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Abstract— Ultrasound imaging is a commonly used modality
for several diagnostic and therapeutic procedures. However, the
diagnosis by ultrasound relies heavily on the quality of images
assessed manually by sonographers, which diminishes the
objectivity of the diagnosis and makes it operator-dependent.
The supervised learning-based methods for automated quality
assessment require manually annotated datasets, which are
highly labour-intensive to acquire. These ultrasound images are
low in quality and suffer from noisy annotations caused by
inter-observer perceptual variations, which hampers learning
efficiency. We propose an UnSupervised UltraSound image
Quality assessment Network, US2QNet, that eliminates the
burden and uncertainty of manual annotations. US2QNet uses
the variational autoencoder embedded with the three mod-
ules, pre-processing, clustering and post-processing, to jointly
enhance, extract, cluster and visualize the quality feature
representation of ultrasound images. The pre-processing mod-
ule uses filtering of images to point the network’s attention
towards salient quality features, rather than getting distracted
by noise. Post-processing is proposed for visualizing the clusters
of feature representations in 2D space. We validated the
proposed framework for quality assessment of the urinary
bladder ultrasound images. The proposed framework achieved
78% accuracy and superior performance to state-of-the-art
clustering methods. The project page with source codes is
available at https://sites.google.com/view/us2qnet.

I. INTRODUCTION

UltraSound (US) is the most frequently employed medical
imaging modality in clinical practice due to its real-time
feedback, low-cost, portability, and non-ionizing nature. It is
useful for diagnosis, pre- and post-operative assessment, and
surgical interventions. However, the diagnosis by ultrasound
depends a lot on the image quality, which is determined
manually by sonographers during image acquisition [1].
Ultrasound images are quite difficult to interpret due to
noise, shadows, poor contrast, and other sensors and motion
artifacts [2]. The blurred boundaries and presence of mul-
tiple anatomical structures further increase the difficulty in
ensuring quality during acquisition. Thus, the requirement of
minimal manual effort and ensuring consistent quality among
novice sonographers during image acquisition has prompted
the research community to use automated methods for US
Image Quality Assessment (US-IQA).
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Fig. 1: A preview of the framework for US-IQA using
deep variational clustering. The circular clusters represent
the ultrasound image classification based on their quality.

The supervised learning-based methods using a deep Con-
volutional Neural Network (CNN) have shown promising
results in medical imaging analysis, including segmentation
and classification using curated and annotated large-scale
datasets [3]. However, the manual data annotation process is
quite difficult for US image quality, as the US images with
the same quality have significant differences and images with
significant differences in quality appear similar. Moreover,
the image quality annotation is noisy due to inter- and intra-
observer perceptual variations [4]. Thus, the annotation pro-
cess is often labour-intensive, time-consuming and requires
the participation of more than one expert radiologists, thereby
making supervised learning quite challenging for automated
US-IQA.

In this work, we propose an UnSupervised learning-based
UltraSound image Quality assessment Network, termed as
US2QNet, as shown in Fig. 1. The objective of the work is to
address the complexity and uncertainty in manual annotation
of US image quality by expert radiologists for supervised
learning. The key contributions of framework are as follows:

1) We proposed the first deep clustering framework for
US-IQA, which uses a variational autoencoder in
conjunction with pre-processing, clustering and post-
processing modules. The framework will jointly en-
hance, extract, cluster and visualize the quality feature
representation of US images.

2) We introduced US imaging-specific pre- and post-
processing modules in deep clustering. Pre-processing
uses fuzzy filtering to direct the network’s attention to-
wards the critical quality features. The post-processing
module generates the visualization of high-dimensional
quality feature representations in 2D space and pro-
vides an effective way to do hyperparameter tuning.

3) The proposed framework was validated and compared
to the state-of-the-art (SOTA) methods for urinary
bladder US images. The results revealed that the pro-
posed method is effective for unsupervised US-IQA
and outperformed the SOTA methods.
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The unsupervised deep clustering approach strategy has
previously been investigated mostly for natural images [5]–
[7], however, to the best of the author’s knowledge, this is
the first attempt to use this approach for the challenging task
of classifying the US images based on quality.

