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Abstract— This paper proposes an integration of surrogate
modeling and topology to significantly reduce the amount of
data required to describe the underlying global dynamics of
robot controllers, including closed-box ones. A Gaussian Process
(GP), trained with randomized short trajectories over the state-
space, acts as a surrogate model for the underlying dynamical
system. Then, a combinatorial representation is built and used
to describe the dynamics in the form of a directed acyclic
graph, known as Morse graph. The Morse graph is able to
describe the system’s attractors and their corresponding regions
of attraction (RoA). Furthermore, a pointwise confidence level
of the global dynamics estimation over the entire state space is
provided. In contrast to alternatives, the framework does not
require estimation of Lyapunov functions, alleviating the need
for high prediction accuracy of the GP. The framework is suit-
able for data-driven controllers that do not expose an analytical
model as long as Lipschitz-continuity is satisfied. The method
is compared against established analytical and recent machine
learning alternatives for estimating RoAs, outperforming them
in data efficiency without sacrificing accuracy. Link to code:
https://go.rutgers.edu/49hy35en

I. INTRODUCTION

Multiple tools have been developed to estimate the region
of attraction (RoA) of a dynamical system [1]–[3]. These
tools are useful for understanding the conditions under which
a controller can be safely applied to solve a task. Finding the
true RoA of a controlled system is challenging. Thus, many
efforts try to estimate the largest possible set contained in the
true RoA. For closed-box systems, such as learned controllers
that do not provide an analytical expression, it is impractical
to apply Lyapunov methods directly. Many non-Lyapunov
methods often have significant data requirements so as to
estimate RoAs effectively.

This paper addresses the problem of finding RoAs of
controllers with unknown dynamics by proposing an efficient
way to use data. It explores surrogate modeling together with
topological tools not only to identify the RoA for a specific
goal region but also to describe the global dynamics. This
also includes data-driven controllers, where a key challenge
in their application is verification, i.e. explaining when the
controller works and when it fails. To achieve this objective,
this work uses Gaussian Processes (GPs) as surrogate models
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Fig. 1. Overview of the proposed framework: 1) initial data collection; 2)
a Gaussian Process (GP) is trained as a surrogate model; 3) computation of
Morse Graph and the Region of Attraction (RoA) for verification. For an
optional refinement, steps 1-3 can be repeated as necessary.

to compute a Morse graph, which constructs a finite, com-
binatorial representation of the state space given access to a
discrete-time representation of the dynamics. It achieves data
efficiency and improved accuracy relative to alternatives that
are either analytical tools (and can only be used for analytical
systems) or learning-based frameworks. Fig. 1 highlights the
iterative nature of the approach.

In particular, the key contribution of this work is the use
of GPs as a statistical surrogate model of the underlying
controlled system, alongside the Morse Graphs framework
to compactly describe the global dynamics. The integration
results in data efficiency: significantly fewer samples of
the underlying dynamics are necessary for an informative
representation of the global dynamics. Data efficiency in sur-
rogate modeling is achieved by leveraging the effectiveness
of Morse Graphs, alleviating the high prediction accuracy
requirements typically required for this purpose.

Furthermore, this integration allows working with tra-
jectories that may not uniformly cover the state space of
the underlying system. Prior efforts with topological tools
and combinatorial decompositions of the underlying state
space required sampling the dynamics uniformly over a grid-
based discretization of the state space. A GP allows an
incremental approach where the collection of additional data
points is guided to minimize the uncertainty about the global
dynamics. Additionally, GPs provide confidence levels on the
accuracy of the results at each subset of the state space.
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II. RELATED WORK

Numerical methods that estimate the RoA given a closed-
form expression of the system dynamics include maximal
Lyapunov functions (LFs) and linear matrix inequalities
(LMIs). Ellipsoidal RoA approximation via LMIs [4], [5] has
been used for mobile robots [6], [7], and LMI relaxations can
also approximate the RoA of polynomial systems [8]. LFs
constructed by restricting them to be sum-of-squares (SoS)
polynomials [9] have been used in building randomized trees
with LQR feedback [10], funnel libraries [11] and stability
certificates for rigid bodies [12].

