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Abstract— Transferring knowledge learned from the labeled
source domain to the raw target domain for unsupervised
domain adaptation (UDA) is essential to the scalable deploy-
ment of autonomous driving systems. State-of-the-art methods
in UDA often employ a key idea: utilizing joint supervision
signals from both source and target domains for self-training.
In this work, we improve and extend this aspect. We present
ConDA, a concatenation-based domain adaptation framework
for LiDAR segmentation that: 1) constructs an intermediate
domain consisting of fine-grained interchange signals from both
source and target domains without destabilizing the semantic
coherency of objects and background around the ego-vehicle;
and 2) utilizes the intermediate domain for self-training. To
improve the network training on the source domain and self-
training on the intermediate domain, we propose an anti-
aliasing regularizer and an entropy aggregator to reduce the
negative effect caused by the aliasing artifacts and noisy pseudo
labels. Through extensive studies, we demonstrate that ConDA
significantly outperforms prior arts in mitigating domain gaps.

I. INTRODUCTION

Large-scale annotated data are desirable as they often
yield robust and generalizable models. However, annotating
semantic labels for 3D data like LiDAR point clouds [1]
in autonomous driving [2], [3], [4], [5], [6], [7], [8] is
extremely expensive [9], [10], [11]. This motivates us to ex-
plore unsupervised domain adaptation (UDA) for transferring
knowledge learned from one domain, e.g., Boston, to another
domain, e.g., Singapore, for scalable cross-city deployment.

UDA aims to tackle scenarios where a model is trained
on labeled data from a source domain and unlabeled data
from a different but related target domain, with the goal of
enabling the model to perform well during target test time.
A common practice in UDA is to jointly learn from both
domains [12]. Prior works fall into two lines: 1) implicit
learning domain-invariant features with discriminators via
adversarial training [13], [14], [15], and 2) self-training with
joint supervision signals from both the source (w/ ground-
truth) and target (w/ pseudo-labels generated by confidence
thresholding) domains [16], [17]. Recent studies have shown
that the latter often yields more robust models with less
computation cost [18], [19]. These works, however, learn
separately from source and target batches, and thus lack
learning fine-grained interactions of objects and background
in-between domains. Implementing an intermediate domain
that can facilitate interactions to reduce the domain gap is
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intuitive. The ground-truth signals from the source domain
can construct a “shortcut” for correcting false target pre-
dictions in the local vicinity since feature representations
close to each other tend to have the same semantic label
[20]. Additionally, the target “pseudo supervisions” – which
often contain large amounts of ignored labels – can serve
as a strong consistency regularization [21] for the source
domain. This guided supervision and regularization may
yield a more adaptable and robust feature learning. It is not
easy, however, to directly mix domains via interpolation [22],
[23] or superposition [24], [25] for semantic segmentation as
such techniques can corrupt the semantic coherency [21].

In this work, we propose a concatenation-based domain
adaptation (ConDA) approach for cross-city UDA in LiDAR
segmentation. ConDA enables the interactions of fine-grained
semantic information in-between the source and target cities
(domains) while not destabilizing the semantic coherency.
We make the observations that although the overall distribu-
tions for the source and target domains are very different,
there is a strong likelihood that similar objects and back-
ground tend to occupy particular regions in the LiDAR range-
view (RV) around the ego-vehicle. We exploit this important
correlation to construct the ConDA intermediate domain that
selects non-overlapping regions of point clouds from both
source and target domains and concatenates them together,
while maintaining the relative positions from the ego-vehicle.
As shown in Fig. 1, concatenating different regions (e.g.,
front-top, front-bottom, back-top, and back-bottom) of RV
stripes from different domains can still preserve semantic
consistency. We will revisit this formally in Sec. III-B.

