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Abstract— Recovering full 3D shapes from partial observa-
tions is a challenging task that has been extensively addressed in
the computer vision community. Many deep learning methods
tackle this problem by training 3D shape generation networks
to learn a prior over the full 3D shapes. In this training regime,
the methods expect the inputs to be in a fixed canonical form,
without which they fail to learn a valid prior over the 3D
shapes. We propose SCARP, a model that performs Shape
Completion in ARbitrary Poses. Given a partial pointcloud of
an object, SCARP learns a disentangled feature representation
of pose and shape by relying on rotationally equivariant pose
features and geometric shape features trained using a multi-
tasking objective. Unlike existing methods that depend on an
external canonicalization, SCARP performs canonicalization,
pose estimation, and shape completion in a single network,
improving the performance by 45% over the existing baselines.
In this work, we use SCARP for improving grasp proposals on
tabletop objects. By completing partial tabletop objects directly
in their observed poses, SCARP enables a SOTA grasp proposal
network improve their proposals by 71.2% on partial shapes.
Project page: https://bipashasen.github.io/scarp

I. INTRODUCTION

Given a partial observation of an object, 3D shape com-
pletion aims to recover the full 3D shape of the object.
This has been widely addressed in computer vision [1]–[8]
and has many diverse downstream applications in robotics
including visual servoing [9], manipulation [10]–[13], visual
inspection [14], autonomous driving [15]–[17].

Many existing methods tackle shape completion by incor-
porating a training scheme that learns a prior over the full
3D shapes. This is done by training an autoencoder [1], [6],
[18], [19] or a GAN [20] over many different instances of full
shapes. At inference, this learned prior space is conditionally
queried on the partial observations. These methods however,
suffer from a major limitation: they expect the partial input to
be in a fixed canonical frame–a common frame of reference
that is shared between instances in that category [21], [22].
A particular shape X in two different poses {R1, T1} and
{R2, T2} will have very different geometry. As a result, X in
different poses appear as novel instances for these methods
inhibiting them from learning a valid prior over shapes.

Existing datasets like ShapeNet [23] have shapes that are
manually aligned to a canonical frame, but real shape obser-
vations (e.g., depth maps) do not contain this information. A
naive approach to tackling this challenge is to canonicalize,
i.e., map a 3D (full or partial) shape to a category-level

∗Equal Contributions
1Robotics Research Center, IIIT-Hyderabad
2TCS Research, India
3Brown University

(a) Real World Observations are Partial

(b) Grasp Proposals  
on Partial Object

Collides with the Actual Object

(d) Valid Grasp Proposals on the Completed Object

Boat

Car

Bottle

Airplane

Partial Input in Arbitrary Pose

Completed Output in the Same Pose

Shape Completion in Arbitrary Pose

SCARP

(c) SCARP Completes  
the Partial Shape

Fig. 1: SCARP performs Shape Completion in ARbitrary Poses
(top-left). We show an example of a real scene made of two tabletop
objects. (a) The captured scene is partial leaving out a portion of the
objects. (b) This results in grasp poses (in green) on the partial point
cloud that directly collide (in red) with the actual object leading to a
collision between the object and the Franka Panda’s gripper (grey).
(c) SCARP improves grasp proposal by accurately completing the
partial pointcloud in the observed pose. (d) This enables the grasp
proposal network to propose grasp poses (shown in green) on the
completed pointcloud that do not collide with the actual object.

canonical frame with [21] or without supervision [22], [24],
[25]. A multi-stage pipeline can be built involving the se-
quential steps of (1) canonicalization, (2) shape completion,
and (3) de-canonicalization (bringing the object back in the
original pose). In such a pipeline however, the performance
of a shape completion network directly depends on the output
quality of the canonicalization module. This can lead to
errors propagating between these modules leading to a sub-
optimal completion.

