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Abstract— Developing embodied agents in simulation has
been a key research topic in recent years. Exciting new tasks,
algorithms, and benchmarks have been developed in various
simulators. However, most of them assume deaf agents in
silent environments, while we humans perceive the world with
multiple senses. We introduce SONICVERSE, a multisensory
simulation platform with integrated audio-visual simulation
for training household agents that can both see and hear.
SONICVERSE models realistic continuous audio rendering in 3D
environments in real-time. Together with a new audio-visual VR
interface that allows humans to interact with agents with audio,
SONICVERSE enables a series of embodied Al tasks that need
audio-visual perception. For semantic audio-visual navigation
in particular, we also propose a new multi-task learning model
that achieves state-of-the-art performance. In addition, we
demonstrate SONICVERSE’s realism via sim-to-real transfer,
which has not been achieved by other simulators: an agent
trained in SONICVERSE can successfully perform audio-visual
navigation in real-world environments. Sonicverse is available
at: https://github.com/StanfordVL/Sonicverse,

I. INTRODUCTION

Future household robots should be able to see, hear, and
follow voice instructions from humans. They should find
their way around your home, go where you need them, and
fetch the desired object at your command. For example, a
robot should be able to locate the owner by its voice and
follow the speaker, go to the kitchen to attend to an accident
when hearing a cracking sound, and deliver a bottle of water
when hearing your request from the bedroom.

An increasing amount of work in embodied Al has thus
studied visual navigation, where an agent must use its ego-
centric visual stream to intelligently move around, explore a
new space that has not been mapped before, and navigate to
its goal. The goal can be specified by a point [1], [2], [3],
[4], an object [5], [6], [7], or a room [8]. Many state-of-the-
art simulators [2], [9], [10], [11], [12], [13], [14], [15], [16],
[17] are also designed for developing embodied Al agents to
tackle various challenging tasks.

Despite the encouraging progress, there is a salient missing
ingredient—the environment is silent, and the agents cannot
hear. Limited prior work has tackled embodied learning with
audio [16], [18], [19], [20], [21], [22]: SoundSpaces [16]
and ThreeDWorld [13] are two notable exceptions. However,
SoundSpaces uses a separate audio dataset of pre-computed
room impulse responses at a discrete grid of spatial locations
with a pre-defined height, which prevents sampling data
at new locations; ThreeDWorld supports continuous-space
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audio rendering, but it assumes a box-shaped approximation
for modeling 3D environments, which limits its realism.

We introduce SONICVERSE, a new multisensory simu-
lation platform for training audio-visual embodied agents
that overcome these limitations. Not only can SONICVERSE
render audio over a continuous space in real-time, but it also
achieves high fidelity spatial audio rendering by using the
complete scene geometry and material properties. As shown
in Figure [T} we can attach semantically meaningful sounds
to existing object assets or rooms in a 3D environment (e.g.,
water tap sound in the kitchen), and have agents serve as
listeners who can receive the transmitted audio in space.
Furthermore, we also support audio streaming with a Virtual
Reality (VR) interface, enabling many potential applications
for voice-driven human-robot interaction. For example, we
can instantiate a person wearing the VR headset as an audio-
visual avatar in the simulated environment. The person can
issue a voice command, and the robot can locate its position
from the spatial cues of the binaural audio it receives, and
navigate to the person as instructed.

As a case study, we tackle the semantic audio-visual navi-
gation task with continuous audio, and use our SONICVERSE
simulation platform as a testbed for training navigation
agents. We propose a multi-task learning framework for both
audio-visual navigation and occupancy map prediction. The
goal of occupancy map prediction is to infer occupancy (free
or occupied) for unseen regions based on the audio-visual
context. Our key insight is that these two tasks are mutually
beneficial: the better the audio-visual state feature learned for
navigation, the more useful it is for occupancy prediction; the
prediction of occupancy in turn regularizes the learning for
audio-visual navigation. We also train a model for audio-
goal navigation and successfully deploy agents trained in
simulation to real-world environments.