The proposed domain concatenation strategy provides a
better solution for model self-training via interchanged super-
visions from both the source domain and the target domain.
It is worth noting that the quality of the pseudo-labels – and
in turn the generalizability of the initial training on the source
domain – becomes essential since erroneous “pseudo super-
vision” can do evil in self-training. We counter this problem
from two perspectives as follows. First, the generalizability
of the model can be improved by removing high-frequency
noisy aliasing artifacts [26], [27] with careful placements
of low-pass anti-aliasing filters [28]. However, empirically
designing such filters is challenging in the context of UDA,
since the lack of target domain ground-truth prevents any
empirical experiments. To reduce the detrimental effect of
high-frequency aliasing artifacts [29], [30] without accessing
target annotations, we propose a built-in regularization mech-
anism (Sec. III-C) within each convolution block to regular-
ize high-frequency representation learning during training,
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Fig. 1. Illustrative examples for domain concatenation. (a) Visual RGB and LiDAR range-view (RV) projections of the source (ground-truth) and target
(pseudo-labels) domains. Images adopted from nuScenes [2]. (b) Cylindrical representation of LiDAR RV. (c) Concatenated examples. Mixing domains
using our ConDA strategy yields semantically realistic intermediate domain samples for self-training.

as well as to mitigate possible aliasing caused by region re-
grouping. Furthermore, as the pseudo-labels are “guessed”
by the model trained on the source domain, it is intuitive to
leverage the uncertainty [31] of such “guesses” for filtering
non-confident selections. Entropy [32] – a measure of choice
freedom – has been proven conducive for estimating pre-
diction uncertainty [33], [34]. Different from prior arts that
implicitly minimize entropy in an adversarial way [35], [36],
we design an entropy aggregator (Sec. III-D) which explicitly
eliminates high entropy target predictions and thus improves
the overall quality for the intermediate domain supervisions.

Overall, this work has the following key contributions:
• We propose ConDA, a novel framework that facilitates

fine-grained interactive learning in-between domains. To
the best of our knowledge, we are the first to explore
cross-city UDA for uni-modal LiDAR segmentation,
which can serve as a baseline for future research.

• We design two efficient regularization techniques to
reduce detrimental aliasing artifacts and uncertain target
predictions during model pre-training and self-training.

• We conduct comprehensive studies on the effects of
our technical contributions on two challenging cross-
city UDA scenarios. Our methods provide significant
performance gains over state-of-the-art approaches.

II. RELATED WORK

UDA on Visual RGB. Adversarial training [13], [15] and
self-training [16], [17] dominate almost all kinds of 2D scene
adaptation scenarios [37], [38], [39], [40]. Methods based
on adversarial training adopt domain discriminators [14],
[41] to implicitly search for domain-invariant features via
distance measurements at different levels, i.e., input-level
[42], [43], [44], [45], [46], feature-level [47], [48], [49],
and output-level [50], [35], [51]. However, such methods
suffer from high computational costs and tend to be sensitive
to hyperparameters and target domain changes [52], [53].
Self-training, on the other hand, offers a lighter option
by jointly learning from both source and target domain
supervisions [54], where the latter can be generated via
confidence thresholding [55], [18], [56]. Evidence shows
that these methods – albeit powerful in 2D – become less
effective in 3D [53], [57], which motivates us to design new
methods w.r.t. the characteristics of the LiDAR data, such as
the spatial consistency of the range-view representation.

UDA on LiDAR Data. Adaptations are more challenging in
3D as point clouds are sparse, unstructured, and have limited
visual cues compared to images [58], [59], [60]. ePointDA
[61] learns a dropout noise rendering from real-world data to
match synthetic data. Complete&Label [62] targets on cross-
sensor UDA where sparsity rather than city discrepancies
serves as the major domain gap, which is beyond the
scope of this work. xMUDA [53] and DsCML [57] employ
self-training alongside multi-modality learning for cross-city
adaptations. However, the assumption of having access to
synchronized RGB and LiDAR data in both source and target
domains is not always practical, which limits such methods.
Also, they use point/voxel backbones which require huge
memory consumptions and suffer from low inference speed.
Our framework is built upon mature 2D CNNs and does not
require data from multiple modalities thus maintaining both
simplicity and efficiency for practitioners.

