arXiv:2210.03539v1 [cs.RO] 7 Oct 2022

Robotic Control Using Model Based Meta Adaption

Karam Daaboul*, Joel Ikels* and J. Marius Zollner

Abstract—In machine learning, meta-learning methods aim
for fast adaptability to unknown tasks using prior knowledge.
Model-based meta-reinforcement learning combines reinforce-
ment learning via world models with Meta Reinforcement
Learning (MRL) for increased sample efficiency. However,
adaption to unknown tasks does not always result in preferable
agent behavior. This paper introduces a new Meta Adaptation
Controller (MAC) that employs MRL to apply a preferred robot
behavior from one task to many similar tasks. To do this, MAC
aims to find actions an agent has to take in a new task to reach
a similar outcome as in a learned task. As a result, the agent
will adapt quickly to the change in the dynamic and behave
appropriately without the need to construct a reward function
that enforces the preferred behavior.

I. INTRODUCTION

Adaptive behavior lies in the very nature of life as we
know it. By forming a variety of behaviors, the animal brain
enables its host to adapt to environmental changes continu-
ously [1]. Toddlers, for example, can learn how to walk in
the sand in several moments, whereas robots often struggle
to adapt fast and show rigid behavior encountering a task
not seen before. Fast adaption is possible because animals
do not learn from scratch and leverage prior knowledge to
solve a new task. In machine learning, the domain of meta-
learning takes inspiration from this phenomenon by enabling
a learning machine to develop a hypothesis on how to solve a
new task using information from prior hypotheses of similar
tasks [2]. Thus, it aims to learn models that are quickly
adaptable to new tasks and can be described as a set of
methods that apply a learned prior of common task structure
to make a generalized inference with small amounts of data
(2], [3].

The domain of model-based reinforcement learning (MBRL)
comprises methods that enable a Reinforcement Learning
(RL) agent to successfully master complex behaviors using a
deep neural network as a model of a tasks system dynamics
[4]. To solve an RL task, this dynamics model is utilized to
optimize a sequence of actions (e.g., with model predictive
control) or to optimize a policy, making MBRL more sample
efficient than model-free reinforcement learning (MFRL) [5],
[6], [7]. Even though MBRL methods show improved sample
efficiency compared to MFRL approaches, the amount of
training data needed to reach “good” performance scales
exponentially with the dimensionality of the input state-
action space of the dynamics model [8]. Additionally, data
scarcity is even more challenging when a system has to

*Equal contributions

Karlsruhe Institute of Technology, Kaiserstr. 12, 76131 Karlsruhe,
Germany {daaboul, marius.zoellner}@kit.edu,
joel.ikels@student.kit.edu

Fig. 1. Action sequences of an ant robot during meta-testing. The test task
is to adapt to the gravity of 5m/s?. A model-based meta-reinforcement
learning approach with MPC results in an undesired robot behavior (row
1). MAC finds a behavior similar to the one learned at its reference task
(row 2).

adapt online while executing a task. A robot, for example,
might encounter sudden changes in system dynamics (e.g.,
damaged joints) or changes in environmental dynamics (e.g.,
new terrain conditions) that require fast online adaption.
By combining meta-learning and MBRL, robots can learn
how to quickly form new behaviors when the environment-
or system-dynamics change [9], [10], [11], [12]. However,
newly formed behavior might be undesirable even if the
underlying task is mastered correctly according to the en-
vironment’s reward function. For example, as seen in figure
m arobot Ant, trained to walk as fast as possible, will start to
jump or roll if the gravity of its environment is very low. In a
real-world setting, such a situation might damage the robot.
Therefore, the RL agent requires a tailored reward function to
form behavior that does no damage. Nevertheless, designing
a reward function is challenging since it is time-consuming
and challenging to master, especially for various tasks. This
paper introduces a controller for MBRL that employs meta-
learning to apply a selected robot behavior from one robotic
task to a range of similar tasks. In other words, it aims to find
actions the robot has to take in a new task to reach a similar
outcome as in a learned task. Thus, it alleviates the need to
construct a reward function that enforces preferred behavior.
It builds on top of the FAMLE algorithm by Kaushik et al.
[11] making use of an Embedding Neural Network (ENN)
for quick adaption to new tasks through task embeddings as
learned priors. By combining an ENN with an RL policy of
a reference task, the controller predicts which actions need
to be taken in unseen tasks to mimic the behavior of the
reference task. While being initialized with the most likely
embedding, a trained meta is adapted to approximate future
environment states and compare them to the preferred states
of the reference task. Actions leading to states in the unseen
task that are very similar to those reached by the RL policy
in the reference task are then chosen to be executed in the