Our contributions are threefold. First, we introduce SON-
ICVERSE, a new multisensory simulation platform that mod-
els continuous audio rendering in 3D environments in real-
time, providing a new testbed for many embodied AI and
human-robot interaction tasks that need audio-visual percep-
tion. Second, we introduce a multi-task learning framework
for semantic audio-visual navigation and occupancy map
prediction, which achieves state-of-the-art results. Third, we
are the first to show that audio-visual navigation agents
trained in simulation can be successfully deployed in real-
world environments.
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Fig. 1: Illustration of our SONICVERSE simulation platform. We visualize the top-down map of a 3D environment we support
for spatial audio rendering. The source audio can either be a sound coming from a semantically meaningful object or room
(e.g., water tap sound in the kitchen), or a voice from a person wearing the VR headset. The agent in the environment
can act as a listener to receive directional information about the sound source and perform tasks that require audio-visual
perception. An audio-visual embodied agent trained in SONICVERSE’s environments can also generalize to their real-world
counterparts (a TurtleBot with a binaural microphone shown on the left).

II. RELATED WORK

Embodied AI Simulators. A series of well-designed
simulation environments and benchmarks have been in-
troduced for embodied AI research in the past several
years: Habitat [2], [23], iGibson [10], [17], AI2Thor [24],
RoboTHOR [11], Sapien [9], Robosuite [14], Virtual-
Home [12], RLBench [15], Meta-World [25], etc. These sim-
ulators above have enabled many new tasks and possibilities
for training and developing embodied agents. However, none
of them support multisensory perception.

The simulators that are most related to ours are
SoundSpaces [16] and ThreeDWorld [13], each with dis-
tinct features and limitations. SoundSpaces can only render
sounds at a discrete grid of spatial locations where the pre-
computed room impulse responses are available; ThreeD-
World assumes a user-specified box-shaped approximation of
rooms for rendering spatial audio, which limits its realism.
Our SONICVERSE simulator can both render continuous
audio in 3D spaces in real-time, and achieve high realism
by using the complete scene geometry and surface material
properties. Concurrent with our work, SoundSpaces 2.0 [26]
also supports on-the-fly continuous audio rendering. While
their platform focuses more on supporting visual-acoustic
learning and simulation results, we are the first to show that
agents trained in a simulator can be successfully deployed
in real-world environments for audio-visual navigation.

Visual Navigation. Significant progress has been made in
the realm of visual navigation in recent years. Given the
visual sensory data from onboard sensors, an embodied agent
is tasked to reach a point-goal [1], [2], [3], [4], object-
goal [5], [6], [7], [27], or room-goal [8], or to follow
language instructions [28], [29], [30]. Some methods [3],
[31] perform end-to-end training with implicit memory struc-
ture to predict actions directly from pixels, whereas others
leverage semantic priors [6] and explicit memory structure
like metric or topological maps [30] to facilitate navigation.

Most existing visual navigation research is conducted without
audio, an important gap that SONICVERSE aims to fill in.

Embodied Audio-Visual Learning. Recent work uses both
vision and audio for a variety of embodied Al tasks, such
as audio-visual navigation [16], [18], [19], [20], floor plan
reconstruction [21], representation learning [22], curiosity-
driven exploration [32], [33], or object-centric learning [34],
[35]. Our work offers a new testbed to support these em-
bodied Al tasks that require audio-visual perception, and we
also perform a case study on the audio-visual navigation task
to demonstrate the usefulness and realism of our simulator.

Audio-Visual Learning from Videos. Videos inherently
contain both sights and sounds. Recent inspiring work
leverage both modalities for a variety of interesting tasks,
including self-supervised representation learning [36], [37],
[38], [39], audio-visual source separation [40], [41], [42],
[43], [44], sound source localization in images [37], [45],
[46], [47], and spatial audio generation [48], [49], [50].
Unlike any of them, our work aims to enable embodied Al
tasks that require audio-visual perception.

III. THE SONICVERSE SIMULATION PLATFORM

We introduce SONICVERSE, a new embodied Al simulation
platform that supports audio-visual perception. SONICVERSE
is built on top of iGibson 2.0 [17], which is an open-source
interactive simulation environment for fast visual and physics
simulation with a focus on household tasks. We augment
it with the powerful open-source spatial audio SDKE| of
Resonance Audio [51] to enable audio-visual perception of
the agents. Below, we introduce the main components of
audio simulation, the 3D environments, and the key features
of our SONICVERSE simulation platform.

A. Acoustic Simulation

We begin with the main components of audio simulation
in SONICVERSE. Please see Supp. video for a demonstration.

Ihttps://github.com/resonance-audio
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Fig. 2: Tllustrations of task prototypes enabled by our audio-visual virtual reality interface. See Supp. video for demos.