Reachability analysis [3], i.e., computing a backward
reachable tube to obtain the RoA without shape imposition,
for computing RoAs of dynamical walkers [13], has been
combined with machine learning to maintain safety over
a given horizon [14]. GPs can learn barrier functions for
ensuring the safety of unknown dynamical systems [15].
Similarly, barrier certificates (BCs) can identify areas for
exploration to expand the safe set [16].

Machine learning can learn LFs by alternating between
a learner and a verifier [17], [18], or via stable data-driven
Koopman operators [19]. Rectified Linear Unit (ReLU) acti-
vated neural networks can learn robust LFs for approximated
dynamics [20]. The Lyapunov Neural Network [21] can
incrementally adapt the RoA’s shape given an initial safe set.
As an alternative, GPs can obtain a Lyapunov-like function
[22], or an LF can be synthesized to provide guarantee’s on
a controller’s stability while training [23].

GPs are a popular choice to reduce data requirements
while modeling dynamical systems [24]. Some of their
applications in robotics include model-based policy search
[25], modeling non-smooth dynamics of robots with contacts
[26], and stabilizing controllers for control-affine systems
[27]. For RoA estimation problems, given an initial safe set
computed using a Lyapunov function, a GP can approximate
the model uncertainties on a discrete set of sampling points
from the safe region while expanding it [28].

Topology has multiple applications in robotics, such as
deformable manipulation and others [29]–[34]. Morse theory
can help incrementally build local minima trees for multi-
robot planning [35] and finds paths to cover 2D or 3D
spaces [36]. In recent work [37], Morse graphs are shown
to be effective in compactly describing the global dynamics
of a control system without an analytical expression of
its dynamics. To the best of the authors’ knowledge, the
current work is the first to apply surrogate modeling with
uncertainty quantification in conjunction with topological
tools to identify the global dynamics of robot controllers.

III. PROBLEM SETUP

This work aims to provide a data-efficient framework for
the analysis of global dynamics of robot controllers based on
combinatorial dynamics and order theory [37]–[40]. Consider
a non-linear, continuous-time control system:

ẋ = f(x, u), (1)
where x(t) ∈ X ⊆ RM is the state at time t, X is a compact
set, u : X 7→ U ⊆ RM is a Lipschitz-continuous control

as defined by a deterministic control policy u(x), and f :
X × U 7→ RM is a Lipschitz-continuous function. Neither
f(·) nor u = u(x) are necessarily known analytically. For
a given time τ > 0, let φτ : X → X denote the function
obtained by solving Eq. (1) forward in time for duration τ
from everywhere in X . A trajectory (or an orbit) is defined
as a sequence of states obtained by integrating Eq. 1 forward
in time.

The analysis of the global dynamics can reveal the sys-
tem’s attractors, which include fixed points, such as a state
that the control law manages to bring the system to; or limit
cycles, such as a periodic behavior of the system. It will also
reveal a Region of Attraction (RoA) which is a subset of the
basin of attraction of an attractor A. The basin of attraction
is the largest set of points whose forward orbits converge to
A, or more formally, the maximal set B that has the property:

A = ω(B) :=
⋂
n∈Z+

cl

( ∞⋃
k=n

φkτ (B)

)
where φkτ is the composition φτ ◦ · · · ◦ φτ (k times) and cl
is topological closure.

Since f and u are Lipschitz-continuous, φτ is too; fur-
thermore any RoA of Eq. (1) is an RoA under φτ . Hence, it
is possible to study Eq. (1) by analyzing the behavior of the
dynamics according to φτ , which is not assumed, however,
to be computable and available.

IV. TOPOLOGICAL FRAMEWORK AND UNCERTAINTY
QUANTIFICATION VIA GPS

There are two key components for capturing meaningful
conditions of the dynamics according to φτ . First, identifying
effective combinatorial representations of the attractors and
maximal RoAs. And second, to achieve data efficiency by
employing GP-based surrogate modeling with uncertainty
quantification.

