zk+1

k(x(c),x)y,

r(c)({F}) = ∑
(x,y)∈Zk+1

k(x(c),x)(1− y).
(24)

Other than the occupied and free focal elements, i.e., if xi 6=
{D,S} and xi 6= {F}, r(c)(xi) = 0. We use the kernel function
employed in [4] and [12]:

k(x,x′) :={
σ0[

1
3 (2+ cos(2π

d
l ))(1−

d
l )+

1
2π

sin(2π
d
l )] if d < l

0 if d ≥ l
,

with d := ‖x− x′‖2, a kernel scale σ0, and a length scale l.
Then, the observation Dirichlet BBA is computed based on
the parameters to satisfy the conditions (16):

m(c)
Zk+1

(xi) =

{
r(c)(xi)/∑x j∈Ξ α(c)(x j) if xi ∈ Ξ/{Ω}
R0/∑x j∈Ξ α(c)(x j) if xi = Ω

.

(25)

E. Update of BBA and mass of the Birth Dynamic Object

While the updated dynamic mass m(c)
k+1({D}) is redis-

tributed to the weights of the persistent particles in the cell,
we use some portion of it for the birth process of new
particles as in the extended PHD/MIB filter. As in (8), the
dynamic mass m(c)

k+1({D}) is decomposed to the persistent
dynamic mass ρ

(c)
p,k+1 and the birth dynamic mass ρ

(c)
b,k+1, i.e.

m(c)
k+1({D}) = ρ

(c)
p,k+1 +ρ

(c)
b,k+1.

We determine the ratio between the two masses according
to the extended PHD/MIB filter. Assume that the ratio
between the posterior probabilities of a persistent and a
birth dynamic object, r(c)p,k+1 and r(c)b,k+1, respectively, in the
extended PHD/MIB filter are the same as that of their cor-
responding predicted probabilities, r(c)p,+ and r(c)b,+ as in [11].
Then from (12), the ratio is

r(c)b,k+1

r(c)p,k+1

=
r(c)b,+

r(c)p,+

=
pB(1− r(c)p,+− r(c)S+)

r(c)p,+

. (26)

TABLE I: Parameters for Experiments
ν νb σp σv l σ0 pS pB γ β R0

2×106 2×105 0.05m 0.1m/s 0.5m 0.1 0.99 0.02 0.99 0.98 0.001

Following this ratio (26), we set the ratio between ρ
(c)
p,k+1 and

ρ
(c)
b,k+1 similarly as

ρ
(c)
b,k+1

ρ
(c)
p,k+1

=
pB(1−m(c)

p,+({D})−m(c)
p,+({S}))

m(c)
p,+({D})

. (27)

Therefore, the posterior dynamic masses are derived as

ρ
(c)
b,k+1 =

m(c)
k+1({D}) · pB(1−m(c)

p,+({D})−m(c)
p,+({S}))

pB(1−m(c)
p,+({D})−m(c)

p,+({S}))+m(c)
p,+({D})

,

ρ
(c)
p,k+1 = m(c)

k+1({D})−ρ
(c)
b,k+1.

(28)
V. EXPERIMENTS

A. Setup
The performance of DS-K3DOM is evaluated through sim-

ulations and real experiments in comparison to the baselines,
the DS-PHD/MIB filter [11] extended from the 2D to the
3D domain and K3DOM [12]. The algorithms are imple-
mented in ROS Melodic using CUDA parallel computing
and the simulations are conducted in Gazebo with a desktop
equipped with an Intel Core i7-8700 hexacore CPU and
RTX 3060 Ti. The parameters shown in Table I are used
throughout the experiments, and the local map is set to span
40m x 40m x 5m for the simulations and 15m x 15m x 3m
for the indoor experiments, with a resolution of 0.2m.

In simulations, a VLP-16 model of veolodyne simulator
package is adopted as a virtual LiDAR sensor model. The
environment is designed with static and dynamic objects
to evaluate the classification and velocity estimation per-
formance of each algorithm. Static obstacles contain four
brick buildings, while a LiDAR-eqquipped ego vehicle and
dynamic objects ‘Box 0’, ‘Box 1’, and ‘Cylinder 0’ are
moving through an intersection as shown in Fig. 3a.