Domain Mixed Inputs. Mixing-based strategies [22], [24],
[25] have been widely adopted in fully- [63], [64], [65] and
semi- [66], [67], [23] supervised learning tasks, but very
few touched UDA. SimROD [68] proposed to create 2x2
collages with two source and two target images for object
detection. DACS [44] cuts source objects out and pastes
them onto the target images, alongside mixing corresponding
source labels and target pseudo-labels. While the former
[68] can corrupt the semantic consistency, the latter [44]
requires extra costs for the “copy-paste” operation and lacks
mixing background and target objects. Our ConDA provides
more fine-grained interactions in-between domains and the
concatenations are performed on the fly during training (via
simple torch.cat or tf.concat) with almost zero cost.

Regularization. Anti-aliasing filters are popularly applied
to reduce the aliasing artifacts in networks [26], [27], [28].
Such regularizers, however, have not been used in UDA. We
conjecture that this is because the empirical observations re-
quired in filter design become impractical on the annotation-
free target domain. In this work, we adopt a learning-based
approach as an alternative to regularize aliasing artifacts. An-
other regularization is uncertainty estimation, which has been
proved useful in semi-supervised learning [31]. For UDA,
IntraDA [36] uses a discriminator to close the gap between
the low-entropy and high-entropy samples. We design an
entropy aggregator to disable the usage of non-confident
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Fig. 2. Overview of our concatenation-based domain adaptation (ConDA) framework. After preprocessing (Sec. III-A), sample stripes from both domains
are mixed via RV concatenation (Sec. III-B). The concatenated inputs are fed into the segmentation network for feature extraction. We include anti-aliasing
regularizers inside convolution operations (Sec. III-C) to suppress the learning of high-frequency aliasing artifacts. The segmented RV cells are then projected
back to the point clouds. Here the target prediction part is omitted for simplicity. To mitigate the impediment caused by erroneous target predictions, we
design an entropy aggregator (Sec. III-D) which splits samples into a confident set and an unsure set and disables the usage of samples from the latter set.

pseudo-labels during domain adaptation, which does not
rely on extra discriminator network and directly reduces the
uncertainty for the intermediate domain supervisions.

III. TECHNICAL APPROACH

A. Preliminaries

The proposed ConDA framework consists of three major
components as shown in Fig. 2. Let A denote a LiDAR point
cloud. We project each point o= (x,y,z) on the 360◦ scan via
a mapping Π : R3 7→R2 to a cylindrical RV image a∈R6,h,w

with height h and width w. h is set based on the beam number
of the sensor and w is determined by the horizontal angular
resolution. Each pixel in a consists of the point coordinates
(x,y,z), intensity, range ||o||2, and a binary occupancy mask.
Note that the RV projection preserves the range information
and the spatial correspondence for the LiDAR scans, e.g., the
near-front and far-front points are projected onto the left-
bottom and left-top of the RV images, respectively, which
is a unique feature of the LiDAR representations (Fig. 1).
To extract RV features efficiently, we design a seven-stage
fully-convolutional network G with strided convolutions [69]
and skip-connections [70] as our backbone. Since h is much
smaller than w, we only downsample the height at later
stages. The segmentation head combines the upsampled
outputs from the last four stages for multi-scale feature
aggregations. Compared to previous RV networks [71], [72],
[73], [74], our proposed G offers a better trade-off between
accuracy and speed, which is essential for LiDAR UDA.

B. Domain Concatenation

In the context of UDA for LiDAR segmentation, we denote
samples a from the labeled source domain and unlabeled
target domain as As = {(as,m,qs,m)}M

m=1 and At = {(at,n)}N
n=1,

respectively, where M and N are the total number of source
and target samples. For segmentation with C classes, the
network G can be optimized in a supervised way with source
samples by minimizing the cross-entropy loss as follows:

min
w

Ls =−
1
M

M

∑
m=1

C

∑
c=1

q(c)s,m log p(c|as,m,w), (1)