We propose SCARP, a method that performs Shape
Completion in ARbitrary Poses. Unlike existing methods
that have to directly learn a prior over all possible poses
and shapes, we first disentangle the pose from the shape of
a partial pointcloud. We build a multi-task objective that:
(1) generates a disentangled feature representation of pose
and shape by canonicalizing an object to a fixed frame of
reference, (2) estimates the exact pose of the object, and
(3) completes the shape of the object using the disentangled
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representation. This multi-task objective allows our network
to jointly understand the pose and shape of the input. It does
so by learning rotationally-equivariant and translationally-
invariant pose features using Tensor Field Networks [26],
and global geometric shape features using PointNet++ [27].

Application: Robotic grasp pose estimation [12], [13],
[28], [29] is a challenging area of research that often expects
a faithful reconstruction of the scene in 3D. As shown in
Fig. 1 (b), under a partial observation, [13] generates grasp
proposals that directly collide with the actual object in the
scene (shown in red). As a result, the manipulator is likely
to collide with the object as it attempts to grasp the objects
using one of these predicted grasp poses. We use SCARP to
complete these partial shapes directly in their observed poses
and estimate grasp proposals on these completed shapes. We
show that SCARP reduces such invalid grasps by 71.2% over
predicting grasp poses directly on the partial observations. To
summarize, our contributions are:

1) We propose SCARP, a novel architecture to perform
shape completion from partial pointclouds in arbitrary
poses. To the best of our knowledge, this is the first
work to do so.

2) We show for the first time how a multi-task objective
can support: (1) canonicalization, (2) 6D pose estima-
tion, and (3) shape completion on partial pointclouds.

3) We demonstrate that SCARP outperforms the existing
shape completion baselines (with pre-canonicalization)
by 45% and improves grasp pose estimation by reduc-
ing invalid grasp poses by 71%.

II. RELATED WORK

Partial Pointcloud Completion has been extensively ad-
dressed over the years [1], [2], [6], [7], [18]–[20], [30]–[34].
Early 3D shape completion works relied on intermediate
voxel representation for representing the 3D objects [35]–
[37]. More recent works adopted an architecture similar
to PointNet [38] that aggregated point-wise embeddings to
achieve a global pointcloud feature. PCN [19] adopted such
an architecture and pioneered learning-based methods for
pointcloud completion. More recent works [1], [20] adopted
a pointcloud generator network to learn a prior over the full
pointcloud shapes. [20] applied a differential degradation
layer on the output of a pointcloud generator [39] to obtain
partial pointclouds from full outputs. Later, it relied on
conditional GAN inversion [40] to obtain the latent code
of a partial pointcloud’s full output. [1] used a similar
approach by training a quantized auto-encoder and adopting
a second transformer based network to learn the shape prior
over the quantized space. Other lines of work aim to generate
high resolution pointclouds [6], [7], preserving high-details
in the output. All of these existing methods expect the partial
pointcloud to be in a fixed canonical frame. As a result,
they depend on external canonicalization methods [21], [22],
[24] to bring the partial inputs to their fixed frame. We
explicitly disentangle the pointcloud’s pose and shape and
train our network to learn a prior over the pose and the
shape separately. This allows us to perform partial pointcloud

completion directly in any arbitrary pose. [2], [41] aim to
complete pointclouds in arbitrary poses but need multiple
observations from multiple views for completing the point-
cloud. Capturing a particular object from multiple different
views is not possible always, especially in a moving frame
of reference like moving cars. [42] performs pointcloud
completion with limited disturbance from the canonical pose
and uses temporal information for completion. Unlike them,
we do not assume any restriction in the pose and perform
pointcloud completion from a single observation.

Pointcloud Canonicalization canonicalizes an input
pointcloud of a given category to the category’s fixed canon-
ical frame. This canonical frame is implicitly defined by the
network [22], [24]. Such a method can be clubbed with the
existing shape completion networks in a multi-stage pipeline:
(1) canonicalizing the partial pointcloud to a fixed implicit
frame, (2) shape completion in the fixed implicit frame, and
(3) de-canonicalization. However, the performance of the
shape completion network is tightly coupled with the canon-
icalization method. Morever, there is an additional training
overhead in such a method, where the existing dataset has to
be first converted to the implicit canonical frame before the
shape completion model is trained. Our model does not need
an external canonicalization. We compare our model with
the multi-stage pipeline by clubbing [22] with the existing
shape completion networks [7], [20] and show substantial
performance gain on shape completion metrics.

