
Uncertainty Quantification of Collaborative Detection for Self-Driving

Sanbao Su Yiming Li Sihong He Songyang Han Chen Feng Caiwen Ding Fei Miao

Abstract— Sharing information between connected and au-
tonomous vehicles (CAVs) fundamentally improves the per-
formance of collaborative object detection for self-driving.
However, CAVs still have uncertainties on object detection due
to practical challenges, which will affect the later modules in
self-driving such as planning and control. Hence, uncertainty
quantification is crucial for safety-critical systems such as CAVs.
Our work is the first to estimate the uncertainty of collaborative
object detection. We propose a novel uncertainty quantification
method, called Double-M Quantification, which tailors a moving
block bootstrap (MBB) algorithm with direct modeling of the
multivariant Gaussian distribution of each corner of the bound-
ing box. Our method captures both the epistemic uncertainty
and aleatoric uncertainty with one inference pass based on the
offline Double-M training process. And it can be used with
different collaborative object detectors. Through experiments
on the comprehensive collaborative perception dataset, we show
that our Double-M method achieves more than 4× improvement
on uncertainty score and more than 3% accuracy improvement,
compared with the state-of-the-art uncertainty quantification
methods. Our code is public on https://coperception.
github.io/double-m-quantification/.

I. INTRODUCTION

Multi-agent collaborative object detection has been pro-
posed to leverage the viewpoints of other agents to improve
the detection accuracy compared with the individual view-
point [1]. Recent research has shown the effectiveness of
early, late, and intermediate fusion of collaborative detec-
tion, which respectively transmits raw data, output bounding
boxes, and intermediate features [2], [3], [4], [5], [6], and the
improved collaborative object detection results will benefit
the self-driving decisions of connected and autonomous vehi-
cles (CAVs) [7]. However, CAVs may still have uncertainties
on object detection due to out-of-distribution objects, sensor
measurement noise, or poor weather [8], [9], [10]. Even a
slightly false detection can lead the autonomous vehicle’s
driving policy to a completely different action [11], [12]. For
example, miss-detected paint on the road surface can confuse
the lane-following policy and cause potential accidents [13].
Therefore, it is crucial to quantify the uncertainty of object
detection for safety-critical systems such as CAVs.

Various uncertainty quantification methods have been pro-
posed for object detection [10], [14], [15], [16]. Uncertainty
resources can be decomposed into aleatoric and epistemic
uncertainty [17], [18]. Direct modeling methods [19], [20],
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Fig. 1. Left figure shows detection results of intermediate collaboration
in bird’s eye view (BEV), and right figure zooms on a specific part to
show the robust range of two detections. Red boxes are predictions, and
green boxes are ground truth. The orange ellipse denotes the covariance
of each corner. The shadow convex hull shows the uncertainty set of the
detected object. The shadow convex hull covers the green bounding box
in most cases, which helps the later modules in self-driving tasks, such as
trajectory prediction with uncertainty propogation [25] and robust planning
and control [26], [27]. With our Double-M Quantification method, detected
objects with low accuracy tend to have large uncertainties.

[21] focus on the aleatoric uncertainty (or data uncertainty)
which represents inherent measurement noises from the sen-
sor. Monte-Carlo dropout [22], [23] and deep ensemble [24]
methods focus on the epistemic uncertainty (or model uncer-
tainty) which reflects the degree of uncertainty that a model
describes an observed dataset with its parameters. However,
none of the above methods have investigated the uncertainty
quantification of collaborative object detection.

In this paper, we propose a novel uncertainty quantification
method for collaborative object detection, called Double-
M Quantification (direct-Modeling Moving-block bootstrap
Quantification), that only needs one inference pass to capture
both the epistemic and aleatoric uncertainties. The con-
structed uncertainty set for each detected object by our
method helps the later modules in self-driving tasks, such as
trajectory prediction with uncertainty propogation [25] and
robust planning and control [26], [27]. From Fig. 1, we can
see that with our uncertainty quantification method, detected
objects with low accuracy tend to have large uncertainties,
and the constructed uncertainty set covers the ground-truth
bounding box in most cases. Compared with the state-of-the-
arts [20], [21], our Double-M Quantification method achieves
up to 4× improvement on uncertainty score and up to 3.04%
accuracy improvement on the comprehensive collaborative
perception dataset, V2X-SIM [1].