where w denotes the weights of G; p(·) is the probability
of class c in the softmax output. Due to the lack of ground-
truth in the target domain, we consider the target labels as
hidden variables [16] and select the most confident target
predictions on the existing model as one-hot “pseudo-labels”
q̂t . The learning objective for the target domain is:

min
w

Lt =−
1
N

N

∑
n=1

C

∑
c=1

q̂(c)t,n log p(c|at,n,w),

s.t. q̂t,n =

{
argmaxc p(c|at,n,w), ifmax(p(c|at,n,w))≥ θ

ignored, otherwise
(2)

where θ is a threshold for filtering non-confident pseudo-
labels. Similar to [18], [56], we set a proportion parameter
k to determine the class-wise thresholds θc for each class
c to balance the class distributions. Now given a source
batch {(as,qs)} and a target batch {(at , q̂t)}, our intermediate
domain construction mechanism M(·) follows three steps.
First, define a template for the total number of segrega-
tion regions along the near-far dimension (m) in the RV
projections and around the ego-vehicle (n). Fig. 1a shows
an example of a domain concatenation with m = 2 and
n = 2, having front-near, front-far, back-near, and back-far
regions, respectively. Second, slice regions based on the
above template for every sample in both batches. This gives
((bs + bt)×m× n) sliced stripes, where bs and bt are the
batch sizes. Third, concatenate the stripes while keeping their
spatial locations consistent, resulting in (bs+bt) intermediate
domain samples aπ . Their labels qπ can be obtained via
the same arrangement of the original labels and pseudo-
labels. The segmentation loss Lπ for this intermediate domain
can be computed using the mixed batch {(aπ ,qπ)} in a
way similar to Eq. 1. The overall objective for self-training
is to minimize L = Ls(w,qs) + σ · Lπ(w,qπ), where σ is
a coefficient that controls the probability of accessing the



intermediate domain. As shown in Fig. 1c, this simple
concatenation approach mixes objects and background from
both domains, while still preserving the overall consistency.
This stability in semantic coherence comes from the priors
that the LiDAR point clouds are unstructured and extremely
sparse even after RV projections. Take nuScenes [3] as an
example. We find that on average 59.93% of RV cells are
empty, which could downplay the negative impact of region
rearrangement since the degree of continuity is low.

C. Anti-Aliasing Regularizer

We formulate a regularizer that is built within each con-
volution filter in G to reduce learning from aliasing artifacts.
Our goal is to impose regularization on high-frequency
representation learning since they are more susceptible to
aliasing artifacts [27], [28]. We achieve this via fc,r = fr� fc,
where fr denotes our regularizer which consists of learnable
parameters having the same size as the convolution filter fc;
fc,r is the regularized filter kernel of each convolution; �
is the Hadamard multiplication. Note that during the earlier
stages of training, the network tends to learn low-frequency
representations [30], [29] that are robust to aliasing artifacts.
This will thereby update fr such that it becomes more suited
for low-frequency representation learning of fc,r. In later
phases of training or UDA self-training, however, networks
are more inclined to learn increasingly higher frequency
representations and thus become more susceptible to aliasing
artifacts [26]. The modulation of our fr on fc regularizes
gradient updates corresponding to these high-frequency rep-
resentations and in particular, regularizes the ones that are
considerably different from the earlier network learning. This
implicit regularization mechanism at later stages of training
makes fc,r more resistant to aliasing artifacts than the plain fc.
Notably, since fc and fr are both constants during inference,
the regularized kernel fc,r only needs to be computed once
at the end of training and can be used at inference with-
out adding any additional computational cost or structural
changes to the network – this makes our regularizer unique
among all previous anti-aliasing mechanisms.

