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Abstract—Assistance during eating is essential for those with
severe mobility issues or eating risks. However, dependence on
traditional human caregivers is linked to malnutrition, weight
loss, and low self-esteem. For those who require eating assistance,
a semi-autonomous robotic platform can provide independence
and a healthier lifestyle. We demonstrate an essential capability
of this platform: safe, comfortable, and effective transfer of a
bite-sized food item from a utensil directly to the inside of a
person’s mouth. Our system uses a force-reactive controller to
safely accommodate the user’s motions throughout the transfer,
allowing full reactivity until bite detection then reducing reac-
tivity in the direction of exit. Additionally, we introduce a novel
dexterous wrist-like end effector capable of small, unimposing
movements to reduce user discomfort. We conduct a user study
with 11 participants covering 8 diverse food categories to evaluate
our system end-to-end, and we find that users strongly prefer our
method to a wide range of baselines. Appendices and videos are
available at our website: https://tinyurl.com/btICRA.

Index Terms—Physical Human Robot Interaction, Physically
Assistive Devices, Human Robot Collaboration

I. INTRODUCTION

Robots have the potential to assist people in many aspects
of their daily lives. Eating is an integral part of our day, and
yet millions of people, from young children to hospitalized
patients and the elderly, require assistance from caregivers
to perform this essential function. This includes nearly 70%
of hospitalized elderly and at least a quarter of nursing
home patients [1]. However, many of those who benefit from
assistance suffer from a loss of independence that can reduce
their sense of self-worth, and may lead to malnutrition and
weight loss [1]. For these individuals, robotic solutions that
automate feeding promise a return to independence and a
healthier lifestyle.

One critical piece of the feeding process is robot-assisted
bite transfer: bringing various food items into a user’s mouth
using a tool, allowing them to safely take a bite, and then
removing the tool from the mouth (see Figure 1). While several
works have studied fork-based bite transfer, most works bring
the food item to a point outside the user’s mouth and then have
the user move forward to bite the food on their own [2]. This is
simply not practical for the 300,000 people in the U.S. alone
who suffer from spinal cord injuries and require caregivers
to feed them, nor is it comfortable even for the broader
population of people with motor impairment disabilities [3].
The in-mouth phase of bite transfer is less studied, and it is
particularly challenging since we are bringing a tool (often a
fork) inside one of the most fragile and sensitive parts of the
human body. It is also difficult to model the human mouth and

Fig. 1: Robust Robotic Bite Transfer. Our system safely and comfortably
feeds a user bite-sized food items. For an acquired food item, the system
detects the user’s mouth and adjusts its target position based on a depth scan
of the food. To feed the user, it follows an arced trajectory and monitors force
to detect a bite. Throughout feeding, it employs a force-reactive controller for
user comfort and safety.

its actuation, nor do we know when or how the human wants to
take a bite. Furthermore, the robot needs to be able to handle a
wide diversity of foods and food orientations on the tool. Most
recently, Belkhale et al. developed an in-mouth transfer system
which balances comfort and bite efficiency, where comfort
was defined as encroaching on a user’s personal space when
approaching the mouth. They utilize a single reactive controller
for adapting the end effector pose to the forces the user applies
on the utensil. While this method improves comfort for transfer
when approaching the mouth, this work does not address user
comfort during the in-mouth transfer process.

There are several key ways in which prior work fails to
address comfort during in-mouth transfer. Firstly, prior work
uses a single, unchanging reactive controller for the entire
bite transfer process. It is important to be reactive to the
person being fed; however, the type of reactivity changes based
on the phase of bite transfer. For example, when feeding a
strawberry to a user, we might want to be very compliant
during the entry into the mouth, stiff during the bite, and
then stiff in the direction of exit in case the user wants to
pull the strawberry off the fork. A single reactive controller
would fail to take this dimension of comfort into account.
Secondly, prior works directly mount tools to the robot end
effector for transfer, which can force the robot to make large
joint position movements just to adjust the tool orientation.
Often, this motion at robot joints early in the kinematic chain
leads to large movements during transfer, which is jarring and
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uncomfortable for users [4]. This is analagous to a caregiver
reorienting their elbow, shoulder, and even torso while they
are feeding someone, as opposed to subtle movements at the
wrist. Thirdly, the prior in-mouth bite transfer work evaluates
their method only on carrots [4]. It is necessary to test on more
diverse and complex food items (e.g., deformable foods like
cheesecake, irregularly shaped foods like broccoli) to draw
meaningful conclusions about comfort for in-mouth transfer.

