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PIEKF-VIWO: Visual-Inertial-Wheel Odometry using

Partial Invariant Extended Kalman Filter

Tong Hua, Tao Li and Ling Pei∗

Abstract— Invariant Extended Kalman Filter (IEKF) has
been successfully applied in Visual-inertial Odometry (VIO)
as an advanced achievement of Kalman filter, showing great
potential in sensor fusion. In this paper, we propose partial
IEKF (PIEKF), which only incorporates rotation-velocity state
into the Lie group structure and apply it for Visual-Inertial-
Wheel Odometry (VIWO) to improve positioning accuracy
and consistency. Specifically, we derive the rotation-velocity
measurement model, which combines wheel measurements
with kinematic constraints. The model circumvents the wheel
odometer’s 3D integration and covariance propagation, which
is essential for filter consistency. And a plane constraint is
also introduced to enhance the position accuracy. A dynamic
outlier detection method is adopted, leveraging the velocity
state output. Through the simulation and real-world test, we
validate the effectiveness of our approach, which outperforms
the standard Multi-State Constraint Kalman Filter (MSCKF)
based VIWO in consistency and accuracy.

Index Terms: Invariant Extended Kalman Filter, sensor
fusion, consistency

I. INTRODUCTION

Visual-Inertial Odometry (VIO) has recently been widely

studied for its lightweight and high-precision advantage.

Camera-IMU pose estimation is available in real commercial

applications such as smart drones and mobile phones [1].

However, when visual and inertial sensors are deployed

on ground vehicles, degenerative scenes like stationary and

constant linear acceleration motions and vehicle vibration

noise often lead to significant challenges in pose estimation

and system observability. Thus, it is necessary to aid VIO

with additional sensors such as wheel encoders [2].

Although the wheel measurements can improve the per-

formance of VIO pose estimation, inconsistency may also

negatively affect system state estimation. Experiments in

[2] show that the online calibration of Visual-Inertial-Wheel

Odometry (VIWO) will lead to high inconsistency with bad

initial values. The analysis and improvement of VIO con-

sistency have been mentioned in previous literature. Among

them, Invariant Extended Kalman Filter (IEKF) maintains

consistency theoretically and can be readily combined with

other measurements such as the GPS. In contrast, other

methods, such as the submap approach, are usually tailored
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[3]. Therefore, the introduction of invariance into VIWO is

a better choice.

Meanwhile, the propagation matrix is highly related to

the velocity and position state, which means IEKF heavily

depends on the accuracy of noise parameters [4]. Experi-

ments in [3], [5], [6] are all conducted in the low-speed and

small-scale environments. [7] has shown that unpredictable

disturbances or substantial outliers may violate the basic

assumptions of IEKF and lead to inaccurate approximation to

the system model. Unfortunately, state estimation in outdoor

scenarios usually suffers from dynamic scene points, un-

structured environments with homogeneous and non-textured

surfaces [8], which poses a great challenge to the IEKF

model.

To address the challenge, a partial IEKF-based VIWO

(PIEKF-VIWO) is developed, which integrates the wheel

encoder measurements into invariant MSCKF. The model

improves the consistency and robustness of VIWO compared

with the conventional IEKF model in practice. Our main

contributions are as follows:

• A partial IEKF (PIEKF) is derived and applied for

MSCKF-based VIWO, whose Lie group structure in-

cludes only the rotation and velocity.

• To fit the PIEKF framework, a rotation-velocity mea-

surement model for the wheel odometer is proposed.

• To improve the robustness and accuracy, we introduce

a PIEKF-based plane constraint model for the wheel

odometer and a velocity-based dynamic outlier detection

method for the camera.

II. RELATED WORKS

A. Visual-Inertial-Wheel Odometry

In recent years, a couple of pose estimation methods have

incorporated wheel measurements into the visual-inertial

navigation system [9], [10], [11], [12], [13]. The scale is

proved to be observable by incorporating wheel encoder data,

and a plane motion constraint is introduced to achieve higher

position accuracy [9]. Based on the observability analysis,

[14] proposes a bidirectional trajectory computation method

that solves the unobservability before the first tuning. These

works usually utilize relative pose constraints integrated by

wheel measurements. Although the wheel pre-integration has

high time efficiency, it loses velocity information and limits

accuracy improvement.