Direct Sound. Direct sound represents the sound that travels
from the source to the listener without being obstructed or
reflected by the environment. This component is attenuated
as the distance between source and listener increases, as
the energy of direct sound falls exponentially with distance.
We also render near-field effects to get the most physically
correct amplitude boost (including low-frequency boost) of
a near-field source.

Dynamic Occlusion. Physical obstructions between the
source and the listener attenuate the sound rendered to the
listener by means of an occlusion node in Resonance Audio,
which blocks high frequencies more than low frequencies to
mirror real-world occlusion effects. At each simulation step,
we calculate the number of objects that lie on a ray between
the source and the listener, and attenuate the received audio
accordingly.

Early Reflections and Late Reverberations. We initialize
a user-specified number of reverb probes in the scene. These
probes are uniformly spread throughout the scene, and we
run a pre-simulation reverb-baking process by raycasting
from each probe and measuring the characteristics of the
early and late ray reflections. These properties vary de-
pending on the size and shape of the immediate area as
well as the material properties of the surfaces in the scene.
Since these properties are pre-computed for each probe and
are not updated dynamically, we perform the reverb-baking
process on a version of the mesh that contains only the static
structures of the scene. During simulation, SONICVERSE
uses the reverb probe that is closest to the listener and
renders reverberation effects by taking advantage of the pre-
computed rt60s. Early reflections are rendered on-the-fly by
also taking into account the listener’s position relative to the
probe, using a box-shaped approximation of the room. This
different treatment of simulating early reflections and late
reverberations allows both realistic geometry-based spatial
audio rendering and real-time performance.

Head-Related Transfer Functions (HRTFs). Humans
physically locate sound sources by taking advantage of time
and level differences between the sound perceived by each
ear. We utilize the HRTFs that incorporate these effects for
rendering realistic binaural audio for the listeners.

B. 3D Environments

Though built on top of iGibson 2.0, SONICVERSE is flexible
and supports two datasets of 3D scenes: Matterport3D [52]
and iGibson [10]. We discuss their characteristics and how
we configure them for audio-visual simulation below.

Matterport3D [52]: We use 85 large Matterport3D scenes
of real-world homes and other indoor environments with
517m? of floor space on average. Since Matterport3D scenes
are static, we use the entire scene when performing reverb-
baking. To do so, we map the semantic mesh categories to
Resonance Audio material types (e.g., “wall” maps to “con-
crete block, painted”, “curtain” maps to “curtain, heavy”),
which determine the acoustic properties of the room surfaces
such as scattering and absorption coefficients. This enables
realistic reverberation and early-reflection modeling when
raycasting from points in the scene.

iGibson [10]: We use 15 fully interactive scenes of
real-world homes with furniture and articulated objects. As
objects in iGibson scenes are movable, we only use the static
skeleton of the scene to perform reverb-baking. This involves
mapping the walls and ceiling to “concrete block, painted”,
assigning windows to “glass”, and floors to “wood panel”.

C. Key Features

Next, we introduce the two key features of SONICVERSE: the
audio-visual Virtual Reality (VR) interface and the capability
of Sim2Real transfer. Then we highlight our main differences
against the two state-of-the-art audio-visual simulators.

Audio-Visual Virtual Reality Interface. We augment the
VR interface from iGibson 2.0 [17] with streaming au-
dio support, which is compatible with major commercially
available VR headsets through OpenVR [53]. It enables the
embodiment of a person wearing the VR headset as an
audio-visual avatar and allows an agent to hear human-
voiced commands in VR, opening many possibilities for
human-robot interaction tasks with audio-visual perception.
In Fig. 2| we illustrate three task prototypes enabled by our
audio-visual VR interface: 1) Speaker following, where the
agent needs to follow a person’s voice and move together
with the target person; 2) Voice-driven object retrieval, where
the agent needs to receive the voice command from a person,
sense its location from the binaural audio cues, fetch the
right object as instructed, and finally deliver the object to
the person who issues the command; 3) Auditory orientation
training for blind people, where a blind person wears the
VR headset and practices auditory orientation perception by
navigating to the sound source in virtual environments. See
Supp. video for demos of these applications.