III. BACKGROUND

Pointnet++ [27] is a 3D hierarchical network, P , that com-
putes the geometric shape feature, p, for a given pointcloud
X ∈ R3×K , where K is the user-defined number of points
in the pointcloud. It computes a global geometric feature
by hierarchically aggregating local geometric features of the
points in a pointcloud. For a more detailed understanding,
please refer [27], [38]. These features are not rotation-aware.
That is, for a point cloud X in any new orientation R̂(X),
where R̂ ∈ SO(3), a unique p is generated.

Tensor Field Networks [26], [43] is a 3D architecture, X ,
that computes rotationally equivariant and translationally
invariant feature matrix, F̂ . For a given pointcloud X ∈
R3×K and an integer (aka type) ` ∈ N, a TFN produces
global (type `) feature vectors of dimension 2` + 1 stacked
in a matrix F̂ ` ∈ R(2`+1)×N , where N is user-defined num-
ber of channel. F̂:,j(X) satisfies the equivariance property
F̂:,j(RX) = D(R)F̂:,j(X), where D : SO(3)→ SO(2`+1)
is a Wigner matrix (of type `) [44]–[46]. Additional details
can be found in [26], [43], [47]–[49].

tree-GAN [39] is a GAN-based pointcloud generation
network that adopts a graph convolutional generator, G,
and a discrimintor similar to r-GAN [50]. G hierarchically
upsamples a gaussian noise, z ∈ RE , sampled from a
standard normal distribution to a pointcloud X ′ ∈ R3×K .

Density Aware Chamfer’s Distance [51] Given two point-
clouds X and Y ∈ R3×K without known point-wise cor-
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Fig. 2: Overview of our proposed approach: The input to SCARP is a mean-centered partial pointcloud X̂p in an arbitrary orientation
R. Our feature extraction module (b) disentangles the partial pointcloud’s pose and shape and is trained in a multi-tasking objective
(a). In the first task, SCARP combines Pointnet++ [27] and TFN [26] features to generate a shape feature that is used by a pointcloud
completion network, G, to generate X ′. In the second task, the TFN pose feature is used to generate an equivariant frame {R′, T ′}. Our
loss functions enable the overall network to learn a prior over the shape while understanding the pose of the partial input.

respondences, Chamfer’s Distance (CD)1 can be used to
compute the distance dCD(X,Y ) by considering the nearest
neighbor of the points {x ∈ X, y ∈ Y } in {Y,X} as their
correspondence. The distance is then given as:∑

x∈X
min
y∈Y
||x− y||22 +

∑
y∈Y

min
x∈X
||x− y||22 (1)

However, CD does not guarantee uniformity in the out-
put density. Density-Aware Chamfer’s Distance (DCD) [51]
overcomes this issue by modifying CD as:

1

2

 1

|X|
∑
x∈X

(
1− eZx

nŷ

)
+

1

|Y |
∑
y∈Y

(
1− eZy

nx̂

) (2)

Please refer to [51] for the exact notations.

IV. SCARP: SHAPE COMPLETION IN ARBITRARY POSES

Given a partial object pointcloud X̂p at an unknown pose
{R, T}, we want to estimate this pose and the corresponding
full object pointcloud X̂ in the same pose.

This is a challenging task as for a neural network, a
pointcloud X in two different poses {R1, T1} and {R2, T2}
are two completely different pointclouds. Thus, we adopt
a multi-tasking objective that disentangles the pose and
the shape of the input partial pointcloud X̂p. The shape
component allows us to understand that X̂p is a partial
observation of X which is X̂ in its canonical form. The
pose component is then used to estimate the pose transform
{R, T} between X̂ and X .