Morse Graphs for Understanding Global Dynamics:
Fig. 2(left) is used as a running 1-dim. example. The function
φτ is first approximated by decomposing the state space X
into a collection of regions X , for instance, by defining
a grid. Fig. 2(left) shows a grid on the interval [−3, 3]
decomposed into sub-intervals a through e. Given a region
ξ ∈ X (a cell), the system is forward propagated for
multiple initial states within ξ for a time τ to identify regions
reachable from ξ. Consider, for example, the sub-interval b
as such a cell ξ in Fig. 2(left). The arrows from the boundary
of b depict the forward propagation of the dynamics where
b maps to itself given the underlying dynamics

Then, a directed graph representation F stores each region
in ξ ∈ X as a vertex and edges pointing from ξ to each
region reachable from ξ. In Fig. 2(left), F is the graph
containing nodes given by the grid cells a to e. Each edge
represents a pair given by a cell and its image according
to the dynamics. For instance, (b,b) and (b, c) are two
edges added since b both maps to itself and also maps to c.
Condensing all the nodes belonging to a strongly connected
components (SCCs) of F into a single node, results in the
condensation graph CG(F). Then, edges on CG(F) reflect



Fig. 2. (Left) 1D dynamics example y = arctan(x) is decomposed in cells [a, e]. Forward propagation of b is depicted by arrows from its boundary.
F is a directed graph capturing reachable vertices (regions) from other vertices. Strongly connected components of F result in CG(F). Finally, the Morse
Graph MG(F) (nodes {b, c, d}) contains the attractors of interest. (Center) Proposed Method (initial step) for Pendulum (LQR). Data collected; heat
map of initial GP; MG and RoAs of the initial GP. (Right) Proposed method (refinement step) for Pendulum (LQR). Few new samples focused on the
desired RoA are collected; retrained GP has lower uncertainty; MG and RoAs of the retrained GP.

reachability according to a topological sorting of F . In Fig.
2(left), CG(F) is the subgraph with nodes a to e and all
non-self edges, i.e., CG(F) has no cycles.

Since CG(F) is a directed acyclic graph, it is also a
partially ordered set (i.e., a poset). A recurrent set is an
SCC that contains at least one edge. Finally, the Morse
graph of F , denoted by MG(F), is the subposet of recur-
rent set of CG(F) (excluding single-node SCCs). In Fig.
2(left), MG(F) is the graph with nodes b, c and d and
the corresponding edges between them. The Morse graph
MG(F) captures the recurrent and non-recurrent dynamics
by representing the recurrent sets of F as vertices and whose
edges reflect reachability between these sets. The nodes of
Morse graphs can contain attractors of interest.

In summary, Morse graphs and RoAs are obtained by
a four step procedure. 1) State space decomposition and
generation of input to represent φτ . 2) Construction of the
combinatorial representation F of the dynamics given an
outer approximation of φτ . 3) Compute the Condensation
Graph CG(F) and Morse Graph MG(F) by identifying
recurrent sets/SCCs of F and topological sort. 4) Derive
RoAs for the recurrent sets given the reachability of CG(F).

The state space decomposition is an orthotope X =∏n
i=1[ai, bi] (i.e., generalization of a rectangle for high-

dim.), allowing for periodic boundary conditions. More
specifically, a uniform discretization of X is applied based
on 2ki subdivisions in the i-th component resulting in a
decomposition of the state space into

∏n
i=1 2ki cubes of

dimension n. X denotes the collection of these cubes.
The input representation of φτ is generated by the set

of values of φτ at the corner points of cubes in X . More
precisely, let V (X ) denote the set of all corner points of
cubes in X . The method computes the set of ordered pairs
Φτ (X ) := {(v, φτ (v)) | v ∈ V (X )}, by forward propagating
the dynamics for time τ from all V (X ). Note that, no
analytical version of φτ is required, allowing a surrogate
model to generate data Φτ (X ), as proposed in this work.