In this work, we develop a comfortable system for in-mouth
bite transfer across a diverse set of bite-sized foods. To enable
comfortable in-mouth transfer of diverse food items, this work
builds on two key insights. First, we posit that bite transfer
can be split into two phases: mouth entry and mouth exit,
separated by bite detection. We can then design phase-specific
reactive controllers enabling comfortable physical interactions
with the robot during the in-mouth transfer. During mouth
entry, our system obtains precise measurements of the food
item and the user’s facial keypoints using vision, and then
utilizes this information to bring the food item into the user’s
mouth. During entry and exit, the system uses a reactive
controller to avoid sensitive collisions with the user’s mouth,
where the specific reactivity coefficients can be different for
each phase. Second, inspired by the mobility of the human
wrist, we aim to enable more degrees of freedom at the end
effector to reduce the jarring motion caused by robot joints
earlier in the kinematic chain. To accomplish this, we develop
a custom “wrist” joint to enable fine-grained reactivity while in
the mouth. Using this full system, we conduct a user study with
11 participants and 8 different bite-sized food items to evaluate
our system. Our method is substantially preferred over the
baselines, and we perform an in-depth analysis of qualitative
and quantitative user feedback to guide future work.

II. RELATED WORK

A. Robot-Assisted Feeding

Robot-assisted feeding has become an active area of re-
search and development in recent years. There are several
robotic feeding systems on the market currently; however,
they lack widespread adoption due to minimal autonomy or
dependence on food preparation beforehand [5, 6, 7, 8, 9].
In the literature, the autonomous feeding problem is generally
split into two phases: bite acquisition and bite transfer.
Bite Acquisition: Within bite acquisition, Feng et al. devel-
oped the SPANet network, which uses supervised learning to
map segmented foods of known classes to a corresponding
set of discrete actions [10]. Gordon et al. added an online
contextual bandits framework for updating the SPANet action
prediction using haptic information [11]. Sundaresan et al.
introduce a probing action during acquisition to zero-shot
predict the optimal acquisition action given both visual and
haptic information, without the need for multiple trials, across
a wide range of foods [12]. Beyond fork-based acquisition,
Grannen et al. develop a spoon-based acquisition framework
that leverages two robot arms to provide stability during
scooping [13]. However, none of these approaches consider the
problem of bite transfer once the food is acquired. Recently,
Gallenberger et al. demonstrate that bite transfer indeed de-

pends on bite acquisition, but they do not provide an approach
for feeding bites of food in a general fashion [14].

Bite Transfer: Similar to acquisition, autonomous systems
for bite transfer usually rely on discrete food classes with
predetermined feeding trajectories [10, 14, 15, 16]. These
works also generally bypass in-mouth transfer by navigating
the utensil to a predetermined pose outside of the user’s mouth,
requiring the user to reach the utensil on their own to complete
the feeding process. One recent work demonstrated an in-
mouth transfer system that optimized for comfort and effi-
ciency during planning; however, this work primarily studied
comfort during the approach trajectory and did not consider
the in-mouth comfort [4]. These works also utilize rigidly
mounted utensils for feeding, leading to jarring motion of the
robot during transfer as described in Sec. I. Each of these prior
works utilizes a limited set of foods for bite transfer evaluation.
Our work aims to specifically improve user comfort during in-
mouth transfer.

B. Physical Human-Robot Interaction

Physical human-robot interaction encompasses scenarios
where the human and robot must physically interact in the
real world in a safe manner. Prior work studies how robots can
safely respond to such interaction [17, 18, 19], including the
use of reactive controllers [20, 21]. Several works look at how
robots can learn from physical interaction, for example through
physical corrections [22, 23]. Bite transfer is a specific type
of physical human robot interaction. However, bite transfer
involves safety and comfort in a constrained and sensitive
workspace, a human’s mouth, where it is critical for the robot
to be precise and reactive to the user. Most closely related
to the bite transfer problem is robot-human handovers, which
usually involve the passing of some item from a robot arm
to a human hand. These works do not usually consider using
an intermediate tool for handover [24, 25, 26]. Unlike in the
feeding domain, handovers usually involve a person’s hand
as the recipient. Cakmak et al. find clear human preferences
for object orientations and grasp placement in the application-
agnostic handover problem. However, passing an item to a
person’s mouth presents a host of new challenges involving
safety and comfort. Canal et al. show the relevance of indi-
vidual preferences to the bite transfer process. In our work, we
consider the in-mouth handover of bite-sized food items, and
we study how to make such transfer both safe and comfortable.

III. IN-MOUTH BITE TRANSFER SYSTEM

This section details the operation and design of our robotic
bite transfer system. We begin with a description of the
hardware platform in Section III-A, describing the general pur-
pose robotic arm and our custom-built actuated wrist-like end
effector. Then, in Section III-B, we present our phased force-
reactive controller, which provides a basic measure of safety
and enhances comfort by adjusting during the feeding process.
Next, Sections III-C and III-D detail the mechanisms of the
bite transfer system. In Section III-A, we explain how the
system chooses a target location using a depth camera image
and face detection. The arced trajectory to reach this target and



Fig. 2: A Wrist-Like End Effector. We augment the Franka Panda’s gripper
with a 2 degree-of-freedom (DOF) end effector designed for feeding motions.
This allows simple scooping and twirling motions without moving the entire
arm. The wrist also contains perception hardware (mounted RGB-D camera
and force/torque sensor) for adjusting to the user’s movements.

the bite detection system are described in Section III-D. By
combining a dexterous end effector and force-reactive control
with a robust targeting and transfer procedure, our system
safely navigates into the user’s mouth and withdraws upon
a bite. An overview of this system is shown in Figure 1.