Sim2Real Transfer. We use a TurtleBot as the embodied
agent in our simulator, and we set up its real-world coun-
terpart as shown in Fig. [3] We mount a 3Dio FS binaural
microphone on the real TurtleBot and use a Tascam audio



"

3Dio N
Binaural Mic [G
Tascam s
Audio Interface
Intel NUC Cellphone
ringing

TurtleBot

Fig. 3: Sim2Real set-up of a TurtleBot equipped with a
binaural microphone in a real-world environment.

interface to process the received audio. The TurtleBot is
equipped with an Asus XTION PRO RGBD camera, and
an onboard Intel NUC. This allows us to verify that our
audio simulation is realistic, such that the policies learned in
SONICVERSE can be transferred to real-world environments.

Comparing to State-of-the-Art Audio-Visual Simulators.
In comparison to SoundSpaces [16], a key advantage of our
simulator is that it integrates audio and visual simulation
by having sounds attached to dynamic objects in the scene.
For example, given a loudspeaker playing music in the
scene, an agent moving the speaker would hear the audio
source move concurrently. Moreover, our interactive scenes
allow for dynamic occlusion, making the sound intensity
increase or decrease in response to the opening or clos-
ing of a door, for example. Our simulator also renders
audio over a continuous space, whereas SoundSpaces uses
a grid of discrete rendering points throughout the scene.
ThreeDWorld [13] also uses a built-in version of Resonance
Audio in UNITY, though with a user-specified box-shaped
approximation. Our implementation achieves higher realism
by using the complete scene geometry and automatically
mapped materials for reverb-baking. We also demonstrate
sufficient audio rendering fidelity for successful Sim2Real
transfer. ThreeDWorld does not support spatial audio ren-
dering for VR, though it does support basic sound rendering
without advanced spatialization. We do not directly model
object impact sounds as in ThreeDWorld, but SONICVERSE
supports the integration of existing multisensory object assets
with pre-computed audio simulation [34], [35].

IV. TRAINING AUDIO-VISUAL EMBODIED NAVIGATION
AGENTS IN SONICVERSE

SONICVERSE supports many embodied Al tasks that require
audio-visual perception. We tackle the challenging seman-
tic audio-visual navigation [20] task as a case study to
demonstrate the usefulness of our simulator. This is a more
challenging version of audio-goal navigation [16], [18], in
which an agent must locate a consistently-sounding source.
In semantic audio-visual navigation, objects make sounds
consistent with their real-world counterparts (e.g., doors
make creaking sounds), and these sounds only last for a short
period of time. The agent must therefore be able to localize
the sound source well after it has stopped emitting sound,
perhaps by leveraging the learned knowledge about which
objects can emit certain sounds.

Task Definition. In this task, an agent is required to navigate
to a specific semantically meaningful object in an unseen and
unmapped environment by hearing the sound emitted by that

object. The sound can be non-periodic, discontinuous, and
of varied length. To reach the target object, the agent has to
reason about the semantic category of the sounding object
as well as the binaural spatial cues from audio perception.
We use a TurtleBot as the agent for our experiments. We use
15 semantically meaningful sounds used in [20], including
the sounds from the sink, cushion, tv, shower, etc. Each
sound is one-to-one mapped to a specific target category.
To be considered successful, the agent needs to locate the
target position even after the sound stops, and navigate to
the specific target object that was making the sound instead
of any objects within the category.

Action and Observation Spaces. In contrast to the task’s
existing specification [20], which uses a discrete set of fixed-
step translations and rotations, we use a continuous action
space over robot wheel velocities. This makes the task setting
more realistic and challenging, and more applicable to real-
world robotics settings. The agent’s observations include an
RGB image, a depth map, the binaural audio received at its
two ears, a bump sensor input, and its current pose with
respect to the starting location.

Episode Specification and Success Criterion. Each
episode is defined by the following: the scene, the start
position and orientation of the agent, the target category,
a target object within the category, and eight positions
sampled within one meter of the target object position,
which are considered as the nearby locations that define
the object boundary. The agent is considered to meet the
success criterion when it reaches any of the nine terminal
positions: the eight positions near the target and the original
target object position. The distance tolerance for reaching the
terminals is 0.36m, which is the width of the real TurtleBot.

Audio-Visual Navigation Model. We propose a multi-
task learning framework to jointly learn for semantic audio-
visual navigation and occupancy map prediction, as shown
in Fig. f] At each time step ¢, the agent receives egocentric
visual observation consisting of an RGB image and a depth
map, and binaural audio at the agent’s left and right ears
represented as a two-channel audio spectrogram. We extract
the visual and audio features from the visual encoder and
the audio encoder, respectively.