The combinatorial representation of the dynamics is ap-
proximated by a combinatorial multivalued map F : X ⇒ X ,

where vertices are n-cubes ξ ∈ X . The map F contains
directed edges ξ → ξ′,∀ ξ, ξ′ ∈ X such that ξ′ ∩Φτ (ξ) 6= ∅.
The set of cubes identified by F(ξ) are meant to capture the
possible states of φτ (ξ). Then, ∀ξ ∈ X a multivalued map
F that satisfies:

Fmin(ξ) := {ξ′ ∈ X | ξ′ ∩ φτ (ξ) 6= ∅} ⊂ F(ξ) (2)
is called an outer approximation of φτ . Computation of
Fmin is typically prohibitively expensive. But it is sufficient
to find an outer approximation F , which still leads to
mathematically rigorous results. The flexibility in defining an
outer approximation provides versatility in its construction,
which allows integration with a surrogate model.

Surrogate Modeling and Uncertainty Quantification by
GPs: Assume that there is access to data of the form D =
{(xn, yn) ∈ X × X | yn = φτ (xn) and n = 1, . . . , N},
which may have Gaussian noise. In the pair (xn, yn) ∈ D,
xn is an initial state of the system, and yn is the end state
after forward propagating the dynamics (1) from xn for time
τ . In Figs 1 and 2(center and right), (xn, yn) are denoted
as red and blue points respectively. Let φτ,` denote the `-th
component of φτ , for ` = 1, . . . ,M and assume that φτ,` is
the realization of φτ from GP:

φτ,`(x) ∼ GP (β`, σ
2
`k(x, x′; θ`)), (3)

where β` and σ2
` are the unknown mean and vari-

ance, and the correlation is defined by the kernel
k(x, x′; θ`) = Corr(φτ,`(x), φτ,`(x

′); θ`) with k(x, x; θ`) =
1, k(x, x′; θ`) = k(x′, x; θ`) for x, x′ ∈ X and θ` is a set of
parameters associated with k.

The prediction for an untried x ∈ X can be ob-
tained by a d-dimensional multivariate normal distribution,
MN(µ(x),Σ(x)), where µ = (µ1, · · · , µd), µ`(x) =
E(φτ,`(x)|D) = β̂` + k(x; θ̂`)

TK−1(θ̂`)(y
T
` − β̂`), and

the covariance matrix Σ(x) is a diagonal matrix with ele-
ments σ̂2

`

(
1− k(x; θ̂`)

TK−1(θ̂`)k(x; θ̂`)
)

assuming the M -

dimensional outputs are independent, β̂`, σ̂`, and θ̂` are the
maximum likelihood estimators, k(x; θ̂) = [k(x, xn; θ̂), n =
1, · · · , N ], and K(θ̂) is an N × N matrix with elements
k(xi, xj ; θ̂) for 1 ≤ i, j ≤ N .



V. PROPOSED INTEGRATED SOLUTION

The proposed framework brings together topological tools
for combinatorial dynamics and GPs. GPs are used as
surrogate models to identify the global dynamics and RoAs
of controllers, including data-driven ones without access to
an analytical model. Fig. 2 (center and right) summarizes
the method’s application for a pendulum controlled by a
linear quadratic regulator (LQR). Overall, the method can
be divided into the following steps:
1. Collect data from the system.
2. Apply GP regression to get an initial surrogate model
with predictive mean µ and covariance function Σ.

3. Compute the Morse Graph of the trained GP to obtain,
with a given confidence level, the information about the
global dynamics and the RoAs.

4. (Optional) To increase the confidence level, select state
space points to collect more data as in step 1 to improve
the accuracy of the representation and return to step 2.
Step 1: Data Collection Two procedures for data col-

lection are explored. The first one collects short trajectories
from random initial points in X with a fixed duration of time.
The second option collects time series data in the form of
long trajectories, breaking them into smaller ones. Denote
by D = {(xn, yn) ∈ RM × RM | yn = φτ (xn) for n =
1, . . . , N} the robot trajectory data collected.