[1], [15] extend the wheel encoder application from planar

surface to manifolds and achieve high-accuracy 6D pose

estimation. Kinematic constraints based on the instantaneous
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centers of rotation (ICR) model [16] are introduced into the

optimization model of visual-inertial localization in [17]. Liu

et al. present a tightly-coupled VIWO with an initialization

module using wheel encoder readings and online extrinsic

calibration [18]. Different strategies for motion tracking are

provided in [12] to exploit IMU and wheel encoder cues

maximally. However, most of the work is based on the

nonlinear optimization method, which is time-consuming and

does not focus on consistency. Lee et al. propose a consistent

VIWO along with both extrinsic and intrinsic calibration of

the wheel encoder and analyze the observability [2]. How-

ever, this method requires complex covariance propagation

to guarantee system consistency.

B. Filter consistency

For the extended Kalman filter framework, linearization

errors can cause filter inconsistencies, leading to overly

optimistic covariance estimates, which have been discussed

in rich literature (e.g., [19], [20], [3], [21], [22], [23]). There

are a couple of solutions for the inconsistency problem.

One is modifying the EKF linearization point represented

by the First-Estimates Jacobian (FEJ) method [24], [25]

which guarantees that the null space of the observability

matrix does not degenerate. OC-EKF [26] explicitly enforces

the system’s observability constraints and maintains the null

space. Another solution is robocentric odometry represented

by ROVIO [27] and R-VIO [28] which originates from

robocentric mapping [29]. This method avoids the alignment

with the global gravity vector and the observability mismatch

for the world-centric VIO. In recent years, Bonnabel et al.

propose IEKF based on a novel Lie group structure [30],

[31]. The consistency of this new scheme is demonstrated

in [3] and further applied to MSCKF [6], [32] and UKF

[33]. In particular, the invariant filter exhibits the potential

for long-term inertial navigation when combined with some

robust components [34].

III. PRELIMINARY KNOWLEDGE

Before describing our method, the coordinate frames and

some notations involved are clarified in Table I. The wheel

odometer and body frames are equivalent by default in the

following discussion.

In the visual-inertial navigation system, the IMU state is

given by:

XI = (G
I R,GvI,

GpI ,bg,ba) (1)

The IMU continuous kinematic model is given by:

G
I Ṙ = G

I R⌊Iω −bg −ng⌋
Gv̇I =

G
I R(Ia−ba−na)+

Gg,GṗI =
GvI

ḃg = nωg, ḃa = nωa

(2)

where Iω and Ia are the angular velocity and linear accelera-
tion velocity respectively. ng and na are the Gaussian noise of
the gyroscope and accelerometer measurements respectively,
and nwg and nwa are the Gaussian noise of gyroscope and

TABLE I

GLOSSARY OF NOTATION.

Symbol Meaning Symbol Meaning

G Global frame I IMU Frame

O Wheel odometer Frame C Camera Frame

B
AR

Rotation from frame
A to frame B

BvA
Frame A’s velocity

in frame B

BpA
Frame A’s position

in frame B
bg Gyroscope bias

ba Acceleromter bias x̂ Estimated value of x

x̃ Error value of x ei The ith column of I3

⌊a⌋ Skew symmetric matrix

of a ∈ R
3 exp(·) Mapping from R

3

to the manifold SO(3)

log(·) Mapping from SO(3)

to R
3 ‖ ·‖ 2-norm of the vector

accelerometer measurement biases. Base on SE2(3) proposed
in [35], the IMU state on manifold can be constructed [32]:

χI =



















G
I R GvI

GpI

1
1

I3 bg

1
I3 ba

1



















(3)

We define the right invariant error ξI ∈R
15 by the following

retraction:

χI = Exp(ξI)χ̂I (4)

where Exp(·) maps the vector X ∈ R
m into the manifold,

and ξI =
[

ξ T
θ ξ T

v ξ T
p ξ T

bg
ξ T

ba

]T

. And specifically the

uncertainty representation of XI is shown as follows:

XI = (exp(ξθ )R̂,exp(ξθ )v̂+Jl(ξθ )ξv,exp(ξθ )p̂+Jl(ξθ )ξp,

b̂g +ξbg
, b̂a +ξba

)
(5)

where Jl(·) is the left Jacobian for Lie Group. An invariant

error state propagation equation is established.