1https://pdal.io/en/stable/apps/chamfer.html

A. Multi-tasking Pipeline for disentangling Shape and Pose

Let Xp and X be a partial and its corresponding full
pointcloud in a fixed canonical frame. Then X̂p and X̂ are
Xp and X in an unknown arbitrary pose {R, T} such that
X̂p = R(Xp) + T and X̂ = R(X) + T . The input to our
network is X̂p which is mean centered at the origin. Our
aim is to predict {R, T} and the full pointcloud X̂ which is
posed as:

{R, T, X̂} = Φ(X̂p) (3)

where Φ denotes our proposed network, SCARP.
Our multi-tasking objective is formulated to (1) complete

the partial pointcloud in a fixed canonical frame given by X
and (2) estimate the pose transformation from the canonical
frame to the original pose {R, T}. In this pipeline, the two
components (1) pose and (2) shape are predicted separately
using two different output heads as shown in Fig. 2.

1) Feature Extraction: To estimate the input’s shape, we
compute global geometric shape features, p ∈ RE , using
Pointnet++ [27] as explained in Sec. III. To estimate the
pose of the input, we adapt TFN [26] as explained in Sec. III.
Our TFN computes a global equivariant feature, F ∈ RN×E

by max pooling over the types {`}`=`max

`=0 , where E is the
dimension of the equivariant embeddings, N and `max are
user-defined.

The input to our shape completion network is a non-
linear combination of p and a global invariant embedding,
FX ∈ RE , computed by max pooling F over the chan-
nel dimension, N . Additionally, F is used to estimate an
equivariant frame of reference, {R′ ∈ R3×3, T ′ ∈ R3} that
transforms the invariant embeddings to X’s original pose.

2) Task I: Shape Completion: Completing the shape
of a partial input at any arbitrary orientation is difficult.
Therefore, we aim to first complete the shape at a fixed
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canonical frame. To learn this canonical frame, the model
needs to build an understanding of the full shape of the
partial input. To achieve this, we train our model to predict
a full canonicalized pointcloud X ′ directly from X̂p. Shape
completion enables our model to learn a prior over the global
shape of a category (a typical chair would have four legs and
a backrest) enabling our network to directly canonicalize the
partial inputs accurately.

We adopt G, as explained in Sec. III, as our shape com-
pletion network where (1) the input to G is a semantically
meaningful embedding generated from a partial input X̂p and
(2) is trained using a distance loss against the full pointcloud
X to learn a relationship between the partial input X̂p and
the predicted full canonical pointcloud X ′. As shown in
Fig. 2 (right), the input to G is a globally invariant feature
vector f ∈ RE computed by combining p = P (X̂p) and
FX = X (X̂p) non-linearly using a neural network φS given
as:

X ′ = G(f) and f = φS(X (X̂p)⊕ P (X̂p))) (4)

3) Task II: Pose Estimation: Once G predicts the full
pointcloud X ′ in a canonical pose, it is important to estimate
the correct rotation SO(3) matrix R ∈ R3×3 and translation
T ∈ R3 to register X ′ back on X̂p. We predict R′ and
T ′ on the second head of our model using the rotationally
equivariant TFN features F given as:

R′ = φR(F ) and T ′ = φT (F ) (5)

where φR and φT are multi-layered perceptrons.

B. Loss Functions for Multitask Training
1) Shape Completion in a fixed Canonical Frame: In the

first task, we estimate the completed pointcloud in a fixed
canonical frame given by X ′. We use DCD (see Sec. III) to
minimize the distance between the predicted pointcloud X ′

and the ground truth canonical pointcloud X given by:

Lshape = dDCD(X ′, X) (6)

2) Estimating the pose of the object: To estimate the
pose given by {R, T}, we use rotationally equivariant pose
features F and pass it through {φR, φT }. We constrain this
prediction against the canonical frame. To do so, we rotate
the canonical output X ′ to obtain R′(X ′) and compare it
against the rotated ground truth X̂ . At this point however,
the pointwise correspondences between X and X ′ are lost.
Thus, a hard distance loss such as Euclidean distance cannot
be directly used. To tackle this, we minimize permutation
invariant CD objective as explained in Sec. III between X
and X ′. However, CD only minimizes the distance between
the nearest neighbors of the points in the pointcloud. This
results in local minimas where the loss is minimal even when
the actual correspondences are far. As a result, the predicted
pointcloud is often flipped about one of the axes. To tackle
this issue, we rotate the canonical ground truth X using the
predicted R′ and compare against X̂ using L2 loss. The
overall loss is:

Lrot = δdCD(X̂, R′(X ′)) + γ||X̂, R′(X)||2 (7)

R′(X ′) is computed by detaching the forward computation
graph at the output of G. The gradients from the loss does
not backpropogate through G at the first head.