D. Entropy Aggregator

Given the fact that the pseudo-labels generated from the
source pre-trained model tend to be noisy [34], we design
an entropy aggregator to disable the access of non-confident
target predictions and thus improve the overall quality of
the intermediate domain supervisions. More formally, given
a target sample at,n, its entropy map En composed of the
normalized pixel-wise entropies can be calculated as follows:

En =
−1

log(C)

C

∑
c=1

p(c|at,n,w) log p(c|at,n,w). (3)

The median value en of En for the target sample at,n is used as
the global-level indicator of uncertainty, which is more robust
than the average value due to the large “noisy” predictions
for the empty RV cells. The target set At = {(at,n)}N

n=1 is re-
organized based on the entropy ranking and only the pseudo-

TABLE I
EFFECTIVENESS FOR EACH COMPONENT IN CONDA. EVALUATED ON

THE BOSTON→ SINGAPORE ADAPTATION SETTING.

∆ mIoU Configuration

-12.0 34.9 No adaptation (source-only)
-6.2 40.7 Baseline (vanilla self-training)

-5.0 41.9 += Anti-aliasing filters (Sec. III-C)
-1.6 45.3 += Domain concatenation (Sec. III-B)

-1.0 45.9 += Entropy aggregator (Sec. III-D)

0.0 46.9 Full ConDA framework

ConCat Prob

PL Prop

0.
50 42.4 45.6 44.7 44.0 43.1

0.
40 42.4 45.6 44.9 44.5 43.5

0.
30 42.2 45.8 44.8 44.5 43.7

0.
25 42.2 45.9 45.1 44.1 43.5

0.
20 42.8 45.8 44.9 44.7 43.5

0 0.25 0.50 0.75 1.0

0.
50 44.6 46.9 46.9 46.0 45.5

0.
40 45.0 46.8 46.9 46.2 45.1

0.
30 44.9 46.7 46.9 45.9 44.9

0.
25 45.4 46.8 46.1 45.8 45.0

0.
20 45.3 46.7 46.0 45.4 44.7

0 0.25 0.50 0.75 1.0

ConCat Prob

PL Prop
Strategy i

(a) Round 1 (b) Round 2Fig. 3. Sensitivity analysis for the concatenation probability σ (horizontal
axis) and proportion threshold k (vertical axis) in self-training round 1 (left)
and round 2 (right). The darker the color, the higher the mIoU score.

labels from the top ϖ most confident target samples are
included as the supervisions for the intermediate domain.

IV. EXPERIMENTS AND ANALYSIS

A. Settings

Data. We construct two RV-based cross-city UDA scenarios
with nuScenes [2], [3] – a large-scale autonomous driving
database widely adopted in academia. We split samples based
on their geographic locations. This gives 15695 and 12435
training samples and 3090 and 2929 evaluation samples for
Boston and Singapore, respectively. All training samples
are used as the source/target for adaptations. Different from
xMUDA [53] which only assigns semantic labels to points
inside bounding boxes with 4 object and 1 background
classes, we adopt the lidarseg subset in nuScenes which
contains 16 classes and fine-grained point-level annotations.
Implementation Details. We project point clouds into RV
images of size 32×1920 as the inputs for G (cf. Sec. III-A).
It is first trained from scratch with only source samples for
80 epochs and then fine-tuned under our entropy aggregator-
guided self-training procedure. Both rounds are trained for
20 epochs. We denote results for the supervised learning and
direct adaptation as “oracle” and “source-only”. Since this is
a new benchmark, we could only compare ConDA with state-
of-the-art adversarial [50], [35], [51], self-training [18], [55],
[36], and consistency training [75], [76] methods originally
tested for 2D adaptations. For fairness, we replace their back-
bones with our RV network and keep other configurations
in default. For methods based on self-training, we generate
their pseudo-labels offline as in [55], [18]. All methods are
implemented using PyTorch on NVIDIA Tesla V100 GPUs.
Evaluation Metrics. We follow the conventional reporting
of the intersection-over-union (IoU) scores (%) over each
class, the mean IoU (mIoU) and the frequency-weighted IoU
(FIoU) scores (%) over all classes in our experiments.



TABLE II
ADAPTATION RESULTS FOR DIFFERENT RV CONCATENATION STRATEGIES (cf. FIG. 4) AND OTHER MIXING TECHNIQUES.