The performances on classifying ‘occupied (O)’ or ‘dy-
namic (D)’ cells are assessed by evaluating cells that each
algorithm decides to have sufficient observations on. The
classification standards for the DS-PHD/MIB filter and
K3DOM are described in [12]. For DS-K3DOM, it filters
out cells with insufficient observations if ζ0 < m(c)(Ω). The
threshold, ζ0, is empirically set to 0.5. Then, it classify each
cell as {

‘O’ if P(c)(D)+P(c)(S)> ζ1

‘D’ if P(c)(D)> ζ2
(29)

for the pignistic probability P(c)(·) in (18). The cell is
correctly classified as ‘O’ (resp. ‘D’) if it contains any (resp.
dynamic) objects. ROC (Receiver Operating Characteristic)
curves and their AUC (Area Under Curve) are obtained by
changing parameters ζ1 and ζ2. The velocity of each dynamic
object for DS-K3DOM is estimated in the same manner as
[12], by averaging velocities of all cells containing the object:

vob j = ( ∑
c∈ob j

v(c)ρ(c)
p )/( ∑

c∈ob j
ρ
(c)
p ). (30)



(a) Environment (b) DS-PHD/MIB (c) K3DOM (d) DS-K3DOM (e) DS-K3DOM (F)

(f) Occupancy ROC curve (g) Dynamic ROC curve (h) ‖Verr‖ for Box 0 (i) ‖Verr‖ for Box 1 (j) ‖Verr‖ for Cylinder 0

Fig. 3: Environment and results of simulation experiment. (a) shows Gazebo simulation environment. (b-e) represent
occupancy map of each algorithm. In (b-e), Colored dots indicate point clouds, Green cells represent ‘static (S)’ state
cells, and Blue color of cells represents ‘dynamic (D)’ cells. (f-g) denote ROC curves of cell state classification (h-j) graph
error magnitudes between the true velocity and the estimated velocity for each dynamic object.

In the indoor experiment, the performance of each algo-
rithm is qualitatively assessed. The VLP-16 LiDAR is fixed
by a support being apart from the ground, and a person walks
around the LiDAR as shown in Fig. 1a. A Jetson AGX Xavier
is connected to the VLP-16 LiDAR to collect the point cloud
data for the evaluation.

B. Simulation

Simulation results are shown in Fig. 3. To further improve
the errors of misclassifying some ground cells as ‘D’ due
to sensor movement, we additionally test a variant of DS-
K3DOM called ‘DS-K3DOM (F)’. It is implemented by
removing particles on the ground assuming the prior knowl-
edge on the ground position. The proposed algorithms are
processed in about 4.5Hz speed which is real-time viable.

In Fig. 3b - 3e, DS-K3DOM and DS-K3DOM (F) pro-
duce denser occupancy maps compared to the baselines.
Specifically, the DS-PHD/MIB filter generates the sparsest
occupancy map as shown in Fig. 3b. It also incorrectly clas-
sifies many static objects as ‘D’, while the other algorithms
do not. Meanwhile, K3DOM shows worse performance on
classifying dynamic objects than the proposed methods.
For example, in Fig. 3c, ‘Box 1’ and ‘Cylinder 0’ are
sparsely estimated, and, even worse, ‘Box 0’ is invisible.
Also, K3DOM produces some trail noise cells around ‘Box
1’. Unlike the baselines, the proposed algorithms densely
estimate the dynamic objects as shown in Fig. 3d - 3e.

However, in Fig. 3f, all the baselines and the proposed
algorithms show comparably high performances on the ‘O’
classification. Their discrepancy with the qualitative results
occurs as each method is assessed on a different set of cells
determined by its own standard. For fair comparisons, we
need to come up with a central standard to choose a common
evaluation set. Similarly, Fig. 3g does not imply that the
baselines have better dynamic object detection. Instead, the
comparably high AUCs of the proposed methods with denser
estimation (which implies larger evaluation sets) indicates

better classification performances than the baselines. In terms
of the velocity estimation, as shown in Fig. 3h-3j, the
proposed algorithms reduce the errors faster and attain lower
errors than the baselines.

C. Indoor Experiment
In Fig. 1b-1d, the estimation results on the person walking

around the LiDAR are indicated in the red boxes. While the
DS-PHD/MIB filter estimates the person as a static object
with ‘S’ cells, both K3DOM and DS-K3DOM recognize the
person as a dynamic object. However, K3DOM produces
trail noise for the person estimation unlike DS-K3DOM, and
DS-K3DOM generates much denser occupancy map. Also,
DS-K3DOM showed real-time capability, with a processing
speed of around 7.5Hz on the desktop and 6Hz on the Jetson
Xavier during the indoor experiment.

VI. CONCLUSION

In the paper, a novel 3-D dynamic occupancy mapping
algorithm, DS-K3DOM, was proposed by mathematically
extending the PHD/MIB filter and approximating it in the DS
domain with the kernel-based inference that enables dense
occupancy mapping from sparse sensor measurements. Ex-
periments have verified that DS-K3DOM shows outstanding
performances with dense mapping and accurate velocity esti-
mation compared to baselines, with the real-time capability.
DS-K3DOM occasionally suffers from false static estima-
tion on a large dynamic object. Future works may include
heterogeneous sensor fusion or theoretical improvement for
achieving a better performance.
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