Step 2: GP regression Given the training data D obtained
in the previous step, a GP model is trained independently
for each output dimension using a zero mean prior and a
Matérn kernel with ν > 1. Learned controllers typically give
Lipschitz-continuous functions, yet, not necessarily smooth.
Hence kernels requiring less smoothness assumptions are
ideal. As such, Matérn kernels provide better performance
than a more common radial basis function kernel.

Let µ and Σ denote the predictive mean and covariance
functions of the GP, respectively. For a confidence level
1 − δ and an x ∈ RM , since the GP model is trained
independently for each output dimension, the confidence
ellipsoid is an M -dimensional hypercube EδΣ(x) :=∏M
n=1 I

α
n,Σ(x), where α = 1 − (1 − δ)1/M , Iαn,Σ(x) ={

u ∈ R | ‖u− µn(x)‖/σ(x) < zα/2
}

is the confidence in-
terval for the n-th output at x, and zα/2 is the corresponding
critical value of the standard normal distribution.

Fig. 3. Pointwise confidence multi-
valued map Fµ.

Step 3: Confidence
level of Morse Graph
and RoAs Let X be
a discretization of X
into cubes, V (X ) and
C(X ) be the collections
of corner (vertices)
and the center points
of the cubes in X ,
respectively. From a
trained GP with predictive
mean µ and covariance functions Σ generate the set
M(X ) := {(v, µ(v)) | v ∈ V (X ) ∪ C(X )} and let EδΣ(v)

be the confidence ellipsoid centered at µ(v) for v ∈ C(X ).

Note the dependence of EδΣ(v) on parameter δ, which can be
conveniently selected to maximize the confidence level to
provide an accurate representation of the global dynamics.

For a given confidence level 1 − δ, define a multivalued
map based on the trained GP as follows:

Fµ(ξ) :=
{
ξ′ | ξ′ ∩

(
EδΣ(v) ∪R(ξ)

)
6= ∅ for v ∈ C(ξ)

}
,

where R(ξ) is the smallest box containing {µ(v) | v ∈ V (ξ)}
and V (ξ) is the set of corner points (vertices) of ξ ∈ X , as in
Fig. 3. Fµ is refer as the pointwise confidence multi-valued
map. Note that, for every v ∈ C(X ), the map Fµ contains the
confidence ellipsoid centered at µ(v). Therefore, all cubes in
X have a pointwise confidence level of 1−δ at their centers.

Finally, use the multivalued map Fµ to compute the Morse
graph, the associated attractors and their RoAs. The CMGDB
library [41] and RoA implement topological computations
of MG and RoAs. In fact, assuming that the unknown φτ
dynamics is a realization of the GP, the multivalued map Fµ
captures any given realization of GP with a pointwise confi-
dence level of 1-δ at the center points of the discretization.

Step 4: Incremental Update After computing the RoAs
and the attractors, the accuracy in estimating the RoAs can
be further improved by iteratively collecting more data and
performing steps 2 and 3 again. The new data can be
randomly selected either in the whole state space or in the
RoA of the interested attractor and it has to be consistent with
the inital choice of the forward time τ . The former results
in a more accurate description of the global dynamics since
it decreases the overall uncertainty. The latter focuses on
increasing the accuracy of the desired RoA.

Properties and Contribution: The theoretical founda-
tions for this line of work can be found in prior publications
[37]–[40], where it is shown that a Morse Graph reflects the
global dynamics of any continuous system under assump-
tions aligned with those of Section III. When the system
dynamics are generated by the (continuous) predicted mean µ
of a GP, it is possible to incorporate the uncertainty estimate
of the GP to obtain confidence levels on the global dynamics
obtained by the Morse Graph [42]. Furthermore, under the
assumption of sufficient data, Fmin(ξ) ⊂ Fµ(ξ) for all
ξ ∈ X . Thus, the global dynamics obtained via Morse Graph
has a pointwise confidence level of 1− δ for identifying the
unknown dynamics. Relative to previous theoretical efforts,
this work contributes: a) greater efficiency by using pointwise
confidence guarantees as opposed to a global confidence
level; b) an adaptive strategy for selecting samples guided
by the Morse Graph and the GP; c) an effective solution for
2 to 4-dim. systems (relatively to 1-dim. examples in [42]);
and d) implementation and experiments on models of robotic
systems.