environment. To account for the usage and adaption of a
meta-model during planning, we call our approach Meta
Adaptation Controller (MAC).

First, we introduce related work and preliminaries. Next,
the challenge and our approach to solving it are described.
Finally, experiment results are presented that compare MAC
with MPC employing different meta-learning methods.

II. RELATED WORK

In recent years, robotics has achieved remarkable success
with model-based RL approaches [13], [14], [15]. The agent
can choose optimal actions by utilizing the experiences
generated by the model [7]. As a result, the amount of
data required for model-based methods is typically much
smaller than their model-free counterparts, making these
algorithms more attractive for robotic applications. One
drawback in many of these works is the assumption that the
environment is stationary. In real robot applications, however,
many uncertainties are difficult to model or predict, some of
which are internal (e.g., malfunctions [9]) and others external
(e.g., wind [12]). These uncertainties make the stationary
assumption impractical. That can lead to suboptimal behavior
or even catastrophic failure. Therefore, a quick adaptation of
the learned model is critical.

”Gradient-based meta-learning methods leverage gradient
descent to learn the commonalities among various tasks”
[16, p. 1]. One such method introduced by Finn et al.
[17] is Model-Agnostic Meta-Learning (MAML). The key
idea of MAML is to tune a model’s initial parameters such
that the model has maximal performance on a new task.
Here, meta-learning is achieved with bi-level optimization, a
models task-specific optimization and a task-agnostic meta
optimization. Instantiated for MFRL, MAML uses policy
gradients of a neural network model, whereas, in MBRL,
MAML is used to train a dynamics model. REPTILE by
Nicol et al. [18] is the first-order implementation of MAML.
In contrast to MAML, task-specific gradients do not need
to be differentiated through the optimization process. This
makes REPTILE more computationally efficient with similar
performance.

A model-based approach using gradient-based MRL was
presented in the work of Nagabandi et al. [9] and targets
online adaption of a robotic system that encounters different
system dynamics in real-world environments. In this context,
Kaushik et al. [11] point out that in an MRL setup where
situations do not possess strong global similarity, finding
a single set of initial parameters is often not sufficient
to learn quickly. One potential solution would be to find
several initial sets of model parameters during meta-training
and, when encountering a new task, use the most similar
one so that an agent can adapt through several gradient
steps. Their work Fast Adaptation through Meta-Learning
Embeddings (FAMLE) approaches this solution by extending
a dynamical models input with a learnable d-dimensional
vector describing a task. Similarly, Belkhale et al. [12] intro-
duce a meta-learning approach that enables a quadcopter to
adapt online to various physical properties of payloads (e.g.,

mass, tether length) using variational inference. Intuitively
each payload causes different system dynamics and therefore
defines a task to be learned. Since it is unlikely to accurately
model such dynamics by hand and it is not realistic to
know every payloads properties value beforehand, the meta-
learning goal is the rapid adaption to unknown payloads
without prior knowledge of the payload’s physical properties.
That is why a probabilistic encoder network finds a task-
specific latent vector fed into a dynamics network as an
auxiliary network. Using the latent vector, the dynamics
network learns to model the factors of variation that affect
the payload’s dynamics and are not present in the current
state. All these algorithms use MPC during online adaption.
Our work introduces a new controller for online adaption in
a model-based meta-reinforcement learning setting.