The main contributions of this work are as follows:

1) To the best of our knowledge, our proposed Double-M
Quantification is the first attempt to estimate the un-
certainty of collaborative object detection. Our method
tailors a moving block bootstrap algorithm to estimate
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both the epistemic and aleatoric uncertainties in one
inference pass.

2) We design a novel representation format of the bound-
ing box uncertainty in the direct modeling component
to estimate the aleatoric uncertainty. We consider each
corner of the bounding box as one independent multi-
variant Gaussian distribution and the covariance matrix
for each corner is estimated from one output header,
while the existing literature mainly assumes a univari-
ant Gaussian distribution for each dimension of each
corner or a high dimensional Gaussian distribution for
all corners.

3) We validate the advantages of the proposed method-
ology based on V2X-SIM [1] and show that our
Double-M Quantification method reduces the uncer-
tainty and improves the accuracy. The results also
validate that sharing intermediate feature information
between CAVs is beneficial for the system in both
improving accuracy and reducing uncertainty.

II. RELATED WORK

a) Collaborative Object Detection: Collaborative ob-
ject detection, in which multiple agents collectively perceive
a scene via communication, is able to address several dilem-
mas in individual object detection [1], [28]. Compared to in-
dividual detection, multi-agent collaboration introduces more
viewpoints to solve the long-range data sparsity and severe
occlusions. The pioneer collaborative detectors employ early
collaboration which shares raw data [3] or late collaboration
which shares output bounding boxes [4]. To further improve
the performance-bandwidth trade-off, recent research pro-
poses intermediate collaboration which shares intermediate
feature representations from a neural network. Various inter-
mediate collaboration strategies have been developed such
as neural message passing [29], knowledge distillation [2],
and attention [30], [31]. However, existing works only focus
on improving the performance of collaborative detection,
no existing work investigates uncertainty quantification of
collaborative object detection.

b) Uncertainty Quantification on Object Detection:
Different types of uncertainty quantification methods for ob-
ject detection have been proposed. For epistemic uncertainty,
the Monte-Carlo dropout method utilizes the dropout-based
neural network training to perform approximated inference in
Bayesian neural networks [23]. The deep ensembles method
estimates probability distribution by an ensemble of networks
with the same architecture and different parameters [24],
[32], [33]. Both methods require multiple runs of inference,
which makes them infeasible for real-time critical tasks with
high computational costs such as collaborative objection
detection. Moreover, they do not consider time series prop-
erties in the dataset, which is one important characteristic of
the autonomous driving dataset. In contrast, our uncertainty
quantification method overcomes these problems by tailoring
a moving block bootstrap [34] (MBB, an effective algorithm
for time series analysis) algorithm and quantifies the uncer-
tainty of collaborative object detection in one inference pass.

The direct modeling (DM) method is designed to estimate
aleatoric uncertainty. The main steps of DM are [10]: a)
select one object detector; b) set a certainty probability
distribution on outputs of the detector and design the cor-
responding loss function; c) add extra regression layers to
predict the covariance; d) train the modified detector. The
work [20] proposes the DM method for image object detec-
tion, which assumes that the distribution of each bounding
box variable is a single-variate Gaussian distribution and
introduces one additional layer to estimate the variance of
the bounding box. [21] proposes the DM method with a
high dimensional multivariate Gaussian distribution. DM
methods for point cloud object detection [19], [35] have
been proposed. Methods with both DM and MC dropout
to estimate aleatoric and epistemic uncertainties in object
detection have also been investigated [18], [36], [37].

All the above works only focus on individual object
detection. How to quantify the aleatoric and epistemic uncer-
tainties in collaborative object detection remains challenging.
In our work, we tailor an MBB-based algorithm process
to estimate both aleatoric and epistemic uncertainties of
collaborative object detection, with an independent multi-
variate Gaussian distribution assumption for each corner of
the bounding box to represent the uncertainty.