A. Related work

Supervised learning for US-IQA: The availability of
annotated medical images has motivated the researchers to
use supervised training of CNNs for automated analysis
of X-ray, Magnetic Resonance Imaging (MRI), and US
imaging [3]. For US-IQA, Wu et al. [8] proposed the two
deep CNNs for jointly finding the region of interest and
assessing the fetal ultrasound image quality. Lin et al. [9],
[10] used a multi-task faster regional CNN architecture
to first localize the six key anatomical structures of the
fetal head and then assigned the quality score based upon
their clear visibility. However, they employed prior clinical
knowledge to determine the relative position of anatomical
structures. In addition, the fetal US datasets in [8]–[10]
require substantial clinical expertise for labeling the region
of interest and anatomical structures with comparable
appearances such as stomach bubble, umbilical vein,
choroid plexus, and others. Moreover, the performance of
supervised IQA models is impacted by annotation noise due
to inter- and intra-observer perceptual variations [4].

Unsupervised learning for medical imaging: In order to
overcome the challenges of labour-intensive annotation in
supervised learning, different techniques of unsupervised
learning have been explored for medical imaging analysis
[11]. These techniques used traditional clustering methods
[12], modern methods like Autoencoder (AE), generative
networks [13], and Deep Clustering [14]. AE is one of the
most effective algorithms for unsupervised feature extraction
and compression to low-dimensional latent space while
minimizing the reconstruction error between the encoded
input and decoded output. They have been mostly used
for denoising and anomaly detection in medical images
[15]. In addition, Generative networks like Variational AE
(VAE) have also shown great potential for medical image
analysis [16]. They use variational loss during training and
enforce a predefined distribution in the latent space. A work
by Nesovic et al. [17] attempted to address the US-IQA
using AE combined with Random Forest Classifier (RFC).
However, RFC required noise-specific hand-crafted features
for quality classification, which are challenging to design
for noisy US images [2].

Deep clustering for image classification: Clustering is
another powerful unsupervised method to detect patterns in
non-labelled dataset. There exist several classical clustering
algorithms like k−means, Principal Component Analysis
(PCA), Density-Based Spatial Clustering of Applications
with Noise (DBSCAN) [18], Spectral clustering [19],
t-distributed Stochastic Neighbor Embedding (t-SNE) [20],
Uniform Manifold Approximation and Projection (UMAP)

[21]. However, they can’t handle high-dimensional data. In
recent years, deep clustering has gained the researcher’s
attention for unsupervised image analysis [5]–[7]. Deep
clustering uses classical clustering methods in conjunction
with AEs and VAEs to learn the clusterable representation
in latent space. This has been used for the categorization
of handwritten digits and face images [22], natural image
datasets [23], Magnetic Resonance Imaging [24], [25]
and Computed Tomography images [26]. Yu et al. [27]
proposed deep clustering for classifying thyroid cancer in
US images. Notably, the potential of deep clustering has not
yet been uncovered for US-IQA, which is quite challenging
to analyze due to the noise, artifacts, varying viewpoints,
low inter-class and huge intra-class variability [2].

II. METHODOLOGY

Fig. 2 depicts the overview of the proposed framework.
The framework is executed in three stages, which include:
(1) Training the VAE on the pre-processed dataset using
the reconstruction function as the loss function; (2) Fine-
tuning the VAE by jointly optimizing the reconstruction
loss and clustering loss for achieving clusterable quality
feature representation of US images; and (3) Dimensionality
reduction and visualization of learned feature representation
using UMAP. Later, we utilized HDBSCAN for assigning
labels to the clusters corresponding to the US image quality.

A. Variaional Autoencoder

VAE is the generative variant of AE, as it enforces the
encoder of AE to generate features representing a normal
distribution N (µ,σ) in the latent space. VAEs have shown
success in multi-class clustering due to their generative rep-
resentation capability. The VAE introduces and approximates
a latent variable z that follows a prior distribution p(z). The
model then infers a posterior distribution qϕ(z|x), and an
output of pθ(x|z), with encoder parameterized by ϕ and
a decoder parameterized by θ. Therefore, the objective of
variational inference is to precisely compute pθ(x|z) by
inferring the latent distribution from the observed dataset.
During training, a latent vector z is sampled from pθ(z),
and the decoder produces the parameters of pθ(x|z), which
we may use to sample an output vector x. The following
equation formulates the loss function of VAE as:

L(ϕ,θ;x) = Ez∼qϕ(z|x)[log pθ(x|z)]
+DKL(qϕ(z|x)||pθ(z)) (1)

where the first term is reconstruction error between
observed data and data decoded from the latent vector
and the second term is Kullback-Leibler (KL) divergence
between the distribution of observed data qϕ(z|x) and a
certain distribution pθ(z). The prior pθ(z) in VAE is often
modeled by a single multivariate Gaussian in VAEs [28].
Lin et al. [29] proposed using a mixture of Gaussian as
prior for unsupervised classification of the CIFAR Dataset
and achieved remarkable results. Inspired by their work, we
have used a mixture of Gaussian as prior pθ(z) for the latent
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Fig. 2: Overview of the US2QNet architecture for ultrasound image quality assessment using deep variational clustering.

space distribution representation to accurately describe the
structure of each cluster using a specific Gaussian.