Method w/o a b c d e f g h i j k l m n o [68] [22] [25] [24] [63]

mIoU 41.9 43.4 43.5 43.7 44.5 44.6 43.9 44.5 44.6 45.3 45.0 45.2 45.3 44.9 44.6 44.2 33.7 41.1 43.1 42.6 40.1

Source Target

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

Fig. 4. ConDA RV concatenation strategies with various granularities.

B. Ablation Studies

Q1: What is the effect for each component in ConDA?
A1: We adopt the Boston → Singapore setting in our
ablation studies without the loss of generality. We stratify
the three major components in our framework and show their
impacts in Tab. I. Specifically, the anti-aliasing regularizer
offers an improvement of 1.2% mIoU over the baseline and
surpasses the source-only case by 7.0% mIoU. Comparing
the frequency spectrum of 3x3 kernels from the network, we
also find that the ratio of ‘average low-frequency amplitudes’
to ‘average high-frequency amplitudes’ is 23.2% higher (sta-
tistically significant with t-test: p < 0.001) for the network
trained with our regularizer. On top of that, our domain
concatenation further improves 3.4% mIoU. Another boost of
1.6% mIoU is achieved under the two-round guidance self-
training of our entropy aggregator. Overall, our framework
significantly improves the adaptation results from 34.9%
mIoU to 46.9% mIoU, which corresponds to nearly a 34.4%
relative improvement over the source-only.
Q2: What are the optimal hyperparameters for ConDA?
A2: We conduct extensive experiments to show the best
possible selections for the hyperparameters. Specifically, the
vertical and horizontal axes of Fig. 3 show the impact of the
proportion parameter k and the concatenation parameter σ

during the two-round self-training. We find that lower values
for k (e.g. 0.25) in round 1 and relatively higher values (e.g.
0.5) in round 2 tend to give higher mIoU. We conjecture
that this relatively conservative choice (or lower value) at
round 1 is helpful since pseudo-labels tend to be noisy at this
stage. The quality of pseudo-label gets much better at round
2 and including more of them gives a positive impact on
the performance. As for σ , we observe that the best possible
scores are achieved between 0.25 and 0.50. Training w/o
(σ = 0) or w/ all (σ = 1) concatenated samples does not
perform well. For ϖ (after setting both k and σ as 0.25
without the loss of generality), we find that large ϖ involves
more false positives while small ϖ limits the diversity. A
compromise value like 0.50 gives the best possible scores.
Q3: What is the best practice for RV concatenation?
A3: Besides the intuitive front-back RV concatenation, we
also consider other scenarios as in Fig. 4 and show their

19.6
40.8 32.4 36.5 37.5 34.9

19.6
36.5

19.6

11.4

16.2

13.0

Source-only AdaptSeg MinEnt AdvEnt DADA BDL CBST IntraDA ConDA

Train from Scratch Pre-Training Self-Training

6.5 each

AdaptSeg MinEnt AdvEnt DADA BDL CBST IntraDA ConDA(Ours)

Time (h)

10
20

30
40
50 40.8

32.4 36.5 37.5 34.9 31.0

52.7

32.6

Train from Scratch Pre-Train Self-Train

Fig. 5. Training time (in hours) needed for each method during adaptations.

results in Tab. II. As shown, strategies i and l perform the
best while j and k offer competitive results. We note that: 1)
increasing the granularity of the interactions between source
and target tends to improve performance (strategies a to l); 2)
increasing the granularity beyond a certain limit (strategies
m, n, and o) can deteriorate performance, which is likely
due to the instability in semantic coherence of the objects
and background in the concatenated stripes; and 3) fine-
grained interactions along the vertical axes, i.e., near to far
regions, perform better than interactions along the horizontal
axes, i.e., bearing around the ego-vehicle (strategies i and f ),
suggesting that the former likely yields better domain inter-
actions while better maintaining the semantic consistency.
Q4: How is domain concatenation superior to others?
A4: We compare five popular mixing techniques in Tab. II.
SimROD [68] stitched samples from both domains as inputs
for adaptation while MixUp [22], CutMix [24], CutOut [25],
and Mix3D [63] are general regularization methods adopted
for fully- and semi-supervised learning. It can be seen that
they have shown sub-par performance in the RV represen-
tation for UDA in LiDAR segmentation. Differently, our
approach is able to effectively leverage the spatial context of
RV and combine both domains into an intermediate domain
for fine-grained interactive learning and regularization.