III. UNCERTAINTY QUANTIFICATION APPROACH

In this section, we first define the problem of uncer-
tainty quantification for collaborative object detection. Then
we describe the overview structure of our novel Double-
M Quantification (direct-Modeling Moving-block bootstrap
Quantification) method as in Fig. 2, followed by the detailed
algorithm process. Finally, we define our loss function of
the neural network model. One major novelty is the first to
tailor a moving block bootstrapping [34] (MBB) algorithm
to address the uncertainty quantification challenge of col-
laborative object detection, and estimate the epistemic and
aleatoric uncertainty with one inference pass in addition to
the offline training process. The algorithm does not rely on
a specific neural network model or structure and can be
used with different collaborative object detectors such as
DiscoNet [1]. The corresponding loss function considers both
the prediction accuracy and covariance as metrics.

A. Problem Description

We use X to represent the point cloud data. For the
deterministic collaborative object detection, the agent α ∈
{1, . . . , N} creates a local binary Bird’s-Eye-View (BEV)
map M ∈ {0, 1}Wm×Lm×Hm from X , where N is the
number of agents, and Wm, Lm, and Hm indicate the width,
length, and height of the local BEV map respectively [38]. As
shown in Fig. 2 (b), we consider homogeneous collaborative
object detection, in which multiple agents share the same
detector fθ which consists of an encoder denoted by E ,
and an aggregator as well as a decoder that is collec-
tively represented by D, where θ denotes the parameters
of f . E compresses the BEV map into an intermediate
feature map Fα ∈ R

Wm
Km
× Lm

Km
×Fm = E(M), where Km
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Fig. 2. Overview of our Double-M Quantification method on collaborative object detection. (a) Early collaboration shares raw point cloud with other
agents, and (b) intermediate collaboration shares intermediate feature representations with other agents. (c) Double-M Quantification method estimates
the multi-variate Gaussian distribution of each corner. Our Double-M Quantification method can be used on different collaborative object detection. During
the training stage, Double-M Quantification tailors a moving block bootstrapping algorithm to get the final model parameter, Σa as the average aleatoric
uncertainty of the validation dataset and Σe as the covariance of all residual vectors for epistemic uncertainty. During the inference stage, combine Σa,
Σe and the predicted covariance matrix Σ̂ from the object detector to compute the covariance matrix Σ̄ = Σe + ( 1

2
Σa + 1

2
Σ̂) of the distribution.

is the spatial downsampling scale, and Fm is the feature
dimension. Afterwards, Fα is sent to other agents, and the
agent α will use D to generate a set of bounding boxes
Ŷ = D(Fα, {Fβ}β 6=α). We also consider early collaboration
which shares raw point cloud as shown in Fig. 2 (a), we omit
its notations for simplicity because the only thing that sets
it apart from the intermediate collaboration is the timing of
sharing information.

In each point cloud data X , there are J objects. For each
object j ∈ {1, . . . , J}, we propose to predict I corners of
the bounding box. Each corner i ∈ {1, . . . , I} is represented
by a D-dimensional vector in the BEV map. The set of
ground-truth bounding boxes Y is represented as Y =
{cj , {yij}Ii=1}Jj=1 where c is the classification label and
yij ∈ RD,∀(i, j). The set of predicted bounding box Ŷ
is represented as Ŷ = {p̂j , {ŷij , Σ̂ij}Ii=1}Jj=1, where p̂ is
the predicted classification probability, and each corner of
the bounding box is modeled as a multivariate Gaussian
distribution with ŷij ∈ RD as the predicted mean and Σ̂ij
as the D × D covariance matrix coordinate of corner i of
object j. Here we assume the probability distribution of
each corner of the bounding box is independent. During
training, the neural network parameters of the encoder E ,
aggregator and decoder D are jointly learned by minimizing
the detection loss Ldet(Y, Ŷ ) that includes a classification
loss and a regression loss that considers both prediction
accuracy and uncertainty.