Pretraining of VAE: During pre-training, we used
L(ϕ,θ;x) as the loss function (denoted as LV ) to optimize
the set of parameters θ∗ of VAE as

θ∗ = argmax
θ

L(ϕ,θ;x) (2)

B. Deep variational clustering

Several algorithms have been proposed for deep clustering
as described in Section I-A. Among them, Deep Embedded
Clustering (DEC) [5] is one of the most representative meth-
ods of deep clustering, which proposed joint optimization
of feature representation and clustering. In our framework,
we used VAE, in contrast to AE in [5] and embedded the
DEC module between the encoder and decoder. We used the
acronym DEC-VAE in the paper for this clustering approach.
The joint loss function is then given by the sum of VAE loss
(LV ) and clustering loss and is formulated as follows:

L = LV + γLC (3)

where LC is the clustering loss and γ is a coefficient used
to control the degree of distortion in the latent space.

Clustering loss: The clustering module works like a
validation set, where in each epoch, we used an auxiliary
target distribution Y t to iteratively correct the distribution
of predicted label assignments Y p. To define clustering
loss, we used the KL divergence to decrease the difference
between the Y t and Y p distribution as:

LC = DKL(Y
t||Y p) =

N∑
i

K∑
j

yt
ik log

yt
ik

yp
ik

(4)

where yp
ik denotes the probability of assigning cluster µk to

latent feature zi and yt
ik is the auxiliary target distribution.

The yp
ik is calculated using Student’s t-distribution as:

yp
ik =

(1 + ||zi − µk||2)−1∑
i(1 + ||zi − µk||2)−1

(5)

where µk is the initial cluster centroids and calculated by
performing standard k−means clustering. The target distri-
bution yt

ik is defined by the following equation:

yt
ik =

yp2

ik/
∑

i y
p
ik∑

i(y
p2

ik/
∑

i y
p
ik)

(6)

The clustering loss in eq. (4) is used to correct the weights,
representing cluster centers µK

k , and pivot the image latent
feature zi from a generative image representation to a
representation focused on discriminative quality features in
the latent space distribution. We have used three clusters
(K = 3) in our dataset representing three levels of US image
quality.

C. Post-processing

The post-processing module is used to visualize the feature
representation in 2D space, which provides an effective
way to analyze the model’s accuracy. The visualization of
clusters also played an important role in the selection and
iterative correction of the network hyper-parameters. After
fine-tuning the network weights, the latent space feature
vector is sampled from learned feature distribution as [z1 ∼
N1, · · · , zN ∼ NN ]. Then, the latent space feature vector of
dimension N is transformed to lower-dimensional space Ñ
as [z̃1, · · · , z̃Ñ ] for efficient clustering of features. Several
algorithms exist for dimensionality reduction and clustering
analysis like PCA, k−means, t-SNE, UMAP, and HDB-
SCAN, as discussed in Section I-A. Our exhaustive study
on different clustering approaches revealed that UMAP for
dimensionality reduction followed by HDBSCAN for label
assignment outperformed all other combinations. The UMAP
is chosen to ensure the efficient learning of manifold struc-
ture from a high-dimensional latent feature representation.
In addition, UMAP returns reproducible results which is not
the case in other dimensionality reduction methods like PCA.
The capability of HDBSCAN to preserve both global and
local density clusters while effectively separating overlapping
data makes it a desirable option for label assignment [30].



III. DATASET

Collection: The dataset consists of US images collected
during the feasibility study of our in-house developed
Telerobotic Ultrasound (TR-US) system [31], [32] at All
India Institute of Medical Sciences (AIIMS), New Delhi (a
public hospital and medical research university in India).
The AIIMS Ethics Committee approved the study (Ref. No.
IEC-855/04.09.2020,RP-16/2020). The study was conducted
between October 2021 and December 2021. Before the
scanning operation, informed written consent was obtained
from the volunteers, and their privacy was protected by
anonymizing their identifiers in the image. The dataset
consists of male urinary bladder US images, which is
used for discriminating the bladder shape, and identifying
diverticula, stones, malignant tumours, and free fluid (blood)
during trauma. The dataset is challenging to analyze, having
spurious textures and inter- and intra-subject variations.