ξ̇I = FξI +GnI (6)

where nI =
[

nT
g nT

wg nT
a nT

wa

]T
. The details of F and G

can refer to [6].

For MSCKF, the full state vector is augmented by the

camera state:

X = (XI ,XC1, ...,XCn) (7)

where n is the number of camera states in the sliding window,

and the camera state is represented by:

XC = (G
C R,GpC) (8)

The application of invariant MSCKF on VIO can refer to

[6], [32].



Fig. 1. PIEKF-based VIWO system overview.

IV. PIEKF

The main system components of PIEKF-based VIWO are

shown in Fig. 1. In this section, we focus on the wheel

measurement model and plane constraints with some details

in the appendix. And the IMU-camera and IMU-wheel

extrinsic calibration parameters are assumed to be perfectly

known.

A. IMU kinematic model

Unlike (5), we only incorporate rotation and velocity into
the Lie group structure, which means the filter has partial
invariance. By decoupling the position with the rotation, we
obtain a new uncertainty representation:

XI = (exp(ξθ )R̂,exp(ξθ )v̂+Jl(ξθ )ξv, p̂+ξp, b̂g +ξbg
, b̂a +ξba

)
(9)

And the corresponding propagation matrices F and G are
given by:

F =











03×3 03×3 03×3 −G
I R̂ 03×3

⌊Gg⌋ 03×3 03×3 −⌊Gv̂I⌋G
I R̂ −G

I R̂

−⌊Gv̂I⌋ I3 03×3 03×3 03×3

03×3 03×3 03×3 03×3 03×3

03×3 03×3 03×3 03×3 03×3











(10)

G =











G
I R̂ 03×3 03×3 03×3

⌊Gv̂I⌋G
I R̂ 03×3

G
I R̂ 03×3

03×3 03×3 03×3 03×3

03×3 I3 03×3 03×3

03×3 03×3 03×3 I3











(11)

The difference from the standard IEKF model is that the

propagation matrix in (10) and (11) does not contains the

estimated position Gp̂I explicitly.

B. Visual measurement model

The camera state is represented as the manifold form χC,

which yields the state augmentation model:

Paug =

[

I15+6n

J

]

Pk+1|k

[

I15+6n

J

]T

(12)

Fig. 2. The vehicle and sensor measurement model.

where the Jacobian J is written as:

J =

[

I3 03×3 03×3 03×(6+6n)

−⌊G
I RIpC⌋ 03×3 I3 03×(6+6n)

]

(13)

After initializing the positions of multiple observed features

by the triangulation method, the normalized coordinate of

the feature point Gp f is obtained:

z = π(Cp f ) =
1

Cz f

[

Cx f
Cy f

]

= h(X,Gp f ) (14)

where π is the projection function. The corresponding error

vector of X is denoted as ξ =
[

ξ T
I ξ T

C1 ...ξ T
Cn

]T ∈R
15+6n.

After linearization, the visual measurement model can be

obtained as below:

z̃ = HX ξ +H f
Gp̃ f (15)

The Jacobians Hx and H f are given by:

Hx = Jπ

[

02×15 ... ⌊Cp f ⌋G
C RT −G

C RT ...
]

(16)

H f = Jπ
G
C RT (17)

where Jπ represents the Jacobian of π .

C. Wheel measurement model

Ground vehicles usually deploy two differential wheels

with the 2D wheel odometer measurements introduced into

the filter.