For symmetrical objects such as bowls and glasses, multi-
ple R′ predictions can be correct. A hard L2 loss penalizes
the network for correct predictions even for correct R′ if the
correspondences do not exactly match. Thus, for symmetrical
objects, we keep δ ∼ 1.0 and γ ∼ 0.0 and for non-
symmetrical objects we keep δ ∼ 1.0 and γ ∼ 1.0.

The input to our network is a mean-centered partial
pointcloud X̂p. At this point, we train our network to regress
to X̂p’s centroid in the full pointcloud X given by T ′. We
directly supervise T ′ against the ground truth T given as:

Ltrans = ||T ′ − T ||2 (8)

The final output is obtained by rotating and translating our
predicted pointcloud X ′ by R′ and T ′ respectively as:

Xo = R′(X ′) + T ′ (9)

Orthonormality Loss: The rotation R′ predicted by our
network is a 3 × 3 matrix in the SO(3) space. However,
the matrix predicted by Eqn. 5 is not guaranteed to be a
valid SO(3) matrix. We therefore, enforce orthonormality on
R′ by minimizing its difference to its closest orthonormal
matrix. To do so, we compute the SVD decomposition of
R = UΣV T and enforce unit eigenvalues as:

Lorth = ||UV T −R||2 (10)

3) Combined Loss: We train our network end-to-end by
combining all the losses as:

L = Lshape + Lrot + Ltrans + Lorth (11)

V. EXPERIMENTS

In this section, we evaluate SCARP on two tasks: (T1)
Shape completion in arbitrary poses and (T2) Improving
grasp proposals by completing partial pointclouds.

Baselines: As we are the first to perform the task T1, we
modify the existing shape completion networks by develop-
ing a multi-stage pipeline: (1) We use ConDor [22] to first
canonicalize the input partial pointclouds to a fixed canonical
frame defined implicitly by ConDor. (2) We train and test the
existing shape completion methods on ConDor’s canonical
frame. (3) Bring the completed pointcloud to the original
orientation using a pose transform predicted by ConDor. We
compare against (1) ConDor+Pointr [7], a SOTA pointcloud
completion network that generates high-resolution completed
pointclouds and (2) ConDor+Shape Inversion (SInv.) [20]
based on tree-GAN [39] that shares our generator G.

Metrics: We use Chamfer’s Distance (CD) as explained
in Sec. III to compute the distance between the ground truth
pointcloud X̂ and the predicted pointcloud given as R′(X ′)+
T ′ to evaluate the match in shape.

Earth Movers Distance-Maximum Mean Discrepancy
(MMD-EMD) [39], [50] is used to evaluate for uniformity
in the prediction by conducting bijective matching of points
between two pointclouds. As we only want to measure the



Fig. 3: Qualitative comparison of shape completion in arbitrary poses on SCARP and the existing multi-stage baselines: Canonicalization
using ConDor, Shape Completion, and De-canonicalization. Pointr [7] is a SOTA pointcloud completion network that generates high-
resolution completed pointclouds. Shape Inversion (SInv.) [20] is based on tree-GAN [39] that shares our generator G.

Tabletop Off-Table
Bowl Bottle Can Mug Basket Plane Car Chair Watercraft Average

CD↓
ConDor+SInv. 82.7 27.4 45.4 41.5 85.3 34.2 14.7 59.4 39.9 47.8

ConDor+Pointr 30.8 20.9 29.9 14.2 40.9 22.1 6.4 19.8 8.5 21.5
SCARP (Ours) 21.8 7.9 11.8 12.1 34.2 6.9 5.6 19.1 7.1 14.0

MMD-EMD↓

Bowl Bottle Can Mug Basket Plane Car Chair Watercraft Average
ConDor+SInv. 27.3 17.2 20.1 19.9 29.2 19.6 11.3 22.2 18.9 20.6