Pre-processing: The deep learning models are quite
sensitive to noise in images, therefore ultrasound images,
which are often noisy, need to be filtered without affecting
the key diagnostic details and edges of anatomical
structures. In the pre-processing module, we employed two
US imaging-specific techniques for enhancing their quality
[33]. First, we used fuzzy modeling to distinguish noise
from edges and other diagnostic details in the image. We
used the fuzzy filter proposed in [34], which effectively
balances the degree of noise removal and edge preservation.
It used the fuzzy logic-based uncertainty modeling, which
acquires the statistical parameters (mean and variance) of
the local window Wl in the image to find its similarity with
non-local window Wnl. Then, the degree of similarity of
the similar local and non-local regions is computed using
euclidean distance as:

ds = ||Wl −Wnl|| (7)

Finally, the noise-free pixel of image p̃i is estimated using
the fuzzy centroid technique and is given as:

p̃i =
1∑n

j=1 wk

n∑
j=1

(pj × wj) (8)

where n is the count for similar local and non-local regions,
pj is the value of the central pixel of window Wj and wj

is the weight assigned to the most similar pixel, calculated
using Gaussian-shaped fuzzy function with zero means (µ =
0) and noise variance (σ2) as:

wk(ds;σ, µ) = exp
−(ds−µ2)2

2σ2 (9)

The fuzzy filtering will enable the network to extract
essential quality-related features rather than being distracted
by the noise in the US images. Second, we used the
sharpening filter, which emphasizes the boundaries of
anatomical structures by increasing the contrast between
the bright and dark regions of the US image [35], thereby
enhancing the overall appearance of the image. We used a 4-
neighbors laplacian filter: [[0,−1, 0], [−1, 5,−1], [0,−1, 0]],

to sharpen the US images. Finally, horizontal flipping is also
employed to augment the dataset and prevent the over-fitting
of the model on a small US dataset. This will mirror
the anatomical structures in the US images, as they can
appear on both sides of the transducer cone during scanning.

Testing dataset: The dataset consisted of total 1833
US images. We randomly split the dataset into training
and testing set with 90 : 10 ratio. We used the labelled
testing dataset, as shown in Fig. 3, to validate the proposed
framework. The labelling criteria is adopted from the
internationally prescribed 5-level quality assessment scale
[36]. Three radiologists with more than 15 years of
experience in abdomen radiology labeled the dataset. The
score assesses the image based on the diagnostic quality,
which depends on structural shape/size/placement and
acceptability of artifacts. We measured inter-rater reliability
with Intra-Class Correlation (ICC) [37] and obtained a high
value of 0.965, indicating excellent agreement. However,
the supervised US-IQA model in [38] achieved only 75.3%,
77.2%, and 76.3% accuracy with respect to three experts,
while accuracy for the average rating of three experts is
87.3%. These results reveal that inter- and intra-observer
perceptual variations pose challenges for supervised US-
IQA models. Further, we used Silhouette Coefficient (SC)
analysis [39] on the dataset to choose an optimal value
for the number of clusters. For 3 clusters, SC value was
0.7628, while for 4 and 5 clusters, it was 0.6381 and
0.5829, respectively. Therefore, we used three quality labels
for the testing set as Below Average (A−), Average (A)
and Above Average (A+), where A is collectively used for
images rated as 2 and 3; and A+ for images rated as 4 and
5 by experts.
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Fig. 3: Sample test set images with their quality labels
mentioned on the extreme left of each quality set.

IV. RESULTS AND ANALYSIS

A. Implementation details

The proposed model was implemented using Python 3.8
and Pytorch 1.11. The pretraining, training and testing
have been conducted using a Dell Workstation with Nvidia
GeForce RTX 3090 GPU having 24 GB of memory. We
used the greyscale images and resized them to 224 × 224,
and the training set included our pre-processed dataset. The
size of window W used for the fuzzy filter is 5 × 5. The
weights of the VAE have been learned in the pretraining
phase. The latent space dimension N is kept to 80 to extract



rich features in the latent space for efficient clustering. The
choice of latent space dimension has been decided iteratively
based on the clustering accuracy scores. The batch size used
is 128 with a learning rate of 0.01. For the fine-tuning phase,
VAE was trained by embedding the clustering module, as
described in Section II-B. The value of γ used in eq. (3) is
0.1. The batch size used is 64 and the learning rate is 0.005.
The model was trained for 200 epochs with early stopping
criteria, which is based on the stagnation of the loss function
values during training for 10 epochs.