For semantic audio-visual navigation, we adopt the base
architecture from SAVi [20], adapted from the scene memory
transformer network [54]. It mainly consists of two compo-
nents: 1) Goal Predictor, which takes the audio feature and
the agent’s current pose as input to predict a goal descriptor
that contains information about the sound source location
and the object category of the sound; and 2) Audio-Visual
Transformer, which uses a memory module to encode the
agent’s observations and uses a self-attention mechanism to
reason about the 3D environment seen so far. The decoder
of the transformer takes the output of the goal predictor and
the encoded observations in its memory, and predicts the
state feature s;, which is then fed to an actor-critic network
for predicting the next action a;. We follow the two-stage
training paradigm in [20] using decentralized distributed
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Fig. 4: Our multi-task learning framework for audio-visual navigation. We propose to jointly learn to predict the occupancy
maps and the next action to reach the goal as the agent navigates in the environment. The two tasks are mutually beneficial.
The better audio-visual state features s, learned for navigation, the more useful they are for occupancy prediction; the
prediction of occupancy in turn regularizes the training for audio-visual navigation.

proximal policy optimization [3].

For occupancy map prediction, we formulate it as a pixel-
wise classification task, following [55]. We represent the ego-
centric occupancy as a top-down map p € [0, 1]V *", which
comprises a local area of V' x V cells in front of the camera
that represents a region of Sm x 5m. The value in each
cell represents the probability of the cell being occupied.
The ground-truth local occupancy is obtained by using the
3D meshes of the corresponding indoor environments. We
use a U-Net [56] for occupancy map prediction. The input
to the encoder is the local occupancy map obtained from
depth projection by setting height thresholds on the point
cloud obtained from depth and camera intrinsics [57]. We
then replicate and tile the state feature vector to match the
spatial dimension of the feature maps, and concatenate along
the channel dimension for the last three layers of the encoder.
The decoder then takes the fused feature map as input and
outputs the predicted local occupancy map through a series
of up-convolutional layers for both the visible and invisible
cells. We use the binary cross-entropy loss for training the
occupancy anticipation network.

Our occupancy map anticipation module is similar to
prior methods in robotics and embodied visual navigation
that build continuous representations of the world [58],
[59], [60], [61], [55]. However, we jointly learn occupancy
anticipation and audio-visual navigation, with the new insight
that predicting accurate occupancy maps helps to learn better
audio-visual features useful for navigation.

V. EXPERIMENTS

We show our experiment results on audio-visual navigation,
and how we transfer agents trained in our SONICVERSE
simulator to real-world environments.
Baselines. We evaluate on audio-visual separation and com-
pare to a series of baseline methods [16], [19], [18], [20]:
o Random Agent: A baseline that randomly samples an
action at each time step and automatically stops after
the agent reaches its goal.

o Gan et al. [18]: A map-based approach that predicts the
goal location from audio and then has the agent navigate
to the predicted location with an analytical path planner.

e Chen et al. [16]: An end-to-end approach for training
RL navigation agents that leverage audio-visual obser-
vations, and it uses a GRU RNN to encode past memory.

e SAVi [20]: A state-of-the-art semantic audio-visual nav-
igation model that uses a goal descriptor network to
provide both location and object category information to
the agent, and uses a transformer-based policy network.

Metrics. We evaluate using the following metrics [16], [20]:
1) success rate (SR), which is the fraction of successful
episodes; 2) success weighted by (normalized inverse) Path
Length (SPL) [62], which is success times the ratio of the
agent’s path length to the shortest path; 3) success weighted
by the inverse of the number of actions (SNA), which
penalizes collisions and in-place rotations. Results for all
metrics are obtained by averaging over 1,000 test trails.

Semantic Audio-Visual Navigation. We use the iGibson
dataset and the Matterport3D dataset for evaluation. On
both datasets, we evaluate under two settings following the
evaluation protocols from [16], [20]: 1) heard sounds—
train and test on the same sound in unseen environments,
and 2) unheard sounds—train and test on disjoint sounds
in unseen environments. Table [l shows the results. Our
model significantly outperforms prior audio-visual navigation
methods that do not take the semantic meaning of objects
into consideration: Gan et al. [18] and Chen et al. [16].
This shows that our model successfully learns to match
object categories with their sounds and leverage the semantic
cues to navigate to the goal more efficiently. Compared to
SAVi [20]—the state-of-the-art model for semantic audio-
visual navigation, our multi-task learning framework con-
sistently outperforms it across all metrics on both heard and
unheard sounds, demonstrating the benefit of jointly learning
to predict occupancy maps during navigation.