A. Actuated Wrist-Like End Effector

Our system relies on a 7 degree-of-freedom general purpose
manipulator (Franka Emika Panda) gripping a custom-built
actuated fork assembly. The fork assembly, shown in detail
in Figure 2, adds two degrees of freedom designed to mimic
the primary movements of a wrist: twirl-like rotation about the
fork’s long axis, and rotation about a single perpendicular axis
to allow a scooping motion. This extends the range of motion
of the robot and increases its null space. For feeding, these
additions allow rapid adjustment of the fork’s position without
significant movement of the Panda arm. Fewer movements
may also increase feelings of comfort around the arm.

The fork assembly (Figure 2) is composed of two servo
motors (Dynamixel XC330-M288-T) connected in series and
plastic mounting hardware. It is connected to the Panda’s
gripper using a 3D printed mount, which also holds a camera
(Intel RealSense D435). The twirling degree of freedom is
located after the scoop-like degree of freedom at the end of
the kinematic chain. A force/torque sensor (ATI Mini45 6-axis
F/T sensor) is located between the fork and the second servo
motor, forming the tip of the end effector.

B. Force-Reactive Controller

Our wrist end effector provides a hardware platform for
feeding, but bringing a fork into a user’s mouth requires careful
consideration of safety. In addition to typical safety features
like an e-stop and slow movement, our system is responsive
to forces at the tool using a force-reactive controller.

In traditional impedance control, the desired position and
velocity is used to make a desired end effector wrench, f ,
which coupled with the Jacobian J gives necessary joint

torques τ . Our controller adds reactivity to the forces on
the tool, which is equivalent to adjusting the desired wrench
before it is passed through the impedance control relation.
Specifically, we add an external force to impedance control:
τ = JT

(︁
f − f̄m

)︁
, where f̄m comes from a proportional-

integral (PI) term on the measured tool forces fm. The PI
term is given by f̄m = kP fm + kI

∫︁
fmdt.

This added reactivity operates at a 1kHz control rate
and enables compliance to fine-grained user movements. We
tune the sensitivity of this system by adjusting the vector
proportionality constants kP and kI . To prevent unexpected
movements from the robot, we set the torque components of
these constants to zero. Note that the force reactivity does not
extend to the wrist end effector’s degrees of freedom, so using
torque reactivity requires larger movements.

Phased Reactivity. The sensitivity of the system is key to
the safety and comfort of the bite transfer; however, it is not
necessary for the reactivity to remain the same in all axes
throughout the transfer. Our method incorporates a phased
force-reactive controller, using one set of constants as the
fork enters the mouth (the entrance phase) and a different
set of constants as the fork is leaving the mouth (the exit
phase), as shown in Figure 1. In the former phase, users
benefit from high reactivity because they may safely guide
the fork to a comfortable transfer location. Thus, we keep
kP and kI relatively high (kP = 7 and kI = 20 Hz for
all forces, and kP = kI = 0 for all torques). During the
exit phase, high reactivity can inhibit transfer as the force of
a bite prevents successful withdrawal. Therefore, we reduce
the reactive constants only in the exit direction (kP = 2 and
kI = 1Hz for forces into or out of the mouth). This maintains
compliance in the directions orthogonal to the exit direction
while combating the resistance of the bite for a successful
withdrawal. In addition, the reactive constants may be tuned
to each individual’s preference, which we leave to future work.

C. Defining a Target Location

As the system is designed to operate with any bite sized food
item, we adjust the location where the fork enters the mouth
only according to the food’s placement on the fork. This is a
two phase process: first, an external camera uses a depth scan
of the food item to determine its bounding box relative to the
fork. Then, a camera mounted on the end effector identifies the
location of the user’s mouth and applies the offsets computed
from the depth scan’s bounding box (Figure 3).

Offset Generation. In the depth scan phase, the tines of the
fork are facing an external fixed short-range depth camera
(Intel RealSense D405). This perspective is ideal for getting
offsets in the plane parallel to the user’s face; the camera views
the end of the fork as if the fork was moving towards it.
The resulting point cloud, obtained at 0.1 mm resolution, is
transformed into a “mouth frame” (Figure 3) located at the tip
of the fork. This corresponds to a point just below the teeth in
the open mouth: a safe feeding location if there were no food
on the fork, and must be adjusted based on food orientation.
Specifically, this mouth frame has its z-axis pointing out of the



Fig. 3: Adjusting the Target Position. For any placement of a bite-sized
food item on the end of the fork, we compute a safe target position given a
depth scan taken from the mouth perspective and centered at optimal entry
coordinates for the fork alone. Our system uses the scanned point cloud to
recenter and lower the food by averaging the bounding box x coordinates and
adjusting by the minimum y coordinate, respectively.

mouth and y-axis pointing upwards towards the user’s eyes.
The x-axis is along the lip, pointing to the user’s left.