B. Evaluation metrics

In order to validate the clustering quality of our model,
we used four evaluation metrics, namely Adjusted Random
Index (ARI), Adjusted Mutual Information (AMI), Unsuper-
vised Clustering Accuracy (ACC), and Normalized Mutual
Information (NMI) [40]. The value of these metrics varies
from 0 to 1, denoting the accuracy of clustering.

C. Pre-trained VAE analysis

We quantitatively analyzed the reconstruction of US im-
ages in the test set by the trained VAE using the Structural
Similarity Index Measure (SSIM) and Mean Square Error
(MSE), as shown in the table I. In order to analyze the effect
of pre-processing on extracting rich features from ultrasound
images, we also analyzed the reconstructed images without
the pre-processed dataset. The image with quality labels A
and A+ showed significant improvement in the scores due to
the enhancement of anatomical appearance features, thereby
enabling the network to focus on key quality features. The
image of quality A- has shown slight improvements in scores
due to the absence of anatomical structures in the views.

TABLE I: Quantitative comparison of testing set to analyze
the reconstruction by trained VAE.

Metric Without pre-processing With pre-processing
A- A A+ A- A A+

SSIM 0.90 0.85 0.81 0.91 0.93 0.93
MSE 11.01 12.89 13.64 10.34 9.80 9.95

D. Clustering performance analysis

Results with US Image dataset: We trained the model
on the entire US dataset and visualized the cluster for
183 test images using UMAP for dimensionality reduction
followed by HDBSCAN for label assignment. Fig. 4
demonstrates that the clusters generated after pretraining the
VAE has a lot of overlapping points, however, the model
is progressively getting better after fine-tuning the weights
with the clustering module, with the separation of clusters
being more evident along with the reduction in overlapping
data points. This change becomes quantitatively evident,
with a 32.8% increase in ARI, 25.2% in AMI, 32% in NMI
and 26.2% in ACC scores from the pretraining stage to
training with clustering module, as shown in Fig. 5(a).

Results with MNIST dataset: We also demonstrated
the effectiveness of the proposed model on the MNIST digit

A-
A

A+

Fig. 4: Clustering visualization of US dataset: (a) After pre-
training; and after embedding clustering module and training
till (b) epoch 70; (c) epoch 140; (d) epoch 200

dataset [41]. The values of evaluation matrices are shown in
5(b), which demonstrates similar improvements in clustering
as observed in the US dataset. Note that ultrasound-specific
pre-processing has not been used for MNIST.
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Fig. 5: Evaluation metrics comparison for (a) US and (b)
MNIST dataset after pre-training (PT) and then training with
clustering module.

E. Comparison with State-of-the-art methods

In this experiment, we compared our method with
five classical clustering methods, including the k−means,
t-SNE, UMAP, HDBSCAN and PCA with k−means
(PCA+k−means) as well as state-of-the-art DEC methods,
such as DEC-CAE with k−means, t-SNE and UMAP for
dimensionality reduction in post-processing. To compare the
DEC-VAE-based method with the AE versions, we used
similar versions referred to as DEC-VAE+k−means, DEC-
VAE+t-SNE and DEC-VAE+UMAP (US2QNet). The re-
sults are shown in Table II. It is noted that our proposed
method, US2QNet has obtained the highest performance on
US and MNIST dataset. It outperforms classical clustering
methods including k−means, t-SNE, UMAP, HDBSCAN
and PCA+k−means for the US dataset on the NMI score
by 65.1%, 54.9%, 56.9%, 59.9% and 64.0%, respectively.
The DEC-VAE with k−means, t-SNE and UMAP reports an
increase in NMI score in contrast to its corresponding ver-
sions of DEC-AE by 47.9%, 28.4% and 44.9%, respectively.
Similar improvements have also been noticed in ARI, AMI,
ACC and NMI on MNIST and US dataset, indicating that
the proposed method is effective in unsupervised US-IQA.



TABLE II: Comparison of clustering performance on US and MNIST dataset using SOTA classical and Deep Embedded
Clustering (DEC)-based methods.