ConDor+Pointr 21.6 13.6 14.8 12.6 18.8 14.4 8.1 13.5 9.1 14.1
SCARP (Ours) 9.6 6.3 8.8 8.4 10.6 5.0 5.6 8.4 6.0 7.6

TABLE I: Quantitative comparison of shape completion in arbitrary poses for tabletop and off-tabletop objects. Most tabletop objects are
symmetrical whereas off-table objects have more variations in structure. Chamfer’s Distance (CD) and Earth Movers Distance-Maximum
Mean Discrepancy (MMD-EMD) are explained in Sec. V and are scaled by 103 and 102.

output’s uniformity, we compute this metric between the
canonical ground truth X and the canonical prediction X ′.

We evaluate SCARP by measuring its impact in an im-
portant downstream task: grasp pose estimation. In this, we
measure the a) the number of grasp proposals made on the
partial object that collide with the actual object on the table
(shown in Fig. 1 and 4) denoted by C and b) number of
invalid grasps that do not result in a valid grasping denoted
by I . We then compute the Grasping Error (GE) as:

1

D

D∑
i=1

C + I

N
(12)

where N is the number of top grasp proposals and D is the
total number of pointcloud instances. In our case, N = 30.

Dataset: Our dataset is a subset of [23] derived from
[22] and [19] made of 5 tabletop (Bowl, Bottle, Can, Mug,
Basket) and 4 non-tabletop (Plane, Car, Chair, Watercraft)
categories. We evaluate GE only on the tabletop objects.

Results: As shown in Table II, SCARP outperforms the
existing multi-stage baselines on all the categories on an
average by 45%. The existing shape completion methods
rely on the output of an external canonicalization model that
suffer from their own inconsistencies as reported in their
paper [22]. This results in an error propagation as the input
to the shape completion networks are not always in the exact
canonical forms. The errors in the input map to a larger
error in the output of the networks. This is followed by
an error in the transform from the canonical form to the

original pose. The resulting output of the multi-stage pipeline
suffer from high inconsitensies and sub-optimal outputs.
Unlike these networks, our model is trained jointly on both
tasks (canonicalization and shape-completion) using a multi-
tasking objective. As we show in the ablations, this objective
plays a crucial role in achieving a disentangled representation
of shape and pose. Qualitative results are shown in Fig. 3
that vividly show the closeness of SCARP’s output to the
ground truth when compared with others.

Improvement in Grasp Proposals: Generating grasp pro-
posals for partial pointclouds is a challenging task as a
network may mistake a missing portion of an object as a
potential area to grasp (see Fig. 1 and Fig. 4). We apply
SCARP to complete these partial observations directly in the
observed poses and predict grasp poses on these completed
pointclouds using a SOTA grasp generation network Contact-
Graspnet [13]. To evaluate the grasp proposals, we compute
GE on (1) partial observations, (2) completed observations
by SCARP, and (3) actual objects (ground truth). Actual
objects are full pointclouds with no missing portion. As we
show in Table III, SCARP shows a relative improvement
of 71.2% and an absolute improvement of 48.27% over the
grasp proposals on the partial pointclouds. Moreover, there is
only an absolute degradation of 4.19% vis-a-vis the ground
truth. The ground truth error in Table III is the datum error in
the grasp proposals output by Contact-Graspnet. Qualitative
results are shown in Fig. 4. Green and red proposals denote
valid and colliding grasp proposals respectively. As can be



Fig. 4: (left): Grasp proposals made by a SOTA grasp proposal
network, [13], on partial observations lead to collisions with the
actual object. Partial is a partial observation and Ground truth
denotes the actual object. The proposals are made on Partial
(shown in green) but collide with the actual object (shown in red).
(right): We use SCARP to complete the partial observations. Grasp
proposals made on the completed objects align well with the actual
object on the table reducing such collisions by a large margin.

w/o SC w/o FX w/o p

Plane Ours 3.8 6.9 6.9
Modified 112.34 135.3 111.9

Bowl Ours 14.9 21.8 21.8
Modified 123.7 185.3 156.4

Mug Ours 10.79 12.1 12.1
Modified 47.6 45.5 44.3

TABLE II: Ablation Study: We show the affect of removing
different components of our network. In w/o SC, we train SCARP
as an auto-encoding network to verify if the model can still learns
to canonicalize the input pointcloud. In w/o FX and w/o p, we
remove TFN and pointnet features, respectively, and evaluate the
quality of shape completion. Each component plays a crucial role
in achieving SCARP as is evident by the drop in metrics. Metrics
are scaled by 103.

seen, the grasps proposed on partial observations collide with
the actual object (ground truth), whereas, the grasp proposals
made on the completed object by SCARP are valid.