From this coordinate system, the axis-aligned bounding box
of the point cloud gives the necessary offsets in the face (x-y)
plane. The x-axis offset (along the lips) aligns the center of
the food, rather than the fork, with the mouth center. This is
especially helpful for large, off-centered acquisitions, like the
one shown in Figure 3. Assuming the lower jaw does most
of the movement to open the mouth, the y direction offset
moves the top of the food down to a position where it will
not contact the upper teeth. We focus on bite-sized foods in
this work so we do not perform a depth measurement to adjust
the distance into the mouth that the fork enters. Instead, the
distance is fixed to 18 mm, which we empirically found to be
comfortable and safe for most users.
Face Detection. These offsets are added to location of the
mouth, which is obtained using a pretrained Histogram of
Oriented Gradients (HOG) model that is publicly available
through DLib [29]. After the scanning phase is complete, users
are instructed to remain still with their mouth closed while
the network obtains a mouth center point. This center point
is adjusted according to the previously determined offsets to
compute the target feeding position. Since the network cannot
recognize faces when it gets too close to the user, we rely
solely on the initial scan to determine the mouth position;
users are expected to remain still throughout the 10 second
trajectory. This assumption, while slightly prohibitive for able-
bodied users, is reasonable for many individuals who require
feeding assistance but have difficulty moving their heads.

D. Trajectory and Transfer

Throughout the bite transfer process, the trajectory of the
robot is designed to maximize comfort by emulating the ways
humans feed themselves. After offset and face detection, the
end effector moves to a low position and the fork is rotated to
an upside down position for easier transfer from below. Then,
it follows an arced trajectory (radius 0.45 m, similar to the
length of a lower arm, and centered directly below the target
position near the elbow) to a point just in front of the mouth
with the fork angled upward. This emulates the motion of an
elbow and brings the food in from below, keeping the bulk

of the robot arm away from the user. Then, the robot linearly
enters the mouth at its target position and slightly lowers the
fork to keep it from hitting the top of the user’s mouth.
Transfer Phases. Based on the different levels of sensitivity,
the bite transfer is divided into two phases, i.e., the entry phase
and the exit phase. The system can automatically divide the
two phases with a bite detection function. The bite is detected
when the magnitude of the force from y axis is greater than
the threshold of 0.3 N (obtained in early bite testing with
our system). During the entry phase, the end effector remains
motionless and reactive as the system waits for a bite. If no
bite is detected within a wait period of 1.5 seconds, the bite
detection times out and begins the exit phase. This relatively
short timeout allows the user to reject the food or initiate
transfer without a forceful bite. In the exit phase, the fork
simply leaves the mouth in a linear trajectory and then follows
the same arc path down to its starting position.

The result is a system capable of robustly feeding a variety
of food items directly into a user’s mouth. Sampled real-world
trajectories are shown in Appendix A1.

IV. EXPERIMENTAL EVALUATION
To evaluate the safety, comfort, and overall experience of

using our system, we conducted a user study feeding 11
participants food items with our bite transfer system and 4
baselines. We additionally show that our custom wrist end-
effector can improve upon several dimensions of user comfort.

A. Experimental Setup

Participants and Procedure. Our study included 11 able-
bodied2 participants and 8 varied food items. Participants (6
female, 5 male, aged between 22 and 57) were somewhat ex-
perienced with robots, with 6/11 indicating they had interacted
with one before. 7 participants reported they had never been
fed as an adult, and 3 reported never having fed someone
else. We used a within-subjects design, feeding each subject
randomly chosen three food items using each of five methods,
twice each. Additionally, we gave each subject one additional
feeding trial per method. This study was approved by the
Institutional Review Board of Stanford University.
Safety Considerations. Safety of participants was a primary
objective. At each major planning phase (scanning and face
detection), the system paused for proctor confirmation before
moving towards the user. On top of the compliant reactive
controller, we included a software stop: motion was automat-
ically aborted if the end effector force exceeded 3N , a mild
amount of contact. Additionally, an emergency stop button was
in place and available to both the proctor and participant.