Dataset Metrics k−means t-SNE UMAP HDBSCAN PCA
+k−means

DEC-AE
+k−means

DEC-AE
+t-SNE

DEC-AE
+UMAP

DEC-VAE
+k−means

DEC-VAE
+t-SNE US2QNet

US Images

ARI 0.296 0.385 0.384 0.374 0.366 0.487 0.502 0.547 0.532 0.619 0.882
AMI 0.245 0.394 0.379 0.335 0.389 0.393 0.410 0.446 0.545 0.637 0.821
ACC 0.342 0.389 0.384 0.326 0.360 0.536 0.627 0.673 0.587 0.742 0.783
NMI 0.287 0.371 0.354 0.330 0.296 0.288 0.419 0.453 0.553 0.585 0.823

MNIST

ARI 0.570 0.468 0.386 0.438 0.546 0.596 0.834 0.868 0.556 0.887 0.896
AMI 0.595 0.466 0.547 0.346 0.528 0.623 0.694 0.845 0.619 0.870 0.897
ACC 0.546 0.834 0.846 0.569 0.468 0.799 0.857 0.847 0.821 0.715 0.853
NMI 0.502 0.825 0.842 0.532 0.540 0.725 0.704 0.886 0.796 0.860 0.883

The performance of different clustering methods for the US
image dataset is visualized in Fig. 6. The results show that
the clusters generated by the proposed method (Fig. 6(d))
are more evenly distributed and individually closely packed
than the other classical and DEC-based approaches. Further,
we calculated the ACC values for 4 and 5 clusters, resulting
in 0.543 and 0.542 respectively. From this, it can be asserted
that the proposed framework is appropriate for 3 clusters.

A-
A
A+ A+

A
A-

A-
A
A+A+

A
A-

Fig. 6: Visualization of clustering obtained using (a) UMAP;
(b) t-SNE; (c) DEC-AE+UMAP; (d) DEC-VAE+UMAP
(US2QNet) for US dataset.

F. Ablation study
To analyze the contribution of different components of the

proposed method in enhancing the clustering of US image
quality, we performed the ablation study of our model. The
results are reported in Table III. We compared the proposed
method with Pre-Processing (PP) only and with Pre-Training
(PT) only. The metric used in the plot is ACC. It is evident
from the figure that PP and PT modules have contributed to
enhancing the performance of the proposed method. Without
PT and PP modules, the ACC value is 0.544. The model
with only pre-processed dataset without pre-training has an
ACC score of 0.569, while using the pre-trained VAE and
unprocessed dataset, the model reported an ACC score of
0.643. However, with the introduction of PP along with PT,
the score impressively increased to 0.783.

G. Real-time implementation
We have integrated the US2QNet with the ultrasound

machine in order to evaluate its real-time efficacy. The US

TABLE III: ACC scores for ablated versions of US2QNet
with and without pre-processing (PP) and pre-training (PT)

without PT, PP with PP only with PT only with PT and PP

0.544 0.569 0.643 0.783

video is captured by the Sonosite M-TURBO ultrasound
machine and is transferred to the GPU laptop using Epiphan
DVI2USB 3.0 (Epiphan Video, Canada). The manual scan-
ning of the pelvic region is conducted, as shown in Fig. 7. It
has been found that US2QNet efficiently evaluates the quality
of US images per frame in 0.0552 seconds. The sonographer
found it to be a useful tool for assisting the novice operator in
conducting the procedure, however, they would like the range
of quality scoring to be increased as per clinical protocols
for precisely guiding the probe maneuvers.

A+
Quality 
scoreUltrasound 

Probe

Ultrasound 
Machine

Fig. 7: Real-time implementation of US2QNet for assisting
the manual ultrasound procedure

V. CONCLUSION AND FUTURE WORK

We introduced the first-of-its-kind UltraSound Image
Quality Assessment (US-IQA) using unsupervised learning.
This will alleviate the burden and uncertainty associated
with manual annotation of US image quality for supervised
learning. The proposed model, US2QNet, leverages the vari-
ational autoencoder in conjunction with three modules, pre-
processing, clustering and post-processing for effectively en-
hancing, classifying and visualizing the quality features rep-
resentations of US images. The validation on urinary bladder
US images demonstrated that the proposed framework could
generate clusters with 78% accuracy and performs better than
state-of-the-art methods. We hope our preliminary results
will generate the community’s attention towards this efficient
but previously ignored topic of unsupervised US-IQA. In
future, we would aim for an end-to-end DNN framework
without pre-processing. Further, we would incorporate an
automatic selection of quality clusters rather than fixing them
beforehand. Additionally, our future work will demonstrate
the applicability of the proposed framework for assisting
autonomous robotic ultrasound [31].
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