Fig. [5 shows the navigation trajectories on top-down



iGibson Matterport3D
Heard Unheard Heard Unheard
Model SR SPL SNA | SR SPL SNA | SR SPL SNA | SR SPL SNA
Random Agent 24 24 1.2 24 24 1.2 1.5 1.5 1.2 1.5 1.5 1.2
Gan et al. [18] 12.1 9.2 8.9 5.0 3.9 2.9 59 38 3.5 4.1 3.5 2.7
Chen et al. [16] | 41.2 390 9.7 |242 220 48 | 181 171 52 | 100 94 2.3
SAVi [20] 530 474 99 |435 379 93 |279 268 732|224 206 4.7
Ours 60.2 536 138 | 471 419 106 | 384 377 105 | 324 294 74

TABLE I: Semantic audio-visual navigation results on the iGibson dataset and the Matterport3D dataset. Our proposed
multi-task learning framework compares favorably against the closest competitor SAVi, the current state-of-the-art method.
It outperforms all other baselines that do not consider the semantic meaning of the objects by a large margin.

Chen et al.
- —— Agent path

— Shortest path
O Target object

Start location

Fig. 5: Navigation trajectories on top-down maps for semantic audio-visual navigation. Chen et al. [16]: The agent gets lost
near the entrance of the dining room after the sound stops. SAVi [20]: The agent struggles to avoid the obstacles and takes a
long path to reach the goal. Ours: The agent successfully avoids all obstacles and efficiently navigates to the target object.

maps in a challenging scene of our model and two baseline

X SR SPL SNA
methods. The agent of Chen et al. [16] does not consider the -
semantic meaning of the sound source, and thus gets lost near AudioGoal 30.0 222 5.5
AudioPointGoal 50.0 31.5 24.6

the entrance of the dining room after the sound stops. The
SAVi agent can successfully navigate to the goal, but it takes
a much longer path compared to our method. Our agent can
better sense the obstacles and the sound that travels through
the door—potentially due to better audio-visual state features
learned jointly with occupancy anticipation—and efficiently
navigate to the target object (sink).

Sim2Real Transfer. To demonstrate the realism of our
SONICVERSE simulator, we transfer the audio-visual naviga-
tion agents trained in simulation to real-world environments.
To ease Sim2Real transfer, we train an AudioGoal navigation
agent that only uses depth and audio for navigation, and an
AudioPointGoal navigation agent that additionally takes as
input a GPS pointer towards the target [16]. We use ROS’s
built-in GMapping SLAM algorithm to obtain the TurtleBot’s
pose as a replacement of the GPS used during training.

During our real-world deployment, we find three steps
essential to reduce the Sim2Real gap for successful policy
transfer. First, since the TurtleBot makes ego-noise during
movement, we record the sounds of the robot moving in
various environments, and mix the source sound with a
random segment of the noise recording during training.
Second, we also randomly vary the source gain as additional
data augmentation due to the mismatch of the sound volume
in simulation and real-world experiments. Third, we calibrate
the depth camera to the range of 0.8m-3.5m to be consistent
with the setting in simulation.

Table [ shows the Sim2Real results in the bedroom
shown in Fig. 3] We perform 10 test trials with different
robot starting locations or sound source locations. We can

TABLE II: Sim2Real results for audio-visual navigation.

see that both models transfer reasonably well to the real
world, and AudioPointGoal has a higher success rate due
to the additional target pointer that complements the audio
signal. To our best knowledge, this is the first result that
shows audio-visual navigation policies trained in simulation
can be successfully transferred to real-world environments,
demonstrating the realism of our multisensory simulation.
See Supp. video for qualitative examples.

VI. CONCLUSION

We presented SONICVERSE, a multisensory simulation plat-
form for training household agents that can both see and
hear. Our simulator can render continuous audio in 3D
environments in real-time and also support audio streaming
with VR, providing a new testbed for many embodied Al
tasks that need audio-visual perception. Using the audio-
visual navigation task as a case study, we propose a new
model for semantic audio-visual navigation, outperforming a
series of prior methods. Furthermore, we successfully deploy
agents trained in simulation into real-world environments.
We look forward to the embodied multisensory learning
research that will be enabled by SONICVERSE.
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