Ablation: SCARP is trained on a multi-tasking objective
to achieve: (1) canonicalization, (2) 6D pose estimation, and
(3) shape completion. We evaluate the contribution of the
different components in our network in achieving these tasks.

(A) Canonicalization without Shape Completion: Canoni-
calization involves mapping an input X to its category’s fixed
canonical frame [21], [22], [25]. Learning a canonical frame
for a partial input is challenging as a network may struggle
to understand the overall structure of the partial shape. In
our model, the structure of a category is correctly learned
using the shape completion task. Thus, we analyze if SCARP
can canonicalize the partial inputs without performing shape
completion. To evaluate this, we modify SCARP by training
to auto-encode the partial input X̂p while simultaneously es-
timating its pose {R, T}. That is, our generator G generates
Xp which is X̂p in its canonical form and uses R′ to rotate
Xp back to X̂p. To measure the performance, we compute the
CD between G′s canonical output and the canonical ground
truth. In case of SCARP, this is given as dCD(X ′, X), and
in case of ablation, this is given as dCD(X ′p, Xp). As shown

Partial SCARP Ground Truth
Bowl 62.18 21.14 16.86

Bottle 46.5 7.35 6.32
Can 81.33 22.33 16.0

Mug 71.33 25.0 23.5
Basket 77.33 21.5 13.66

Average 67.73 19.46 15.27

TABLE III: Quantitative metrics on GE (explained in Sec. V):
% of grasp proposals that are invalid or collide with the actual
object on the table when the proposals are made on (1) Partial
Observations, (2) Shape Completed objects by SCARP, and (3)
Actual Objects on the table (Ground Truth). SCARP reduces
invalid and colliding grasp proposals by 71.2% when only partial
observations are available by accurately completing the object in
the observed pose.

in Table. II (w/o SC), on average dCD on SCARP is 9.83
whereas when the shape completion aspect is removed, the
average distance is 94.54. This indicates that the network
does not learn anything meaningful if the task of shape
completion is removed from the formulation.

(B) Shape Completion without pose and shape features: As
shown in Fig. 2, G expects a disentangled feature embedding
that is a non-linear combination of the pose FX and shape
embeddings p. We remove these features one by one and
observe their impact on shape completion. We measure the
performance of shape completion as dCD(X̂, R′(X ′)). As
shown in Table II (w/o FX and w/o p), SCARP fails to
converge without either of the features. In both cases, the
model fails to learn a correct transformation between the
canonical and the original pose. Without pointnet (w/o p), the
model collapses to a few different shapes across the instances
missing out on per-instance details. Without TFN (w/o FX ),
completion in the canonical frame is more accurate but TFN
fails to estimate the correct pose transform. In summary, as
the shape completion in the canonical form suffers, the pose
transform is also inaccurate thus indicating the importance
of the multi-task objective.

VI. CONCLUSION

Existing shape completion works assume the partial inputs
to be in a fixed canonical frame. This is difficult to achieve in
a robotics setting where the objects are observed in arbitrary
poses thus needing pre-canonicalization. This leads to an
error propagation resulting in a sub-optimal shape comple-
tion. We propose SCARP, a novel architecture that performs
Shape Completion in ARbitrary Poses. SCARP is trained
using a multi-task objective to perform (1) canonicalization,
(2) 6D pose estimation, and (3) shape completion. SCARP
outperforms the existing multi-stage baselines by 45% and
showcases its potential in improving grasp proposals on
tabletop objects, reducing colliding grasps by more than
70%. SCARP has a huge potential in many more robotics
applications like collision avoidance in trajectory planning
or differential simulators for model-based RL planners.
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