Ot w = eT
3

Ot ω + nω (18)

Ot v = eT
1

Ot v+ nv (19)

where Ot ω and Ot v are the angular velocity and linear

velocity [1] at time step t. As shown in Fig. 2, the relative

rotation measurement is obtained as follows:

φk =

∫ tk+1

tk

Oτ wdτ (20)

Different from relative pose constraints in [2], [9], [18], we

adopt a rotation-velocity measurement model:

Ok
Ok+1

θ = eT
3 log(O

I R
Ik
GRG

Ik+1
RI

OR) (21)

Ok v = ⌊Ik ω⌋O
I RIpO +

Ok
G RGvIk (22)



Using the right invariant error defined in (4), the residual and

measurement Jacobian are given as below:

rθ = eT
3 log(

Ok

Ok+1
R̂T Ok

Ok+1
R) (23)

Hθ = eT
3

[

Ok+1

G R̂ 03×12 ... −Ok+1

G R̂ 03×3

]

(24)

where
Ok
Ok+1

R = Rz(φk) is the rotation measurement from the

wheel odometer pre-integration. For velocity measurements,

the non-holonomic constraints can be applied assuming that

frame O is the body frame, i.e., the velocity on the cross-track

and vertical direction should be zero. Thus the 3D residual

and corresponding Jacobian are obtained.

rv =
[

Ok v 0 0
]T −O

I R⌊Ik ω⌋IpO −Ok

G R̂Gv̂Ik (25)

Hv = eT
3

[

03×3
Ok
G R̂ 03×3

O
I R⌊IpO⌋ 03×(3+6n)

]

(26)

The Jacobian in (26) is irrelevant to rotation error, which

is different from the conventional measurement model [36].

Additionally, velocity measurement update circumvents the

3D integration of wheel measurements and the covariance

propagation compared with the relative displacement mea-

surements in [2].

D. Plane constraint

Assuming that the vehicle is running on the plane π which
is the initial x-y plane of frame G [9], the rotational and
translational constraint is obtained:

zrot = Λπ
GRG

Ok
Re3 (27)

ztran = eT
3

π
GRGpOk

(28)

where Λ=
[

e1 e2

]T
.The corresponding Jacobians are given

as below:

Hrot = Λ
[

−π
GR⌊G

Ok
Re3⌋ 03×(12+6n)

]

(29)

Htran = eT
3

[

−π
GR⌊G

Ik
RIpO⌋ 03×3

π
GR 03×(6+6n)

]

(30)

The plane constraint update is performed after removing the

redundant camera states.

V. VISUAL OUTLIER DETECTION

In the visual frontend, we preprocess the image using

the contrast limited adaptive histogram equalization [37]

(CLAHE) method to enhance the contrast of images. And

the ORB corners are tracked based on KLT optical flow

algorithm [38]. To detect outliers from tracked features,

epipolar constraint is a common criterion used in many

VIOs [39], [40]. However, this constraint may fail if the

translations of the dynamic outliers and the vehicle are close

to the same plane. Before describing our outlier detection

method, we have three assumptions when the vehicle is

approximately running in a straight line:

• The vehicle has a small rotation in two consecutive

camera frames, i.e., the angular velocity Iω ≈ 0.

• The extrinsic sensor parameters are reliable.

• The outlier has a constant velocity Gv f between the two

frames.

TABLE II

SIMULATION NOISE CONFIGURATIONS.

Parameter Value

Gyroscope noise 0.01rad/s/
√

Hz

Acceleration noise 0.01m/s2/
√

Hz

Gyroscope random walk 0.0001rad/s2/
√

Hz

Acceleration random walk 0.0001m/s3/
√

Hz

Wheel velocity noise 0.1m/s

Wheel angular velocity noise 0.001rad/s

Feature noise 1 pixel

We start from the feature’s 3D position in the camera

frame:

Cp f =
[

X f Yf Z f

]T
= C

GR(Gp f −GpC) (31)

Thus the coordinate in the normalized image plane is x f =
[

X
Z

Y
Z

1
]T

. The velocity of feature on the normalized image

plane is approximated as:

vn ≈
Λ(Cv f ,zp f −Cv f )

Z f

(32)

where Cv f =
C
GR(Gv f −GvC),

Cv f ,z is the z-axis component

of Cv f . Z f can be estimated easily by the triangulation

method, and supposing each feature is static, i.e., Cv f ,est =
−C

GvC, the estimated velocity vn,est on the normalized plane

can be obtained. The measured velocity can be approximated

by:

vm =
x
′
f − x f

∆t
(33)

where x f and x
′
f are the normalized coordinates in two

consecutive frames respectively, and ∆t is the time step. The

velocity error is evaluated as the criterion.