B. Solution Overview

We design a novel uncertainty quantification method
called direct-Modeling Moving-block bootstrap Quantifica-
tion (Double-M Quantification) to estimate epistemic and
aleatoric uncertainties by tailoring an MBB algorithm with
the DM method. The overview of Double-M Quantification
on collaborative object detection is shown in Fig. 2. During
the training stage, we train the object detector on resampled

moving blocks. After N bootstraps, we get the object de-
tector fθ̂ where θ̂ is the final model parameter, compute Σa
as the average aleatoric uncertainty of the validation dataset,
and compute Σe as the covariance of all residual vectors
for epistemic uncertainty. During the inference stage, with
input point cloud X , we combine Σa, Σe and the predicted
covariance matrix Σ̂ij from fθ̂(X) to compute the covariance
matrix Σ̄ij = Σe+( 1

2Σa+ 1
2 Σ̂ij) of the multivariate Gaussian

distribution. In the following subsection III-C, we propose
our novel design, the main contribution of this work, the
Double-M Quantification algorithm. Then, in subsection III-
D, we introduce the loss function for our method.

C. Double-M Quantification

Monte-Carlo dropout [23] and deep ensembles [24] have
been proposed to estimate the epistemic uncertainty. How-
ever, none of them consider the time-series features in the
dataset while the temporal features are important for CAVs.
We design a novel uncertainty quantification method called
Double-M Quantification to estimate epistemic and aleatoric
uncertainties when considering the temporal features in the
dataset. In particular, our design tailors a moving block
bootstrapping [34] process on time-series data that captures
the autocorrelation within the data by sampling data from
the constructed data blocks in the training process.

We show the training stage of Double-M Quantification
method in Algorithm 1. We first initialize θ, the parameters of
a collaborative object detector and pretrain the model using
the training data set. Then we construct the constant-length
time-series block set B from the time-series training dataset
DK which contains K frames. Notice that the block set B
keeps the temporal characteristic (see Line 2) by maintaining
the order of frames within the same block. Then in every
iteration, we retrain the model using a sampled dataset that
contains M blocks sampled with replacement and uniform
random probability from the block set B (see Lines 4–5).
The sampled dataset still contains about K frames since



Algorithm 1: Double-M Quantification - Training

Data: The training dataset DK = {(Xk, Yk)}Ki=k
with K frames, the validation dataset
VK′ = {(Xk, Yk)}K′

k=1 with K ′ frames, the
block length l, number of bootstraps N , the
loss function Ldet in Eq (3), the collaborative
object detector fθ

Result: θ̂, Σe, Σa
1 θ0 ← argmin Ldet(DK , θ)
2 Construct the overlapping moving-block collection

B = {Bb}K−l+1
b=1 from the time-series training

dataset DK with each block
Bb = {(Xb, Yb), ..., (Xb+l−1, Yb+l−1)}, b =
1, 2, ...,K − l + 1.

3 for n from 1 to N do
4 Sample M = bK/lc blocks with replacement

from B and get a sampled dataset
Sn = {Bbm}Mm=1 where bm are iid uniform
random variables on {1, 2, ...,K − l + 1}.

5 Update θn ← argmin Ldet(Sn, θn−1)

6 fθn(VK′) = {{p̂jk, {ŷijk, Σ̂ijk}Ii=1}Jj=1}K
′

k=1

7 Compute the residual vector eijk = yijk − ŷijk
∀i ∈ [1, I], j ∈ [1, J ], k ∈ [1,K ′]

8 end
9 θ̂ ← θN

10 Compute Σa as the average aleatoric uncertainty of
the validation dataset

11 Compute Σe as the covariance of all residual vectors
for epistemic uncertainty

M = bK/lc. The floor function b·c is to make sure M
is an integer. At the final step in each training iteration n,
we test the retained model fθn on the validation dataset VK′

(see Line 6) and compute the residual vector as the difference
between the ground-truth vector yijk and the predicted mean
vector ŷijk, ∀i ∈ [1, I], j ∈ [1, J ], k ∈ [1,K ′] (see Line 7).
After N iterations, we get the final model parameters θN
as θ̂ to predict the covariance by model fθ̂. Other than
the final trained model, we estimate both the aleatoric and
epistemic uncertainties by using the residuals and predicted
covariance matrics of the validation dataset. We first estimate
the aleatoric uncertainty by computing Σa, the mean of
all predicted covariance matrices. To estimate the epistemic
uncertainty, we then compute the covariance matrix of all
residual vectors, which is denoted by Σe. On the one hand,
our Double-M Quantification method provides the bagging
aleatoric uncertainty estimates through the aggregation over
multiple models from the N iterations on the validation
dataset. On the other hand, it approximates the distribution
of errors from the residuals so that we can quantify the
epistemic uncertainty.