B. Study Design

Independent Variables: Food Settings. We evaluate the bite
transfer system with 8 food item classes: carrot, strawberry,
blueberry, pineapple, cherry tomato, broccoli, cheesecake, and
tofu. These food classes cover a wide spectrum of sizes,

1The appendix may be found at our website: https://tinyurl.com/bticra
2Able-bodied participants were chosen to protect vulnerable individuals

amid the ongoing COVID-19 pandemic.
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shapes, and deformabilities (see Table X in Appendix B). All
food items were cut to bite-size, and we gave participants the
opportunity to opt out of eating specific foods.
Independent Variables: Feeding Method. We compare our
method against three robotic feeding baselines and one human
oracle baseline. Fixed Pose is from prior work and is not an in-
mouth bite-transfer method [14]. Instead, the robot moves the
fork to a position outside the user’s mouth and allows the user
to take a bite on their own. Less Reactive and More Reactive
are two ablations of our system with less and more force-
reactivity respectively. Specifically, the less reactive method
uses kP = 2 and kI = 2Hz for all forces throughout feeding,
while the more reactive method uses kP = 10 and kI = 30Hz
for all forces. We note that More Reactive is representative of
the in-mouth bite transfer method in Belkhale et al., which uses
a single, highly reactive controller. Human Oracle involves the
user being fed by another human, which serves as a reasonable
upper bound for our robotic feeding system.
Dependent Measures. We consider both subjective and objec-
tive measures. After each food item was fed with all methods,
participants were asked to rank the methods considering safety,
comfort, and overall preference (Safety, Comfort, and Overall
Ranking). After the study, participants provided a Final Rank-
ing of the methods based only on their overall preference. Per
feeding method, we measured the fraction of trials in which
the bite is successfully transferred (Success Rate).
Hypothesis. We hypothesized that:

H1. By using a multi-phase reactive controller and a more
dexterous wrist end-effector, our method will outperform the
three robotic baselines in terms of comfort, safety, and overall
rankings for all foods.

H2. Our method will have a higher transfer success rate
compared to the three robotic baselines for all foods.

C. Results

We present both subjective and objective metrics from our
user study to evaluate our system.
Subjective Metrics. We show the overall user rankings of each
of the five feeding methods (H1) in Figure 4. Additionally,
we present user ranking results on the safety, comfort, and
overall quality of each feeding method (H1), grouped by
food variability axis (shape, size, and deformability–defined
in Appendix B), shown in Figure 5.

Both overall and across food item variabilities, we find
that users prefer our in-mouth bite transfer method over all
other in-mouth feeding methods (Less Reactive and More
Reactive), and that our method performs comparably to a fixed
pose transfer method (H1). This trend holds across safety and
comfort ratings as well, as users noted the method “had a
gentle approach and placement of food” and it was “easy to
bite, the robot reacted and the motion away from the mouth
was good”. In some instances, our method even approaches a
human feeding oracle performance, suggesting that our method
consistently performs high-quality bite transfer.

We find that users rank the fixed pose baseline relatively
highly as they are able to “be active in the feeding process” and

Fig. 4: Overall User Rankings. We report the median and interquartile range
of user rankings across four robotic feeding methods and one human feeding
oracle. We compare our method against two similar baselines with varied
reactivity coefficients, and one fixed pose baseline that holds the food outside
the mouth and places the burden on the user to move to take a bite. Our in-
mouth bite transfer has the highest overall user ranking of the robotic feeding
methods, suggesting the effectiveness of our phased reactive method.

Fig. 5: User Rankings by Food Property. We report the median and
interquartile range of user rankings of the safety, comfort, and overall
quality of the feeding method by food property. As shown in Table X in
Appendix B, we group the 8 foods considered (broccoli, blueberry, cherry
tomato, strawberry, carrot, pineapple, tofu, and cheesecake) into 3 categories
along each of 3 axes of variability: shape, size, and deformability. Each food
item appears exactly once in each variability category. One-way ANOVA
testing confirms the statistical significance of transfer style (in-mouth vs.
out-of-mouth) and reactivity (less, more, ours) on the reported user ratings
for comfort alone, and safety, comfort, and overall, respectively. We report
additional per food user rankings and exact ranking values in Appendix B.

retain more control over their bite, leading to higher ratings for
comfort in particular. This is by nature of the method placing
the burden on the user to move their head to take a bite off the
fork. While this method may be more comfortable for able-
bodied users, moving the mouth to the fork may be impractical
for those with mobility issues who stand to benefit the most
from an assistive feeding robot system. We report additional



user rankings on head movement in Appendix B.
We note that users prefer our in-mouth bite transfer and

consider it to be more safe and comfortable than the other
robotic feeding baselines across most food groups; in other
words, our method of moderate, phased reactivity is generally
preferred. One exception is the rigid food class under food
deformability, where the Less Reactive baseline is preferred
for safety, comfort, and overall. This is due to the high friction
of the rigid food against the fork, making it difficult for the
user to pull the food off the fork with a more reactive method
such as our system or the More Reactive baseline.