III. PRELIMINARIES
A. Meta Learning

Quick online adaption to new tasks can be viewed in
the light of a few-shot learning setting where the goal of
meta-learning is to adapt a model fy to an unseen task
M; of a task distribution p(M) with a small amount of
k data samples [17]. The meta-learning procedure usually
is divided into meta-training with n meta-learning tasks
M; and meta-testing with y meta-test tasks M, both
drawn from p(M) without replacement [3]. During meta-
training, task data may be split into train and test sets
usually representing k data points of a task Dmeta-train —
{(DY_,,D%_,),... (D™, Dt)}. Meta-testing task data
Ppmeta-test (Z);n:e%a—test7 . 7D;_n:eltla—test) is hold out dur-
ing meta-training [3]. Meta-training is then performed with
preta-tiain and can be viewed as bi-level learning of model
parameters [19]. In the inner-level, an update algorithm Alg
with hyperparameters ¢ must find task-specific parameters ¢;
by adjusting meta-parameters 6. In the outer-level, § must be
adjusted to minimize the cumulative loss of all ¢; across all
learning tasks by finding common characteristics of different
tasks through meta parameters 6*:

outer-level

0* =argmin » Lp,onm,(0;)
9 ; (D

where ¢; = Alg%iNMi(e)

inner-level

Once 0* is found, it can be used during meta-testing for
quick adaption: ¢; = Alg(0*,D;)

B. Model-based Reinforcement Learning

In RL, a task can be described as a Markov Decision Pro-
cess (MDP) M = {S,A,p(st=0),p (St+1 | 8t,a¢), 7, H}
with a set of states S, a set of actions A, a reward
function r : S x A — R, an initial state distribution
p(st=0), a transition probability distribution p (s¢41 | St, at),
and a discrete-time finite or continuous-time infinite hori-
zon H. MBRL methods sample ground truth data D; =
{(s0,a0,$1),(s1,a1,82),...} from a specific task M, and

use this data to train a dynamics model pg (s¢41 | st, a;) that
estimates the underlying dynamics of the task to approximate
which state follows which action. This is done by optimizing
the weights 6 to maximize the log-likelihood of the observed
data:

0" = argmax p(D; |)
G

= argmax Z
0

(st,at,5¢41)€ED;

2

log pe (St+1 | 5t7at)

The learned dynamics model is then utilized to optimize a
sequence of actions (e.g., with model predictive control) or
to optimize a policy [6], [7].

C. Gradient-based Reinforcement Learning with REPTILE

REPTILE from Nichol et al. [18] is a first-order imple-
mentation of MAML. During meta-training, task data in the
form of K trajectories D; = {(s1,a1,71...,81),...,K}
is sampled with roll-outs from f, or by taking random
actions. A single task M, is sampled from p(M) without
replacement for each training-iteration that passes the inner-
level and outer-level once. In the inner-level, task-specific
parameters ¢; are generated by adapting fy with g > 1 steps
of stochastic gradient descent as Alg and its learning rate
Y =p:

d)iREPTILE =0- VQ‘CDL(Q) 3)

In the outer-level the parameters 6 are then being adjusted
to minimize the euclidean distance between 6 and ¢; with
learning rate o

0«0+« ((ZSiREPT[LE - 9) 4)

D. Model-based Meta-Reinforcement Learning using task
embeddings

Each dynamic encountered by an agent can be represented
by an MDP and therefore interpreted as an RL task M.
Since, in real-world applications, new dynamics can appear
at any time (e.g., a malfunctioning robot leg), a new task
could appear at any time. Hence, a task can be understood
as an arbitrary trajectory segment of k timesteps under a
specific dynamic. A meta-learner a meta-learner is trained to
adapt to the distribution of these temporal fragments based
on o recent observations [9], [11]. FAMLE by Kaushik et
al. [11] extends a dynamics model input with an additional
input h, which is a d-dimensional vector describing a task
M. By meta-training model parameters § and embeddings
h jointly, several initial sets of model parameters are found,
each conditioned on a task represented by h; resulting in
a task conditioned dynamics model py (sty1 | S, ae, h). If
an unseen task M appears, its similarity to prior tasks is
measured. The most-likely task embedding hjikely is then used
to condition the model parameters and enable faster adaption.
The meta-training process is described in Algorithm [I] Prior
to meta-training, n tasks are sampled inside a simulation
from p(M) resulting in a set of meta-training tasks M. For
each M, training data D; = {(s¢,at,$¢41) [t =1,...,N}

is sampled by a simulated robot randomly taking N
actions. Then, to be learned task embeddings H =
{hi |i=1...n}corresponding to each task are initialized.
During meta-training, relating to the meta-learning goal
defined in Equation |1} initial model parameters 6* and n
task embeddings H* are found that minimize the loss for
any task M sampled from p(M):