The Inference stage of our Double-M Quantification
method is shown in Algorithm 2. For the ith corner of the
jth bounding box, we use ŷij as the mean of the multivariate
Gaussian distribution. we estimate the covariance matrix Σ̄ij
by using (i) the predicted covariance matrix Σ̂ij from the

Algorithm 2: Double-M Quantification - Inference
Data: Σe, Σa, input point cloud X , the trained

collaborative object detector fθ̂
Result: Ȳ

1 fθ̂(X) = Ŷ = {{p̂j , {ŷij , Σ̂ij}Ii=1}Jj=1}
2 for j from 1 to J do
3 for i from 1 to I do
4 Σ̄ij = Σe + ( 1

2Σa + 1
2 Σ̂ij)

5 end
6 end
7 Ȳ = {{p̂j , {ŷij , Σ̄ij}Ii=1}Jj=1}

extra regression header and (ii) the estimated aleatoric and
epistemic uncertainties Σe, Σa obtained from the training
stage. Σ̄ij is calculated as the following (see Lines 2–6):

Σ̄ij = Σe + (
1

2
Σa +

1

2
Σ̂ij). (1)

D. Loss Function

In our Double-M Quantification method, we define the
regression loss function of the object detector as the
KL-Divergence between the predicted distribution and the
ground-truth distribution.

Here we assume all corners are independent, and the distri-
bution of each corner is a multivariate Gaussian distribution:

Pθ(ȳi|ŷi, Σ̂i) =
1√

2π|Σ̂i|
exp

(
− (ȳi − ŷi)T Σ̂−1i (ȳi − ŷi)

2

)
,

where ȳi is one possible vector for the i-th corner, Σ̂i
is a symmetric positive definite D × D covariance ma-
trix predicted for the i-th corner. In the implementation,
we utilize the Cholesky decomposition [39] to calculate a
symmetric positive definite covariance matrix. We compare
this distribution with other distributions in Section IV and
demonstrate our selected distribution is the best.

We assume the distribution of each corner for the ground-
truth bounding box as a Dirac delta function [20]:

PG(ȳi|yi) = δ(ȳi − yi).
Then, we define the regression loss function for the i-

th corner as the Kullback–Leibler (KL) divergence between
Pθ(ȳi|ŷi, Σ̂i) and PG(ȳi|yi) [40]:

LiKL(yi, ŷi, Σ̂i) =
1

2
(yi − ŷi)T Σ̂−1i (yi − ŷi)+

1

2
log |Σ̂i|+

log(2π)

2
−H(PG(ȳi)),

(2)

where H(PG(ȳi)) is the entropy of PG(ȳi). The last two
terms log(2π)

2 and H(PG(ȳi)) could be ignored in the loss
function, for they are independent of the model parameters
θ. The first term encourages increasing the covariance of the
Gaussian distribution as the predicted mean vector diverges
from the ground-truth vector. The second regularization term
penalizes high covariance to reduce uncertainty.

We add one extra regression header to predict all covari-
ance matrix Σ̂i (i ∈ 1, ..., I) with a similar structure as the
regression header for ŷi, based on the origin collaborative
object detector.



With a given training dataset, the collaborative object
detector fθ is trained to predict Ŷ , the classification prob-
ability and the regression distribution of all J objects. The
classification loss is Lcls(c, p̂) as [1]. The loss function of
the object detector is:

Ldet =

J∑
j=1

(Lcls(cj , p̂j) +

I∑
i=1

LiKL(yij , ŷij , Σ̂ij)). (3)

IV. EXPERIMENT

To demonstrate our uncertainty quantification method for
collaborative detection, we evaluated it on the V2X-Sim
dataset [1] which contains 80 scenes for training, 10 scenes
for validation, and 10 scenes for testing. It is generated
by CARLA simulation [41]. Each scene contains a 20-
second traffic flow at a certain intersection with a 5Hz
record frequency, which means each scene contains 100 time-
series frames. In each scene, 2-5 vehicles are selected as the
connected vehicles and 3D point clouds are collected from
LiDAR sensors on them.