We perform additional one-way ANOVA testing to assess
the effects of (1) phased reactivity (Less Reactive, Ours,
or More Reactive) and (2) transfer style (in-mouth — Less
Reactive, Ours, and More Reactive — or out-of-mouth —
Fixed Pose) on user ratings. We find that phased reactivity has
a statistically significant effect on safety, comfort, and overall
ratings, while transfer style has a statistically significant affect
on comfort ratings alone (denoted by p ≤ 0.05), even for
a small sample size of 11 users. The results support the
hypothesis (H1) that both phased reactivity and transfer style
impact a user’s experience. We provide additional details of
the ANOVA testing procedure in Appendix B.

Method Success Rate Failure Mode
Bite Failure Drop Imprecise

Fixed Pose 65/66 0 1 0
More Reactive 59/66 6 0 1
Less Reactive 63/66 2 0 1

Ours 62/66 3 1 0
Human Oracle 66/66 0 0 0

TABLE I: Bite Transfer Success Rate. We report the success rate and failure
modes of all the methods across 66 trials with 8 different foods and 11 users
in the experiments. Three types of failure modes happen in the user study.
In Bite Failure, users fail to take a bite of the food. This can occur when
either the user retracts early due to mistrust or fails to take a bite before
the fork exits. In Drop, the food falls off the fork during the transfer process.
Imprecise denotes the face detector localizing the mouth inaccurately, causing
a near-miss or off-center transfer. The highest success rate is human oracle
and the most common failure mode is Bite Failure.

Objective Metrics. Our quantitative results measuring bite
transfer success (H2) are shown in Table I, grouped by failure
mode. Among all the methods, Human Oracle represents
an upper bound on performance. Fixed Pose demonstrates
the second highest success as it bypasses in-mouth transfer
entirely, and consequently any associated challenges. However,
this method is a highly impractical solution for people with
mobility impairments because it requires the user to signifi-
cantly move their head to take a bite. Our proposed approach
critically alleviates this need with in-mouth transfer, which
naturally introduces more potential for imprecision or bite
failure. We note that the More Reactive method suffers from
the most Bite Failure errors, likely caused by jerkiness in
the compliant controller which can be jarring to a user. Ours
and Less Reactive perform comparably and outperform the
More Reactive method, suggesting the effectiveness of phased
transfer and less compliance upon fork exit. Finally, we report
the occurrence of food falling off the fork during the transfer
process and mouth detection inaccuracies resulting in impre-
cise transfer. We note that these minor failures are system-level
errors, irrespective of the transfer method employed.

Fig. 6: We generate IK solutions for 10,000 random fork poses using the Wrist
joint (With Wrist) as compared to directly mounting the tool (Without Wrist).
Left: Average Joint Displacement, for the 7 Franka Panda joints (grouped
for simplicity). Right: Average Comfort Cost, defined as encroaching on the
user’s personal space, similarly to prior work [4]. Our wrist mount achieves
substantially lower joint displacement (less jarring motion) and comfort cost
(less personal space occlusion), at no additional computational cost.

Wrist Joint Analysis. In addition to our user study, we
analyze and demonstrate the ability of our custom wrist end-
effector to improve perceived comfort through simulation
experiments in Figure 6. We generate 10,000 sampled tool
poses that are likely to occur during feeding, and then compute
the inverse kinematics (IK) solution for the robot joint config-
uration using the damped least squares method. We compute
IK across two robot setups, one with the tool mounted on
our custom wrist end-effector (9 DOF), and one with the tool
directly mounted to the robot’s default end effector (7 DOF).
For both setups, we evaluate the average joint displacement
across the 7 robot joints for the sampled tool poses. High joint
displacement indicates that the joints earlier in the kinematic
chain must move more to reach a given tool pose, thus leading
to jarring and uncomfortable motion for the user. By adding
more degrees of freedom at the end of the kinematic chain, our
wrist-like end effector substantially lowers the average joint
displacement (see left of Figure 6). Furthermore, we compute
a “comfort” cost similar to the one used in Belkhale et al. [4],
representing the degree to which the robot encroaches on the
user’s personal space. By choosing configurations that stay out
of a user’s field of view, the wrist also lowers the average and
maximum personal space comfort cost (see right of Figure 6).

V. CONCLUSION
We present a phased bite transfer system that combines

visual and haptic information for comfortable and safe in-
mouth bite transfer. Our method uses a custom wrist-like
joint for additional degrees of freedom and force-reactivity
for increased user comfort during feeding. We present results
from a user study with 11 participants comparing our in-mouth
bite transfer system to baselines of varied reactivity from prior
work, fixed pose feeding methods, and a human feeding oracle.
We find that our system is rated the highest of the in-mouth
robotic feeding methods both in terms of comfort and safety,
and is able to significantly reduce robot joint motions that are
often jarring to a user using our novel wrist joint.