6*,H* = argming p, Y.y L, (¢i, hi)

where ¢;, h; = Alg;gi (0,h) ®)

The loss of a task-conditioned dynamical model for a specific
task D; ~ M, be as follows:

t=K

1
Lo(¢ishi) = = 7= > logpy, (si41 | si,ai,hi) (6)

t=1

Following the REPTILE algorithm, bi-level optimization is
achieved by making a gradient-based, task-specific update of

@ and h in the inner level with a fixed :
¢ =0 —VoLp,(0,h) ™
b =h—VpLp,(0,h)

and simultaneously updating 6 and h towards their task-
specific counterparts in the outer level:

0« 0+ a(p; — 0)

8

Algorithm 1 Meta-training process using REPTILE and an
Embedding Neural Network
Distribution p(M) over tasks
Learning rate outer-level o € RT
Learning rate inner-level 3 € R™
Number of sampled tasks n
Require: Empty Dataset Dmetatrain — 1
Require: Alg}b)i () as k steps of stochastic gradient descent
1: fori=1...ndo
2: Sample a training task M; from p(M)
3: Save the task: M + M;
4: Collect task data: D; = {(s¢,as, s¢41)[t=1,...,N}

Require:
Require:
Require:
Require:

5. Save task data; pmeta-train o pmeta-train) £75.1

6: end for

7. for x =0,1, ... do

8: Sample task data: D; ~ Pmeta-train

9: Perform k steps of SGD with: ¢;, ! = Alg;p:ﬂ (0, h;)

10: Perform update: 0 < 0 + a(¢p; — 6)
11: Perform update: h; < h; + a(h} — h;)
12: end for

13: return (0, h) as (6*, h*)

During online adaptation (i.e. meta-testing) the dynamics
model is adapted based on o recent observations while
making the assumption that a new task is taking place after
every k control steps. First, based on o recent observations

Meta-testing
Set
2 L
" fe-----------———==~ | |Train online | 1 Next states in test task i
i | Meta model R likely g+ > ctest test ptesty!
i oG) —= :htest- Drest = SGD(h ,0%,Dp) ! 155 = f¢test(St,At , ety
H ! *(. 1 L ___.n ol |
Mref Meta-training :__?__i_’ ___________ | ' l
S mmmmmmmmmmmemmeeees [———_—_—_——————————— | r—-- - T T T T TS TS TS T TSI T T T]
| Reference task model i i Next state in reference task 0 :Cnmparefstates I
| re re —l ref ctest test testy
| fo-(., .. k) i—» i SH{ = fo+(sp al f href) T hSim(s{, SET), T (sE, aft)
P, | OO o __ !
e [ttt f Fmmmmm—m—) Action leading
H : ey 1 | T 1 i
i ogms? _ | Reference task policy | | Getreference action | Nextstate | !’!a_'_“_‘l'lg i i ”Tsr »
Mres = o) TN ref _ e ——— 12 e s
: H . — e, = !
............... e =a(s)) s =S ' Acting | Pkl
L. L

Fig. 2. A high-level overview of the meta adaption controller. While being initialized with the most likely embedding, a trained meta-model is adapted to
approximate future environment states and compare them to states of the reference task. Actions leading to states in the unseen task that are very similar
to those reached by the RL policy in the reference task are then chosen to be executed in the environment.