For object detection, we consider Lower-bound, DiscoNet,
and Upper-bound for benchmark as follows:

1) Lower-bound (LB) [1]: The individual object detector
without collaboration which only uses the point cloud
data from one individual LiDAR.

2) DiscoNet (DN) [2]: The intermediate collaborative
object detector which utilizes a directed graph with
matrix-valued edge weight to adaptively aggregate
features of different agents by repressing noisy spatial
regions while enhancing informative regions. It has
shown a good performance-bandwidth trade-off by
sharing a compact and context-aware scene represen-
tation.

3) Upper-bound (UB) [1]: The early collaborative object
detector uses raw point cloud data from all connected
vehicles, as shown in Fig. 2(a). It usually has excellent
performance with lossless information, yet consumes
high communication bandwidth.

LB is the traditional individual object detector. DN and UB
are collaborative object detectors. The basic implementation
of all three benchmarks is from the public code of [1]. It
uses FaFNet [42], a classic anchor-based model containing a
convolutional encoder, a convolutional decoder, and two out-
put headers for classification and regression, as the backbone
of all detectors.

We compare three uncertainty quantification methods,
which are Direct Modeling (DM), Moving Block Boot-
strap (MBB), and Double-M Quantification on accuracy
and uncertainty. Compared with Double-M Quantification,
the MBB method does not have the predicted covari-
ance matrix during training and inference. For DM
and Double-M Quantification, we add one output header
for the covariance matrix and the regression loss is
the Kullback–Leibler (KL) loss in Eq (2). For MBB, the re-
gression loss is the smooth L1 loss. For all, the classification
loss is the focal cross-entropy loss [43].

TABLE I
DETECTION PERFORMANCE OF DIFFERENT UQ METHODS ON LB, DN,

AND UB. OUR DOUBLE-M QUANTIFICATION METHOD IMPROVES UP TO

3.04% AVERAGE PRECISION.

AP @IoU=0.5 ↑ AP @IoU=0.7 ↑
UQ Method LB DN UB LB DN UB

None 46.50 66.60 69.76 41.29 60.84 64.78
DM [10] 43.31 66.36 69.28 39.24 60.91 65.25

MBB [34] 46.64 67.10 70.41 40.77 60.98 64.48
Double-M (Ours) 43.83 67.20 70.44 39.74 62.69 66.37

TABLE II
NLL COMPARISON OF DIFFERENT UQ METHODS ON LB, DN, AND UB.

OUR DOUBLE-M QUANTIFICATION METHOD ACHIEVES UP TO 4×
IMPROVEMENT ON NLL.

NLL @IoU=0.5 ↓ NLL @IoU=0.7 ↓
UQ Method LB DN UB LB DN UB

DM [10] 13.222 10.015 14.721 9.009 7.896 13.001
MBB [34] 28.130 13.794 22.958 19.996 9.710 18.077

Double-M (Ours) 6.871 5.084 7.974 4.889 3.851 6.696

A. Accuracy Evaluation

We use Average Precision (AP) at Intersection-over-Union
(IoU) thresholds of 0.5 and 0.7 as the accuracy measurement,
which is widely used in object detection [10]. Table I
shows the AP results of different uncertainty quantification
(UQ) methods on the test dataset, where “None” means
the object detector is a deterministic one without any UQ
method. Our Double-M Quantification achieves better ac-
curacy than others, especially for collaborative object de-
tection. Compared with deterministic detectors without the
UQ method, it increases up to 3.04% AP, which means
our proposed Double-M Quantification method improves the
accuracy of collaborative object detection. Meanwhile, Dis-
coNet and Upper-bound achieve much higher accuracy than
Lower-bound for sharing information between CAVs.

B. Uncertainty Evaluation

We use Negative Log Likelihood (NLL) at IoU thresholds
of 0.5 and 0.7 as the uncertainty measurement [10], [15].
NLL is a widely used uncertainty score to measure the
quality of predicted probability distribution on a test
dataset [19], [20], [24], [25]. For the test dataset with K
frames, it is computed as:
NLL = − 1

I×J×K
∑K
k=1

∑J
j=1

∑I
i=1 logP (yijk|ŷijk, Σ̄ijk),

where ŷijk, Σ̄ijk are the mean and covariance of the
multivariate Gaussian distribution. For MBB, Σ̄ijk is Σe.
For DM, it is the predicted covariance Σ̂ijk from the
additional regression header. For Double-M Quantification,
it is computed with Eq (1).