In future work, we will explore how to incorporate user
feedback and preferences in bite transfer to customize a robotic
feeding system to each user. Beyond the transfer component,
we will consider different trajectories to reduce food droppage
during transport, which becomes especially critical for foods
that can spill or drip (i.e. soup, salsa). We will also extend the
system to plan for multiple bites of large food items.
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APPENDIX

We provide additional details regarding our approach and
experimental evaluation in the sections below. Appendix A
highlights the visual differences in transfer trajectory across
methods. Appendix B supplements the results from Section
IV with a detailed breakdown of user rankings by food
type and measured user movement during transfer to further
gauge overall, safety, and comfort preferences across methods.
Finally, Figure 10 includes visualized rollouts across methods,
to further highlight the perceptible differences in transfer.
Datasets, code, and videos can be found on our website.

A. Sample End Effector Trajectories

A difference between the three levels of reactivity evaluated
in this paper is clearly seen in the end effector trajectories
(see Figure 7). As expected, the less reactive trajectory sticks
to its pre-planned path the closest, while the more reactive
one jitters away from it. We show trajectories from individual
trials because of different user mouth locations and food items
between trials. Note that this result is purely qualitative.

Fig. 7: End-Effector Trajectories. Sample end effector position trajectories
over the course of a feeding run for the three in-mouth robotic methods.
The less reactive trajectory is closest to the pre-planned one, indicating less
compliance. In contrast, the more reactive trajectory diverges from the planned
one in a jittery path, matching our observations during the trial. Our method
balances the two, responding to some user movement without experiencing
significant jitter.

B. Additional User Study Details

In this section, we report additional results from the user
study comparing our bite transfer method to three baselines
and a human-feeding oracle.

We analyzed our user ranking data, in the range of 1-5
across the safety, comfort, and overall categories, using one-
way ANOVA testing to measure the statistical significance of
both phased reactivity and transfer style. For phased reactivity,
we split the into the categories of Less Reactive, More
Reactive, and Ours. For transfer style, we group the Less
Reactive, More Reactive, and Ours rankings as the in-mouth
category, and compare this against the out-of-mouth Fixed
Pose data. Results for significant findings (p-value ≤ 0.05)
are reported across the safety, comfort, and overall categories
in Tables IV, III, II, respectively. Phased reactivity has a
statistically significant effect on all categories of ratings, while

transfer style has a statistically significant affect on comfort
ratings alone.

Variable p-value
Reactivity 0.010802

Transfer-Style 0.949338

TABLE II: Overall: One-Way ANOVA Findings

Variable p-value
Reactivity 0.000011

Transfer-Style 0.019153

TABLE III: Comfort: One-Way ANOVA Findings

Variable p-value
Reactivity 0.000001

Transfer-Style 0.970068

TABLE IV: Safety: One-Way ANOVA Findings
In Tables V–IX, we report the values of the 25th, 50th,

and 75th percentile of user rankings on safety, comfort and
overall bite quality per bite transfer method for each food
axis category as shown in Figure 5. As in Figure 5, the
8 food items tested are grouped into three categories for
each food variability axis (shape, size, and deformability).
These groupings are reported in Table X, which each food
item appearing exactly once within each food variability axis
classification.

Axis Category Safety Comfort Overall
25th 50th 75th 25th 50th 75th 25th 50th 75th

Round 2 4 4 2 3 4 2 4 4
Shape Cube/Cyl 2 4 4 2 2.5 4 2.75 3.5 4

Irregular 2.75 3.5 4.25 1.75 2.5 3.5 2.75 3 5
Small 2 4 4 2 3 4 2 4 4

Size Medium 2 4 4 2 2 4 3 3 4
Large 2.5 4 4 2 3 4 2.5 3 4.5

Fragile 1 3 4 1 2 3 1 3 4
Deform Robust 2 4 4 2 3 4 2 4 5

Rigid 3 4 4 2 4 4.5 3.5 4 4

TABLE V: Fixed Pose User Ranking Values.

Axis Category Safety Comfort Overall
25th 50th 75th 25th 50th 75th 25th 50th 75th

Round 3 5 5 3 5 5 3 5 5
Shape Cube/Cyl 3.75 5 5 4 5 5 3.75 5 5

Irregular 3.75 5 5 4.75 5 5 3.75 5 5
Small 3 5 5 3 5 5 3 5 5

Size Medium 5 5 5 4 5 5 5 5 5
Large 2.5 5 5 3.5 5 5 2.5 5 5

Fragile 5 5 5 5 5 5 5 5 5
Deform Robust 3 5 5 4 5 5 3 5 5

Rigid 2.5 5 5 3 4 5 2.5 5 5

TABLE VI: More Reactive User Ranking Values.