D; = {(st,at,8e41) |t =1,...,0} the most likely situa-
tional embedding hr;rery is defined:

hLikely = arg Imax Ep, [log pe+ (st41 | 8¢, a¢,h)] (9)
Next, the dynamical model is updated online by simultane-
ously updating hr;rer, and 0* taking g gradient steps:
0 < 0 — BVoLp, (0, hiikely)
hj < hiikety — BVaLp, (0, hiikely)

IV. AGENTS FORMING ADAPTED BEHAVIOR THROUGH
META-LEARNING

(10)

Figure [3| displays a robot incentivized to walk in one
specific direction as fast as possible. The meta-learning
objective is to walk successfully in different gravitational
settings. First, as in algorithm [I| data is collected by ran-
domly taking actions in different gravitational settings. Next,
a meta-learning method (e.g., REPTILE) is used to train
a meta-model. While the robot achieves good performance
during meta-testing with MPC, its adapted behavior in low
gravitational settings is to jump and roll since this results
in the highest reward (Fig. [I). In a real-world setting,
similar adverse behaviors could have unknown consequences
like damage to the robot or its environment. Designing
a reward function that enables intended adaption is not a
promising approach. First, developing the proper function
for one specific task takes many trials, which is time-
consuming. Moreover, finding a reward function that works
across various tasks is difficult. For example, settings with
low gravity require constraining the motion of the robot
not to jump or roll, whereas high gravity settings demand
rotation flexibility. More complex meta-learning tasks are
even more challenging.

V. APPLY PREFERRED BEHAVIOR TO SIMILAR TASKS

Instead of designing a reward function that provides the
right incentives for different tasks, a technique is needed
that guarantees correct motion with minimal supervision.
One possible solution is to add constraints to the MPC
optimization problem. These constraints force the states

predicted by the model to be similar to the predefined states
that we call task-anchors s°"“". An example is shown in
Fig. 3] (red arrows), where the task-anchor accounts for the
robot’s rotational motion so that the robot adapts to low
gravity conditions without jumping or rolling.

H-1
max r(s¢, a (11
e Y rloon
s.ti Spp1 = fprest(se,ap, BY) VWt =[1,H —1] (12)
|se41 — syT <8 Vt=[1,H —1] (13)

Here § is the similarity threshold.

Instead of finding the proper movement across all tasks, we

only choose a movement of one specific task that may work
well in similar tasks. This movement can be extracted from
learned RL policies or classical feedback controllers. We call
this task a reference task and the used policy (controller)
a reference policy. Our algorithm aims to find actions the
robot has to take in a new test task to reach a similar
outcome as the desired outcome in the reference task using
the reference policy. To achieve that, our algorithm utilizes
two variations of a meta-trained embedding neural network
(ENN). The first variation entails the meta-trained network
with meta parameters 0* and learned embeddings h*. The
second variation entails the meta-trained network with meta
parameters 6* conditioned on the embedding of a reference
task h"e’.
Putting these pieces together, MAC (Fig. optimizes a
sequence of states s and actions a[,) to maximize the pre-
dicted reward in the test-task while also eventually ensuring
dynamics feasibility:

H-1
max r(s¢, a (14)
S[1:9[] ; (f f)

s.t.: St+1 = f¢test (St, ag, ht68t) Vit = [1, H — 1} (15)

|se1 — 575 < & Vi=[1,H —1] (16)

Where str_‘f_’; is the desired outcome of the reference task

Fig. 3. An ant robot incentivized to walk as fast as possible. The red
arrows depict an anchor that restricts the robot in its rotation

given the current state s; and using the reference policy:
$yh = Jor(se, 7" (s0), b7 (17)

The constraint [T6] is approximated using a similarity mea-
surement between the predicted states and the reference
state Sz’m(stﬂ,s:ﬁ). As the similarity measure, we use
the cosine similarity of the state vectors.

Algorithm 2 Meta-testing an Embedding Neural Network to
adapt online using our control algorithm

Require: Meta-learned parameters 6* and embeddings H*
Require: Meta Adaption Controller MAC()
Require: Empty set of o recent observations D, = {}
1: while task not solved do
2: Determine most likely embedding ke, € H* given
D, and 6* {see Eq. O}
3: Execute g steps of SGD using D,, 0*, hpiker, and
receive ¢test, ptest {see Eq.
4: Execute action a; = MAC(¢p'st ht¢st ;) and re-
ceive state sy {see Alg.