Discussion on Computational Cost: The cost of training
the GP model is O(M4N3), N the size of the dataset and
M the dimension of X . Computing the Morse Graph and
RoAs is O(V + E +G2) with V the number of vertices in
the directed graph Fµ, E the number of edges, and G the



size of the Morse graph (typically smaller than 32) 1. Thus,
the total computational cost is O((k+1)(M4N3 +V +E)),
with k the number of incremental updates performed (Step
4). The memory requirement is O(V + 2(MN)2), where
the predicted mean and variance of the GP model store two
matrices with total entries (MN)2 and the grid size is V .

VI. EXPERIMENTAL EVALUATION

The proposed framework, GPMG, is compared against al-
ternatives from the literature for different dynamical systems
and controllers (Table I). Section VI-A reports the following
metrics for each benchmark: (a) Accuracy of RoA estimation,
and (b) data efficiency, i.e., number of forward propagations
of the true dynamics needed. Section VI-B describes the
global dynamics and RoA discovered by GPMG.

Systems and Controllers: The 1D Quadrotor (Quad)
[45] is stabilized at a given height, generating trajectories
rolled out in the simulator. The Pendulum (Pend) is gov-
erned by m`2θ̈ = mG` sin θ − βθ + u, given mass m,
gravity G, pole length l, and friction coefficient β. The
Mountain Car (Car) is the continuous version of the popular
Reinforcement Learning (RL) benchmark [46]. Ackermann
(Ack) is a forward-only car-like first order system. Lunar
Lander (Land) [47] is governed by ẍ = −kṁm − g, with
k > 0 the velocity of exhaust gasses, mass flow rate ṁ ≤ 0,
and g = 1.62 moon’s gravity. The Two-link Acrobot (Acro)
[48] is controlled by a single torque between the links.

System X U Controllers
1D-Quadrotor[45] (z,ż) T Learned

Pendulum (θ,θ̇) τ Learned, LQR

Mountain-Car (x,ẋ) τ Learned

Ackermann [49] (x,y,θ) (γ,V )
Learned, LQR,

Corke

Lunar-Lander (h,ḣ,m) ṁ TOC

Acrobot [48] (θ1,θ2,θ̇1,θ̇2) τ2 Hybrid, LQR

TABLE I
SYSTEMS AND CONTROLLERS CONSIDERED IN THE EVALUATION.

LQR linearizes the system to compute a gain k used in the
control law u(xt) = −k·xt. A time-optimal controller (TOC)
for the lunar lander [47] achieves soft landing by having
a free-fall period and then switching to full-thrust until
touchdown. The learned controllers are Soft Actor-Critic
policy networks [50] trained to maximize the expected return
Ex0∼X [

∑τ
t=0R(xt)], where the reward function isR : X →

{0,−1}. R(xt) = 0 iff xt is within an ε distance from
the goal state and −1 otherwise. A hybrid controller takes
two (analytical or learned) controllers u1(x), u2(x), x ∈ X ,
and applies one controller in predetermined subsets of the
state space X1, X2 ⊂ X , i.e.: ẋt+1 = f(xt, u1) if xt ∈
X1, and f(xt, u2) if xt ∈ X2.

A. Quantitative Results

Comparison Methods: Two lyapunov-based analytical
methods (L-LQR and L-SoS) are used as comparison
(as in [21], [51]). Both use a linearized unconstrained
form of the dynamics [52] to obtain a Lyapunov function

1A detailed discussion of the computational costs can be found in [37],
[43], [44].