Axis Category Safety Comfort Overall
25th 50th 75th 25th 50th 75th 25th 50th 75th

Round 2 3 4 2 3 4 3 3 4
Shape Cube/Cyl 2 5 5 3 4 4 2 4 4

Irregular 2.75 3.5 4 2.75 4 4 2 4 4
Small 2 3 4 2 3 4 3 3 4

Size Medium 2 4 4 3 4 4 2 4 4
Large 2.5 3 4 2.5 4 4 2 4 4

Fragile 3 4 4 4 4 4 4 4 4
Deform Robust 2 3 4 2 4 4 2 3 4

Rigid 2 2 3 2.5 3 3.5 2 2 3.5

TABLE VII: Less Reactive User Ranking Values.

https://tinyurl.com/btICRA


Axis Category Safety Comfort Overall
25th 50th 75th 25th 50th 75th 25th 50th 75th

Round 2 3 3 2 3 3 2 3 3
Shape Cube/Cyl 2 2.5 3.25 2 3 4 2 2 3

Irregular 2 2.5 3 3 3 3.25 2 3 3.25
Small 2 3 3 2 3 3 2 3 3

Size Medium 2 2 3 2 3 3 2 2 3
Large 2 3 4 3 3 4.5 2.5 3 4

Fragile 2 2 3 2 3 3 2 2 2
Deform Robust 2 3 3 2 3 3 2 3 3

Rigid 2 4 4.5 2 4 4.5 2 3 4.5

TABLE VIII: OURS User Ranking Values.

Axis Category Safety Comfort Overall
25th 50th 75th 25th 50th 75th 25th 50th 75th

Round 1 1 1 1 1 1 1 1 1
Shape Cube/Cyl 1 2 3 1 2 2 1 2 3

Irregular 1 1 1.25 1 1 1.25 1 1 2
Small 1 1 1 1 1 1 1 1 1

Size Medium 1 1 2 1 2 2 1 2 3
Large 1 2 3 1 1 2 1 1 2

Fragile 1 2 3 1 2 2 1 2 3
Deform Robust 1 1 1 1 1 1 1 1 2

Rigid 1 2 3 1 2 2 1 2 2.5

TABLE IX: Human Oracle User Ranking Values.

Food Shape Size Deformability
Broccoli Irregular Large Robust

Blueberry Round Small Robust
Cherry Tomato Round Small Robust

Strawberry Irregular Large Robust
Carrot Cylinder Large Rigid

Pineapple Cube Medium Rigid
Tofu Cube Medium Fragile

Cheesecake Cube Medium Fragile

TABLE X: Food Properties: We group the 8 food items we consider
along three axes of variability: shape, size, and deformability. We consider
three classes for each axis, as shown in Figure 5. For shape, we define an
“irregularly shaped food” to be one with less than three axes of symmetry.

Figure 9 reports the user rankings for bite transfer methods
for each of the 8 foods considered. These results show that
our method either outperforms or performs comparably to the
More React and Less React baselines in all foods except carrot.
Because the carrot is slightly larger than the size of some
users mouths, some users preferred more autonomy compared
to other foods to adjust the positioning of the carrot and fork
in their mouth. As a result, some users preferred the More
Reactive baseline over our method as the user could adjust
the fork and carrot positioning more easily. Some users also
preferred the Less React baseline over our method because
the rigidity of the carrot complicates biting off a fork with
our method which has a higher reactivity in comparison. As
expected, the Human Oracle baseline achieves the highest
performance of all the methods across all food items. The
Fixed Pose baseline has widely varied performance across the
food classes, suggesting some foods, such as tofu cubes and
blueberries, are easier to bite off a fixed fork pose, while
the other foods are easier to eat when delivered into the user
mouth.

We report the user rankings of head movement required
for each bite transfer method in Figure 8. We highlight
the Fixed Pose method required the most head movement
from the user, due to the nature of the fork approaching the
mouth position, but stopping outside instead of attempting

Fig. 8: Head Movement User Rankings. We report the user rankings for the
ease with which they could take a bite with each bite transfer method without
moving their head. 1 signifies the user had to move more to take a bite, while
5 signifies less head movement. We find that the Fixed Pose baseline required
the most head movement due to the nature of the method holding the food
item outside the mouth for the user to take a bite.

an in-mouth transfer. The three in-mouth robotic bite transfer
methods (More React, Less React, and Ours) are all ranked
similarly for required head movement, which is expected as
these methods use the same transfer trajectory to achieve in-
mouth delivery. Additionally, we note that our bite transfer
method approaches the Human Oracle performance in terms
of amount of head movement required.



Fig. 9: Per Food User Rankings. We report the median and interquartile range of user rankings of the overall bite quality for our bite transfer method and
four baselines for each of the 8 food groups considered. 1 indicates best performance and 5 indicates worst. We observe that our method performs as well or
better than all robotic feeding baselines acorss all foods except carrots. We highlight that our method approaches human feeding oracle performance in the
pineapple and cheesecake food classes, supporting the effectiveness of our robotic feeding method.

Fig. 10: Sample Trajectories. We show two transfer trajectories for pineapple with Ours and Fixed Pose methods. With reactive, in-mouth transfer, Ours
requires less head movement from the user to successfully transfer the bite compared to the out-of-mouth Fixed Pose strategy.
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