5. Save observation D, < D, U {(s¢, as, St+1)}
if size(D,) > o then remove oldest observation from
D,

7: end while

After meta-training an ENN with algorithm [T} meta-
testing (i.e., online adaption) is executed with algorithm
2] Here the most likely embedding is determined, and the
ENN is adapted to approximate future environment states.
Subsequently, MAC is used to find the action to take in a
new task that reaches a similar outcome as in the reference
task.

The MAC procedure is shown in Algorithm [3] and can be
summarized with the following steps:

1) Given the current state s;, sample a set of reference
actions A7/ using the reference policy 77/ (s;).

2) Using the embedding of the reference task h"¢/, es-
timate a set of reference states S[j{ that contains
information about what states would follow if the
reference actions in the reference task were executed.

3) Sample a set of actions A; from an unconditional
Gaussian distribution A (i,). These actions will be
used together with the test task embedding h!¢* to
predict the following states Sy 1.

4) Use the reward function r (S, A;) to estimate a set of
rewards R; and measure the state similarity of the pre-
dicted states to the reference state Sim(Sey1, S:i{)

5) From the sets Syi1 and A;yq store only the most
similar states and the actions used to reach these states.

6) Repeat the procedure according to the planning hori-
zon.

7) Choose the first action a; of the most similar action
sequence with the highest reward.

8) Update the distribution A (u,X) towards action se-
quences with higher similarity and reward.

Algorithm 3 Meta Adaption Controller (MAC)
Require:
Require:
Require:
Require:
Require:
Require:
Require:

Reward function () ; similarity measure Sim()
Action elites € ; planning horizon 7
Reference policy 7"/ ()
Task-specific configuration ¢test, ptest
Reference task configuration #7¢/ href
Set of initial states S;
Empty set of next states S = {}
Require: Empty set of actions to next states A = {}
Require: Empty set of calculated rewards R = {}
1: Use random distribution A (u1,) to sample actions
2: for t <=7 do
3 Sample set of ref. actions A7/ with 77/ (S,)

4 Calculate ref. states S| with fg-(S;, Ay hrel)

5. Sample set of actions A; from N (p, X)

6: Get set of predictions of next states S;y; with
Jorest (St, Ay, htest)

7. Calculate rewards R; with 7(S;, A;)

8: Calculate state similarity Sg;,, with Sim(Sgy1, Zj{)

9: Update A; based on Sy;,, and R to consists of the €
most similar states with the highest rewards

10: S+ SU{Si11}

1: R+ SU{R;}

122 A+ SU{4;}

13: end for

14: Extract the first action a; of the most similar action
sequence with the highest reward.

15: Update N (u,) based on A

16: return ay

VI. EXPERIMENTS

We compare our meta adaption controller (MAC) algo-
rithm with two baseline algorithms. The algorithms are com-
pared during meta-testing within four different environments
where the agent must quickly adapt to new tasks and collect
as much reward as possible (Figure). The environments are
based on the MuJoCo physics engine developed by Todorov
et al. [20] and among them previous meta-RL literature [9]:
Halfcheetah-disabled, Halfcheetah-pier, Ant-disabled, Ant-
gravity.

Each baseline uses a multilayer perceptron (MLP) with three
hidden layers, each consisting of 512 neurons. The first
baseline (RMPC) trains the MLP on the MAML first-order

HalfCheetah Ant

Disabled Pier

Gravity Disabled

Fig. 4. Environments used to test our algorithm. In each environment,
the corresponding robot needs to run as fast as possible in one direction.
Halfcheetah-disabled blocks different joints of a cheetah robot. Halfcheetah-
pier changes the cheetah’s limb flexibility while running on moving ground.
Ant-disabled resizes different legs of an ant robot. In Ant-Gravity, the
environment’s gravitational setting is adjusted.