C. Comparison to the State of the Art

Benchmarking Results. We compare ConDA with eight
state-of-the-art methods on the Boston→ Singapore and Sin-
gapore → Boston scenarios in Tab. III and Tab. IV. In both
cases, ConDA substantially outperforms other competitors
in terms of mIoU and FIoU. Notably, in contrast to prior
approaches that tend to improve performance on relatively
easier classes (i.e., classes on which the source-only has
already performed well), ConDA yields considerable perfor-
mance gains on almost all classes. This strongly supports our
findings that fine-grained objects/background interactions in-
between domains are conducive for closing the domain gap
and thus improving the adaptations.
Qualitative Assessment. Fig. 6 presents visualization results
for different methods, i.e., self-training (CBST [18]), adver-
sarial training (DADA [51]), and both (IntraDA [36]). We
observe that while the prior arts only give limited gains in
certain areas, ConDA mitigates the false predictions holis-
tically in most regions around the ego-vehicle. We accredit
this to both the generalization ability provided by domain
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TABLE III
ADAPTATION RESULTS FOR BOSTON→ SINGAPORE. THE METHODS ARE GROUPED, FROM TOP TO BOTTOM, AS ADVERSARIAL TRAINING,

SELF-TRAINING, BOTH, AND OURS. ALL IOU SCORES ARE GIVEN IN PERCENTAGE (%). BEST SCORE FOR EACH CLASS IS HIGHLIGHTED IN BOLD.

Method barr bicy bus car const moto ped cone trail truck driv othe walk terr manm veg FIoU ↑ mIoU ↑

Oracle 79.5 33.6 87.5 88.9 37.6 75.6 70.5 50.3 0.0 76.2 95.1 53.7 60.2 74.4 83.4 85.5 84.2 65.8
Source-only 29.3 1.3 52.0 71.4 7.2 11.7 42.6 12.2 0.0 30.4 85.9 12.7 32.6 41.0 62.5 65.9 64.3 34.9

AdaptSeg [50] 28.0 7.2 60.9 70.7 7.7 17.4 45.5 14.3 0.0 36.4 88.1 28.4 36.0 43.1 63.0 66.7 66.1 38.3
MinEnt [35] 31.7 4.0 63.7 70.6 5.8 15.9 47.7 13.7 0.1 34.9 87.9 22.4 37.5 41.5 59.9 62.2 64.3 37.5
AdvEnt [35] 28.7 5.9 59.4 76.4 7.2 18.2 50.6 16.7 0.0 32.6 87.0 28.1 36.6 44.0 63.9 67.1 66.3 38.9
DADA [51] 27.4 4.9 60.0 67.7 7.3 15.9 44.4 14.7 0.0 33.9 87.1 21.2 34.9 42.1 62.2 64.9 64.8 36.8

BDLPL [55] 39.2 0.3 53.0 73.2 6.8 16.0 40.2 8.5 0.0 29.8 88.7 21.3 39.7 48.5 67.1 67.9 68.3 37.5
CBST [18] 39.4 5.3 66.1 75.6 9.3 20.7 47.8 14.9 0.0 34.1 88.4 25.5 38.1 49.9 66.7 68.5 68.6 40.7

AdaptSegPL [50] 29.9 0.3 47.9 64.4 4.9 7.4 28.4 4.6 0.0 24.8 83.1 21.8 38.3 46.5 67.1 68.9 66.0 33.7
IntraDA [36] 28.0 5.6 57.8 76.1 6.2 18.6 47.4 13.8 0.0 32.1 87.3 27.6 37.0 44.4 63.4 66.5 66.2 38.3