(LF). L-LQR uses the solution of the Lyapunov equation
vLQR(x) = xTPx while L-SoS computes the LF as
vsos(x) = m(x)TQm(x) where m(x) are monomials on
x and Q is a positive semidefinite matrix. L-SoS is im-
plemented with SOSTOOLS [52] and SeDuMi [53]. These
methods cannot be used with data-driven controllers (like
Learned) since closed-form expression is required. The
Lyapunov Neural Network (L-NN) [21] is a machine learn-
ing tool for identifying RoAs. The Morse graph (TopMG)
employs the topological tools described but without any use
of a surrogate model, instead it queries the true dynamics at
every vertex of the discretization [37].
RoA Estimations: An approximation of the ground truth
RoA for the goal is computed by considering a very high-
resolution grid over X , and forward propagating for a long
time horizon, or until the goal is reached. Table II presents
the ratio of the ground truth RoA volume identified by each
method for all benchmarks. With the exception of the Land
(TOC) benchmark, GPMG consistently estimates a larger ratio
of the RoA volume compared to alternatives.

Benchmark L-NN L-LQR/SOS TopMG GPMG

Quad (Learned) - N.A. - 1.0
Pend (LQR) 0.98 0.7 / 0.03 0.97 0.91

Car (Learned) - N.A. 1.0 1.0
Land (TOC) - N.A. 1.0 0.79

Ack (Learned) 0.91 N.A. 1.0 1.0
Acro (LQR) 0.89 0.27 / 0.26 0.96 1.0

Acro (Hybrid) 0.14 N.A. 0.99 1.0

TABLE II
ROA RATIOS FOR THE METHODS. BEST VALUES PER ROW IN BOLD.

Estimating larger ratios of the RoA, however, may also
lead to False Positives (FP) – incorrectly identifying a
volume of the state space as being in RoA. The optional
fourth step (Section V) of the proposed framework is crucial
to mitigate FPs. All other methods (L-NN, L-LQR, SOS
and TopMG), which require access to the true dynamics
model, have zero FP. GPMG falsely labels 0% − 2% of X
(Pend (LQR)) and 1%− 22% of X (Land (TOC)) as part of
the RoA. These cases are further discussed in Section VI-B.

Benchmark L-NN TopMG Ours: GPMG Dim
Quad (Learned) - - 25,000 2

Pend (LQR) 667.1M 6.6M 120,000 2
Car (Learned) - 6.6M 3,000 3
Land (TOC) - 1M 300,000 3

Ack (Learned) 704.6M 520M 10,000 3
Acro (LQR) 5.7B 1.1B 100,000 4

Acro (Hybrid) 533M 2.1B 2.5M 4

TABLE III
PROPAGATIONS REQUIRED. BEST VALUES PER ROW IN BOLD.

Data Efficiency: The data efficiency of methods requiring
access to the underlying dynamical system (L-NN, TopMG
and GPMG) is measured using the total propagation steps re-
quired to estimate the RoA (Table III). The data requirements
for GPMG are 2− 4 orders of magnitude less than TopMG
and 3− 5 orders of magnitude less than L-NN. The learned
controllers benefit the most from GPMG, as it provides, in all
cases, a good coverage of the RoA with significantly fewer
propagations and without FP (false positives).



Fig. 4. (Top) Left to right: Quad (Learned) RoA with confidence 12.5%,
associated Morse Graph, and RoA with confidence 95%. (Bottom) Left to
right: RoA of trained GP for Car, associated Morse graph, and RoA of the
true dynamics.

B. Qualitative case studies

1D Quadrotor: 100 random trajectories (average length
2.5s) that successfully reach the goal are used. To train
the GP, trajectories are decomposed into short segments of
τ = 0.3s, giving a dataset D = {(xi, yi) ∈ RM ×RM | yi =
φτ (xi)}800

i=1. For 12.5% and 95% confidence levels, GPMG
outputs an MG with 9 nodes. The attractor discovered by
GPMG shows the whole state space divided into two regions
represented by the left (nodes 1-3) and right (nodes 4-9)
parts of the MG. The trajectories of one region do not visit
the other. These regions represent the system approaching
the goal from above or below it. Node 0 (without leafs) of
MG represents the region (Fig 4, darkest color) where all
trajectories need to stabilize before reaching the goal region.