TABLE I
META-TESTING IN DIFFERENT ENVIRONMENTS

Environment 7 env RMPC FMPC MAC
tasks | steps

Ant-gravity 8 20000 | 18840* | 5981 10838

Ant-disabled 1 2500 2001 1856 2397

Hc-disabled 2 5000 2109 9762 10513

Hc-pier 2 5000 2570 4342 4393

*: Robot jumps and rolls in environment leading to high rewards

implementation REPTILE by Nichol et al. [18] and uses
MPC for meta-testing. By following the approach of FAMLE
by Kaushik et al. [11], the second baseline (FMPC) extends
the MLP with an additional embedding input, meta-trains the
resulting embedding neural network (ENN) using REPTILE,
and uses MPC for meta-testing. To extract reference actions,
MAC uses a policy from an actor-critic module trained on
one reference task per environment with the soft actor-critic
algorithm by Haarnoja et al. [21]. The reference task in each
environment corresponds to the goal of its base environment
not using any meta-task (i.e., Ant without disability and in
standard gravitational setting; HalfCheetah without disabil-
ity). Further, MAC reuses the trained ENN as explained in
algorithm [2}

A hyperparameter search regarding meta-training and meta-
testing was carried out for each environment algorithm
combination. To compare the individual performances in
each environment, we sampled a new task after 500 steps.
During testing, every task is sampled five times with different
environment seeds. With each environment tested on five
different seeds per task, our experiments show that the MAC
algorithm outperforms both baselines with the exception
when the robot jumps and rolls in the ant gravity environment
as depicted in Figure |1} The experiment results are displayed
in Table [

VII. CONCLUSION

In this paper, we presented MAC, a robot control algo-
rithm that employs meta-reinforcement learning to apply a
preferred robot behavior from one task to many similar tasks.
At its core is the combination of a meta-trained embedding
neural network and a RL policy of a reference task. While
adapting the neural network online, it predicts which actions
need to be taken in unseen tasks to mimic the behavior of

the reference task obtained by the policy. Our experiments
demonstrated that this mechanism works across various tasks
in different environments and outperforms meta-testing with
model predictive control in different model-based meta-
reinforcement learning setups.

REFERENCES

[1] P. Sterling and S. Laughlin, Principles of neural design.
2015.

[2] J. Schmidhuber, “Evolutionary principles in self-referential learning.
on learning now to learn: The meta-meta-meta...-hook,” Diploma
Thesis, Technische Universitat Munchen, Germany, 14 May 1987.
[Online]. Available: http://www.idsia.ch/~juergen/diploma.html

[3] C. B. Finn, “Meta Learning Dissertation,” pp. 1-3, 6-8, 2018.

[4] C. G. Atkeson and J. C. Santamaria, “Comparison of direct and model-
based reinforcement learning,” Proceedings - IEEE International Con-
ference on Robotics and Automation, vol. 4, pp. 3557-3564, 1997.

[51 G. Williams, N. Wagener, B. Goldfain, P. Drews, J. M. Rehg, B. Boots,
and E. A. Theodorou, “Information Theoretic MPC for Model-Based
Reinforcement Learning.”

[6] M. P. Deisenroth and C. E. Rasmussen, “PILCO: A model-based
and data-efficient approach to policy search,” Proceedings of the 28th
International Conference on Machine Learning, ICML 2011, pp. 465—
472, 2011.

[71 A. Nagabandi, G. Kahn, R. S. Fearing, and S. Levine, “Neural
Network Dynamics for Model-Based Deep Reinforcement Learning
with Model-Free Fine-Tuning,” Proceedings - IEEE International
Conference on Robotics and Automation, pp. 7579-7586, aug 2017.
[Online]. Available: https://arxiv.org/abs/1708.02596v2

[8] K. Chatzilygeroudis, V. Vassiliades, F. Stulp, S. Calinon, and
J.-B. Mouret, “A survey on policy search algorithms for learning
robot controllers in a handful of trials,” IEEE Transactions on
Robotics, vol. 36, no. 2, pp. 328-347, jul 2018. [Online]. Available:
https://arxiv.org/abs/1807.02303v5

[91 A. Nagabandi, I. Clavera, S. Liu, R. S. Fearing, P. Abbeel, S. Levine,
and C. Finn, “Learning to adapt in dynamic, real-world environments
through meta-reinforcement learning,” arXiv, pp. 1-17, 2018.