Table II shows the NLL results of different uncertainty
quantification methods on the test dataset. From Table II,
we can see our proposed Double-M Quantification always
achieves much smaller NLL than other uncertainty quan-
tification methods, with up to 4× improvement, which
means our Double-M Quantification method performs best
on uncertainty quantification. Fig. 3 shows the qualitative
results of our Double-M Quantification method on different
scenes. For different types of object detectors, DiscoNet
always achieves the smallest NLL. From Table II and Fig. 3,



Fig. 3. Visualization of our Double-M Quantification results on different scenes of V2X-Sim [1]. The results of LB, DN, and UB are respectively shown
in the first, second, and third rows. Red boxes are predictions, and green boxes are ground truth. The orange ellipse denotes the covariance of each corner.
We can see our Double-M Quantification predicts large orange ellipses when the difference between the red bounding box and the corresponding green
bounding box is huge, which means our method is efficient. For example, in the subfigure of DiscoNet on scene 29 frame 20, for the top-right object O1,
the difference between the red and green bounding boxes is huge so that Double-M Quantification predicts large orange ellipses. And for the three objects
on the left side of O1, the difference between their red and green bounding boxes is little so that Double-M Quantification predicts small orange ellipses.

we can see sharing intermediate feature information between
CAVs could improve the uncertainty of object detection.

C. Ablation Study on Uncertainty Distribution

We compare different probability distributions,
which is the key step of the DM method and
the Double-M Quantification method, on accuracy. In
particular, we consider the following probability Gaussian
distribution:

1) Independent Multivariate Gaussian (IMG): Our uncer-
tainty representation of independent Gaussian distribu-
tion. All corners are independent, and the distribution
of each corner is a multivariate Gaussian distribution.

2) Independent Single-variate Gaussian (ISG) [20]:
Single-variant Gaussian distribution. All corners are
independent, and all dimensions of one corner are
also independent. We use a single-variate Gaussian
distribution for each dimension of each corner.

3) Dependent Multivariate Gaussian (DMG) [21]: High
dimensional Gaussian distribution. All corners are
dependent, and the distribution of all corners is a
multivariate Gaussian distribution.

Table III shows the AP results of DM method
and Double-M Quantification method for the Upper-bound
detector, under different probability distributions. From the
table, we can see IMG achieves the best accuracy with up to
4.14% improvement, which means our uncertainty represen-
tation of independent Gaussian distribution for each corner
outperforms single-variate Gaussian distribution and high

TABLE III
THE ACCURACY COMPARISON OF UPPER-BOUND UNDER DIFFERENT

PROBABILITY DISTRIBUTIONS. OUR IMG DISTRIBUTION IMPROVES UP

TO 4.14% AVERAGE PRECISION.
AP @IoU=0.5 ↑ AP @IoU=0.7 ↑

Distribution DM Double-M DM Double-M
IMG (Ours) 69.28 70.44 65.25 66.37

ISG [20] 68.47 68.95 64.68 65.30
DMG [21] 68.23 67.74 64.86 63.73

dimensional Gaussian distribution formats. The reason is that
our design considers high dependence of all dimensions in
one corner and low dependence of all corners.

V. CONCLUSION

This work proposes the first attempt to estimate the
uncertainty of collaborative object detection. We propose
one novel uncertainty quantification method, called Double-
M Quantification, to predict both the epistemic and aleatoric
uncertainty with one inference pass. The key novelties are the
tailored moving block bootstrap training process, and the loss
function design that estimates one independent multivariant
Gaussian distribution for each corner of the bounding box.
We validate our uncertainty quantification method on differ-
ent collaborative object detectors. Experiments demonstrate
that our method achieves better uncertainty estimation and
accuracy. In the future, we will apply our method to more
collaborative perception datasets, and enhance the perfor-
mance of trajectory prediction with uncertainty quantifica-
tion.
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