∆v = ||vm − vn,est || (34)

For the static feature, ∆v is close to zero, and for the

Fig. 3. The error-free landmarks (blue) and trajectory (red).
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Fig. 4. Monte Carlo simulation results. (a): RMSE; (b): ANEES

dynamic outlier, the value depends on Cv f and Z f . Therefore

we distinguish the outliers by setting the square mean value

of all the errors as an adaptive threshold. It is noted that our

method does not use the epipolar constraint, so it still works

in the scene under the special motion.

VI. EVALUATION

Both simulations and real-world tests are conducted to

validate our proposed method. In the simulation test, we con-

firm the consistency and position accuracy of our proposed

filter and evaluate the effectiveness of outlier detection. In

the real-world test, we compare the position accuracy with

other filter-based algorithms on Kaist urban dataset [41], and

evaluate the plane constraints and time efficiency. Apart from

PIEKF-VIWO, we have implemented the MSCKF-based

VIWO (denoted as VIWO) and IEKF-based VIWO (denoted

as IEKF-VIWO), both of which are the same as PIEKF-

VIWO except the filtering framework. Our experiments are

conducted on a laptop with Intel(R) Core(TM) i7-10710U

CPU@1.10Ghz and 16G RAM.

A. Simulation

1) Consistency and accuracy: We assume that a car

equipped with 100Hz IMU, 100Hz wheel odometer and

10Hz camera is moving along a circle on a plane with

360 landmarks scattered around the true trajectory shown in

Fig. 3. We conduct the Monte Carlo simulation for 50 runs

where sensor measurements are generated with random noise
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Fig. 5. Top view of estimated trajectories of algorithms (a) and yaw error
with 3σ bound (b) for PIEKF-VIWO in Kaist urban32.

following the noise distribution in Table II. We compare

VIWO, IEKF-VIWO, and our proposed PIEKF-VIWO by

the accuracy indicator Root Mean Squared Error (RMSE)

and the consistency indicator Averaged Normalized Estima-

tion Error Squared (ANEES). The initial pose covariance for

three algorithms is set to zero, and the results are shown

in Fig. 4. Compared with VIWO and IEKF-VIWO, our

proposed method has a slight gain in pose accuracy, whose

RMSE is 0.648 m and 0.283 deg, respectively. The ideal

NEES for orientation and position is three, and it is shown

in Fig. 4(b) that PIEKF-VIWO performs similarly to IEKF-

VIWO in consistency, better than the conventional VIWO

especially in position NEES.

2) Outlier detection evaluation: We simulate a scenario

with 100 static features and 20 dynamic features around the

trajectory. The vehicle moves at 54 km/h and each dynamic

feature moves at a velocity from a zero mean Gaussian

distribution with a standard deviation σv = 20 m/s along

each axis per frame. We sample the initial angular velocity

from 0 to 0.1 rad/s. The outlier detection result for the first

frame is depicted in Fig. 6. In the straght line scenario (Fig.

6(a)), there are a total of 116 features tracked, among which

15 dynamic features are detected with a high true positive
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Fig. 6. Outlier detection for simulated features. Features 1-100 are static
features, and 101-120 are dynamic features. True Positive Rate (TPR) and
False Positive Rate (FPR) are compared for different angular velocities.



TABLE III

ORIENTATION(DEG)/POSITION(M) RMSE ON THE KAIST URBAN DATASET.