[10] S. S@&mundsson, K. Hofmann, and M. P. Deisenroth, “Meta
Reinforcement Learning with Latent Variable Gaussian Processes,”
34th Conference on Uncertainty in Artificial Intelligence 2018,
UAI 2018, vol. 2, pp. 642-652, mar 2018. [Online]. Available:
http://arxiv.org/abs/1803.07551

[11] R. Kaushik, T. Anne, and J.-B. Mouret, “Fast Online Adaptation
in Robotics through Meta-Learning Embeddings of Simulated
Priors,” IEEE International Conference on Intelligent Robots
and Systems, pp. 5269-5276, mar 2020. [Online]. Available:
http://arxiv.org/abs/2003.04663

[12] S. Belkhale, R. Li, G. Kahn, R. McAllister, R. Calandra, and S. Levine,
“Model-Based Meta-Reinforcement Learning for Flight with Sus-
pended Payloads,” IEEE Robotics and Automation Letters, vol. 6,
no. 2, pp. 1471-1478, 2021.

[13] M. Zhang, S. Vikram, L. Smith, P. Abbeel, M. J. Johnson,
and S. Levine, “Solar: Deep structured representations for model-
based reinforcement learning,” 2018. [Online]. Available: https:
/larxiv.org/abs/1808.09105

[14] A. Nagabandi, K. Konolige, S. Levine, and V. Kumar, “Deep dynamics
models for learning dexterous manipulation,” pp. 1101-1112, 2020.

[15] Y. Yang, K. Caluwaerts, A. Iscen, T. Zhang, J. Tan, and V. Sindhwani,
“Data efficient reinforcement learning for legged robots,” pp. 1-10,
2020.

[16] Y. Lee and S. Choi, “Gradient-based meta-learning with learned
layerwise metric and subspace,” 35th International Conference on
Machine Learning, ICML 2018, vol. 7, pp. 4574-4586, 2018.

[17] C. Finn, P. Abbeel, and S. Levine, “Model-agnostic meta-learning for
fast adaptation of deep networks,” 34th International Conference on
Machine Learning, ICML 2017, vol. 3, pp. 1856-1868, 2017.

[18] A. Nichol, J. Achiam, and J. Schulman, “On First-Order Meta-
Learning Algorithms,” Tech. Rep., 2018. [Online]. Available:
http://arxiv.org/abs/1803.02999

[19] A. Rajeswaran, C. Finn, S. Kakade, and S. Levine, “Meta-learning
with implicit gradients,” arXiv, 2019.

MIT press,

http://www.idsia.ch/~juergen/diploma.html
https://arxiv.org/abs/1708.02596v2
https://arxiv.org/abs/1807.02303v5
http://arxiv.org/abs/1803.07551
http://arxiv.org/abs/2003.04663
https://arxiv.org/abs/1808.09105
https://arxiv.org/abs/1808.09105
http://arxiv.org/abs/1803.02999

[20] E. Todorov, T. Erez, and Y. Tassa, “Mujoco: A physics engine Off-Policy Maximum Entropy Deep Reinforcement Learning with

for model-based control,” in Intelligent Robots and Systems (IROS), a Stochastic Actor,” 35th International Conference on Machine
2012 IEEE/RSJ International Conference on. IEEE, 2012, pp. Learning, ICML 2018, vol. 5, pp. 2976-2989, jan 2018. [Online].
5026-5033. [Online]. Available: https://ieeexplore.ieee.org/abstract/ Available: https://arxiv.org/abs/1801.01290v2

document/6386109/

[21] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft Actor-Critic:

https://ieeexplore.ieee.org/abstract/document/6386109/
https://ieeexplore.ieee.org/abstract/document/6386109/
https://arxiv.org/abs/1801.01290v2

	I Introduction
	II Related Work
	III Preliminaries
	III-A Meta Learning
	III-B Model-based Reinforcement Learning
	III-C Gradient-based Reinforcement Learning with REPTILE
	III-D Model-based Meta-Reinforcement Learning using task embeddings

	IV Agents forming adapted behavior through meta-learning
	V Apply preferred behavior to similar tasks
	VI Experiments
	VII Conclusion
	References