Pendulum: Initially, 300 random trajectories are used to
train the initial surrogate model. The initial corresponding
MG, RoAs and the σ are computed with 12.5% confidence
(Fig 5, left). The initial procedure results in False Postives
(FPs) that correspond to 2% of X . To decrease the number of
FPs, and to improve the accuracy of the estimated MG, Step
4 of the proposed framework is applied. 10 more samples are
randomly selected at the boundary of and inside the RoA of
the attractor of interest. When the procedure is repeated 90
times, a confidence level of 95% is obtained, and all FPs are
completely removed (Fig 5, right).

Mountain Car: GP is trained with 300 randomly sampled
trajectories, each with duration τ = 1s, the predicted σ is
small enough to use a confidence level of 95%. The resulting
MG (Fig 4 bottom) has two nodes and describes the expected
global dynamics given by TopMG.

Lander: GPMG relies on the assumption that the underly-
ing dynamical system φτ can be realized by a GP that uses
traditional kernels (Matérn, Exponential, and Logistic for the
sake of this discussion). The Lander benchmark violates this
assumption since the goal region is a line {(0, 0,m) | m1 ≤
m ≤ m2} and not a system attractor. When trained with
a Matérn kernel, GPMG obtains FP. Even with additional
data, the surrogate model does not satisfactorily capture the
underlying dynamics of the system.

Fig. 5. RoAs, Morse Set and Standard Deviation (left) of the initial surro-
gate model with 12.5% confidence. After sampling 900 more trajectories:
RoAs, Morse Set and Standard Deviation (right) with 95% confidence.

Ackermann: The GP is trained from 1000 randomly
sampled trajectories, each of duration τ = 1s. The pre-
dicted σ of the GP is small enough to consider the 95%
confidence level. GPMG outputs an MG with a single node
representing the system’s attractor, which exhibits periodic
behavior, agreeing with the global dynamics captured by
TopMG. Hence, with significantly less data requirements,
GPMG successfully captures the global dynamics information
(a torus-like shaped attractor). If longer trajectories (τ =
40s) are used, GPMG outputs a MG with a single node
representing the attractor (0.008% of X by volume) without
periodicity. This corresponds to the learned controller for
Ackermann first performing periodic oscillations around the
goal region before reaching it.

Acrobot: For both the Acro (LQR) and Acro (Hybrid)
benchmarks, the initial data collected used 1000 random
trajectories, each of duration 14s (LQR) and 25s (Hybrid).
In both cases, the MG has a single node, and the identified
attractor is a small set that contains the goal region. When ad-
ditional data is provided, the uncertainty of GPMG decreases,
but the size of the attractor does not change notably, and the
ratio of its volume of X remains unchanged.

VII. DISCUSSION

This work integrates surrogate modeling via GPs with
topology tools, achieving a data-efficient framework for
identifying the global dynamics (attractors and RoAs), even
for closed-box systems. Tests on different benchmarks show
the proposed method consistently identifying attractors with
larger RoA coverage and a significant reduction in data
requirements. A confidence level is also assigned to the
global dynamics representation output. This novel approach
allows the user to either work with a sparse dataset sacrificing
confidence level associated with the Morse Graph; or guide
the process for additional collection, increasing confidence
levels for the Morse Graph by training GPs with low
overall uncertainty. For dynamical systems that cannot be
realized via a GP with a traditional kernel (e.g., Lander),
non-conventional kernels can be explored to accommodate
irregular input domains and non-Gaussian outputs.

On the theoretical side, the rate of convergence of the
Morse Graph to the true dynamical system as a function
of incremental samples is unknown. The decreasing rate
of the overall standard deviation might provide insights to
estimate this rate of convergence. Finally, the application
to large and high-dimensional state spaces may still be
challenging although it is shown to be more data efficient
than alternatives. Possible strategies to mitigate this are non-
uniform state space discretizations, such as adaptive schemes.
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