Sequence(urban-)
Algorithm

WO VIO VIWO IEKF-VIWO PIEKF-VIWO(naive) PIEKF-VIWO(ours)

29(3.2km) 4.13/13.72 4.14/119.07 0.81/2.41 1.27/9.16 1.44/7.59 0.68/1.48

30(4.7km) 16.64/145.47 63.25/409.59 2.11/7.57 16.48/167.30 4.25/20.26 1.76/8.39

31(10.7km) 14.47/363.05 22.54/811.06 8.25/177.97 16.01/494.75 24.45/477.40 5.21/91.77

32(6.4km) 4.00/104.84 ×/× 2.14/44.17 12.15/74.88 3.50/92.66 1.36/19.03

33(7.3km) 10.96/67.34 ×/× 4.00/29.52 8.54/79.62 7.11/87.88 2.94/27.36

34(6.5km) 4.97/85.19 ×/× 3.98/52.54 7.57/80.57 5.75/58.58 4.72/51.97

35(3.2km) 3.55/4.48 13.74/253.85 1.19/1.65 4.91/59.07 5.02/33.40 2.30/9.07

1 × means the failure. Bold and underline indicate best and second best in each sequence, respectively.
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Fig. 7. Roll, pitch and z-axis position error for PIEKF-VIWO on Kaist
urban32.

rate (75%). Fig. 6(b) demonstrates the detection effect is

acceptable for this lightweight method when the angular

velocity is small enough.

B. Real-world test

To evaluate the performance of our algorithm in the real

scenario, KAIST urban 29-35 are chosen for the test, which

is collected with the 100Hz IMU, 100Hz wheel encoder,

and a 10Hz left camera. The pose computed from the graph

SLAM is used as the ground truth. We select the image frame

when the vehicle first stops as the starting frame as MSCKF

requires a static initialization except for urban35. Since

urban35 does not contain a stationary period, we have to set

the initial vehicle velocity to the velocity measured by the

wheel encoder. We choose Wheel Odometry (WO), monoc-

ular VIO [42] and PIEKF-VIWO without outlier detection

and plane constraints (PIEKF-VIWO(naive)) as benchmarks.

1) Accuracy and consistency: Table III lists the RMSE

for different algorithms, and the estimated trajectories of

urban32 are depicted in Fig. 5(a) as an example. It is noted

that, unlike the simulation, IEKF-VIWO fails to achieve a

good performance, especially in the dataset sequence with

long-distance traveling and high speed, such as urban31.

With the help of the PIEKF framework and additional

constraints, PIEKF-VIWO is less vulnerable to noise and

performs much better than IEKF and PIEKF-VIWO(naive).

It is noted that PIEKF-VIWO is badly-behaved in urban35

because of the dynamic initialization. But for most cases,

PIEKF-VIWO shows better results regarding both position

and orientation accuracy than the conventional VIWO. The

estimated yaw result in urban32 is also plot in Fig. 5(b),

where the error remains in the 3σ boundary, demonstrating

the consistency of our algorithm.

2) Plane constraint evaluation: We demonstrate the effect

of plane constraints in the partial IEKF algorithm. Real

trajectories may have bumpy sections, so we relax the

measurement error covariance to 0.01. The estimation error

tested on the urban32 is depicted in Fig. 7. The estimated

roll, pitch, and position along the z-axis are maintained at

around zero except in some sections where the constraints

are not satisfied.

3) Runtime comparison: Since the algorithm performs

wheel measurement updates at a high frequency, we compare

the efficiency of our algorithms against VIO by computing

the averaged backend processing time per frame for all the

tested sequences, which is 2.46 (VIO), 5.84 (IEKF-VIWO)

and 5.89 (PIEKF-VIWO) (unit: ms) respectively. IEKF-

VIWO and PIEKF-VIWO have approximately the same

efficiency in sequence as expected. Though our algorithms

consume about twice as much time as VIO, their time

consumption remains within 6ms, ensuring real-time in the

test.

VII. CONCLUSIONS

This paper proposes a PIEKF-based state estimation algo-

rithm fusing camera, IMU, and wheel odometer. We compare

our algorithm with conventional VIWO and demonstrate its

better consistency and accuracy through the simulation and

real-world experiments. In the future, our work will enhance

robustness by introducing online calibration and improving

the visual frontend.
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