ConDA (Ours) 54.1 6.8 67.4 77.2 12.1 38.7 51.8 16.0 0.0 44.0 90.4 38.7 44.0 62.9 70.7 75.0 74.1 46.9

TABLE IV
ADAPTATION RESULTS FOR SINGAPORE→ BOSTON. THE METHODS ARE GROUPED, FROM TOP TO BOTTOM, AS ADVERSARIAL TRAINING,

SELF-TRAINING, BOTH, AND OURS. ALL IOU SCORES ARE GIVEN IN PERCENTAGE (%). BEST SCORE FOR EACH CLASS IS HIGHLIGHTED IN BOLD.

Method barr bicy bus car const moto ped cone trail truck driv othe walk terr manm veg FIoU ↑ mIoU ↑

Oracle 71.3 35.5 71.5 86.9 41.6 35.4 69.7 61.2 57.6 68.0 95.9 70.7 79.7 58.7 89.9 83.9 88.5 67.3
Source-only 15.5 7.9 20.6 70.5 16.1 3.6 41.9 11.4 0.5 40.6 90.2 10.7 41.7 19.1 77.4 74.5 73.4 33.9

AdaptSeg [50] 15.9 2.4 40.4 73.9 15.2 5.5 48.3 8.3 0.4 46.3 92.2 18.7 54.5 19.0 79.0 70.9 76.2 36.9
MinEnt [35] 19.2 0.2 36.1 73.2 15.7 6.2 50.3 10.8 0.8 45.0 91.5 24.1 54.8 21.7 78.7 71.8 76.0 37.5
AdvEnt [35] 12.5 9.0 43.0 74.1 14.7 7.0 51.4 12.7 0.5 47.0 91.4 14.5 53.6 19.2 80.1 73.4 76.2 37.8
DADA [51] 18.5 2.9 35.5 73.0 15.0 6.5 49.3 11.0 1.6 43.6 91.8 12.2 52.7 19.7 79.8 73.4 76.1 36.7

BDLPL [55] 18.9 2.7 30.8 75.8 13.3 3.8 45.4 7.4 1.8 45.4 92.8 19.7 58.4 18.7 80.1 76.3 77.6 37.0
CBST [18] 17.7 1.4 33.6 75.0 13.3 6.4 52.3 12.3 1.9 46.9 92.5 22.8 57.2 19.7 80.2 77.3 77.5 38.1

AdaptSegPL [50] 10.5 0.6 33.5 71.3 17.2 5.2 41.9 11.4 1.0 43.5 90.4 18.5 60.1 20.0 80.0 74.6 76.1 36.3
IntraDA [36] 12.3 6.2 41.2 73.4 14.1 5.6 43.5 13.4 0.7 48.1 91.2 16.4 54.1 18.8 79.2 70.6 75.7 36.8

ConDA (Ours) 11.8 9.0 49.1 76.3 7.2 18.0 62.6 15.2 0.0 47.9 92.3 34.9 59.4 27.9 83.2 82.3 79.3 42.3

concatenation and the regularization enhancement offered by
our anti-aliasing regularizer and entropy aggregator.

Training Complexity. Fig. 5 shows the training time of
different methods. Note that the pseudo-label generation time
is excluded since this operation is conventionally conducted
offline [53], [18], [55]. We find that while the inference
speeds for these methods are similar (since they are sharing
the same range-view segmentation backbone), ConDA is
still faster than most adversarial methods [50], [35], [51]
which rely on additional discriminators for learning domain-
invariant features during the adaptation. Our work is com-
parable with MinEnt [35] and CBST [18] in terms of speed
but provides much better adaptation performance.

V. CONCLUSION

We presented ConDA, a concatenation-based UDA frame-
work that leverages the spatial coherency in-between the
source and target domains for fine-grained interactive learn-
ing. Extensive experiments showed that ConDA can substan-
tially improve the segmentation performance over baselines
and competitive approaches. The robustness of our frame-
work has shed light on its utility and potential for flexible
deployment in the autonomous driving perception system.
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