
A Contextual Bandit Approach for Learning to Plan
in Environments with Probabilistic Goal

Configurations

Sohan Rudra∗
Google Research

Saksham Goel∗
Google Search

Anirban Santara∗
Google Research

Claudio Gentile∗
Google Research

Laurent Perron
Google Research

Fei Xia
Robotics@Google

Vikas Sindhwani
Robotics@Google

Carolina Parada
Robotics@Google

Gaurav Aggarwal
Google Research

Abstract

Object-goal navigation (Object-nav) entails searching, recognizing and navigating
to a target object. Object-nav has been extensively studied by the Embodied-AI
community, but most solutions are often restricted to considering static objects
(e.g., television, fridge, etc.). We propose a modular framework for object-nav
that is able to efficiently search indoor environments for not just static objects but
also movable objects (e.g. fruits, glasses, phones, etc.) that frequently change
their positions due to human intervention. Our contextual-bandit agent efficiently
explores the environment by showing optimism in the face of uncertainty and learns
a model of the likelihood of spotting different objects from each navigable location.
The likelihoods are used as rewards in a weighted minimum latency solver to
deduce a trajectory for the robot. We evaluate our algorithms in two simulated
environments and a real-world setting, to demonstrate high sample efficiency and
reliability.

1 Introduction

Personal robotics is an important domain of Embodied AI [48] that aims at enhancing human
productivity by developing physical assistants for everyday tasks. In this paper, we study the task of
Object-Goal Navigation (object-nav) [15, 65], which is a core component of many personal robotics
applications like Mobile Manipulation [3], Embodied Question Answering [21], and Vision-and-
Language Navigation [5]1. Object-nav is defined as the task of searching (and optionally, retrieving)
a given object within a designated space, e.g., indoor spaces like homes or offices, which are typically
known environments. The target object is often specified in natural language, e.g., “a blue soccer
ball with stripes". This work is motivated by an everyday object-nav task: searching for our keys or
cellphone at home. Analogous to how humans search, we propose an algorithm that learns to look for
objects that change their locations due to human intervention (e.g. cellphones, glasses and keys) in
the most likely places first. Object-nav algorithms work by learning semantic relationships between
the target object and the topology of the environment. They can be classified into two categories:

1Please visit our website: https://sites.google.com/view/find-my-glasses/home for a video
presentation of the paper and real world demonstrations.

∗ Authors contributed equally.
Shorter version accepted at NeurIPS 2022 Workshop on Robot Learning: Trustworthy Robotics.

ar
X

iv
:2

21
1.

16
30

9v
1

 [
cs

.R
O

]
 2

9
N

ov
 2

02
2

https://sites.google.com/view/find-my-glasses/home

map-based and map-free [8]. Map-free algorithms [58, 52, 46, 19, 50, 60, 31] do not require a map
of the environment and can decide which way to go based directly on the current observations and
past memories without having to maintain a global representation of the environment. This requires
them to solve the problem of localization and mapping in conjunction with the object-nav problem,
making their sample complexity very high. Another prominent challenge faced by end-to-end
learning-based algorithms in robotics is bridging the sim-to-real gap [36]. Learning agents are usually
trained in a simulator (sim) like Matterport [13], AI2Thor [38], Gibson [64] and Habitat [53] before
deploying in the real world. However, due to limited fidelity of a simulator, observations of the same
event might be different in the simulator and in reality (domain mismatch). Map-based algorithms
[44, 43, 47, 37, 10, 9] assume that a map of the environment is available at the time of path-planning.
The map could be an occupancy map showing the probability of obstacles being at each location. It
could also be a topological map [22] that is comprised of a graph where nodes represent characteristic
places and edges contain reachability information (distances, times, etc.) between pairs of nodes.
A few of these algorithms construct a map of the current region before planning in that region
[16, 17, 25, 15]. Map-based methods are typically modular, hence, sample-efficient [54] and easier
to deploy in the real world. However, the validity of the solution devised by these algorithms is a
strong function of the accuracy of the map and localization of the robot. Thanks to advancements in
Simultaneous Localization and Mapping (SLAM) algorithms [23], constructing an occupancy map of
reasonable accuracy has become relatively easy in modern robotic systems.

In this paper, we aim to achieve robust Object-Goal Navigation in indoor human-centric environments.
Our algorithms are modular and map-based. They assume access to a binary 2D occupancy map of
the environment with navigable and non-navigable parts marked out. In our day to day life, quite
frequently, we have to search portable objects that we happened to lose track of. We will refer to such
objects as “movable objects". Let us consider the example of cellphone. We begin our search by
trying to recall a list of places that we are used to finding our cellphone at. The algorithm presented
in this paper takes a similar approach where we aim to model the likelihood of spotting a given object
from different places in the environment. For example, a cellphone is more likely to be found on the
study-table, work-desk and bedside-table, rather than in the kitchen floor or on top of the refrigerator.
These likelihoods are learned online as the agent explores a realistic environment. For stationary
objects, we just assign probability values of 0 or 1. These likelihoods are then used for planning a
path that minimizes the average distance travelled by the agent to reach the target object.

Figure 1 provides an overview of our approach. (1) The robot is randomly initialized in the environ-
ment with the task of finding a given target object. (2) A set of reachable vantage points are sampled
across the entire environment using the current 2D occupancy map via farthest point sub-sampling
[24, 49]. (3) A Contextual Bandit Agent [41] estimates the likelihood of spotting the target object
from each vantage point. (4) A Weighted Minimum Latency Problem (WMLP) solver [62] is used
to generate an ordering of the vantage points taking into account their likelihood scores, the initial
position of the robot and the geometry of the room. Finally, (5) The robot visits the vantage points in
the planned order while inspecting its surroundings. As soon as it spots the object, it heads directly to
it. The modular design of our approach significantly reduces the sample complexity and allows us to
switch out object detectors, motion planners and point samplers for domain-specific models when
an agent is transferred between sim and real – reducing the sim-to-real gap. The paper is organized
as follows. In section 2, we introduce the notation followed in the paper. We also provide a formal
definition of our problem and a theoretical algorithm to address it. In section 3, we present a practical
implementation of the theoretical algorithm. In section 4, we present an empirical evaluation of the
proposed methods in two simulated and one real environments. In section 5, we conclude the paper
with a discussion on the limitations of the proposed approach and directions of future work.

2 Model and Algorithm

We start by explaining the mathematical model underpinning our investigation.

Model. We formalize our problem as follows. In the 2D occupancy map of the environment, let us
denote all the points by a set X . Set X is partitioned into the set of feasible points F (the points the
robot can freely navigate) and the set of non-feasible points N (the points occupied by obstacles
like furnitures), so that X = F ∪ N , and F ∩ N = ∅. The three sets X , F , and N are available
to us before planning. Each x ∈ F comes with a visibility set V (x) ⊆ X , that is, a set of points

2

Figure 1: Overview of our approach. (a) Picture of our robot (from Everyday Robots) and the target
objects studied in our experiment. (b) The robot is randomly initialized in the environment with the
task of finding a given target object. (c) A set of reachable vantage points (green dots) are sampled
across the entire environment using the current 2D occupancy map. (d) The Contextual-Bandit
agent estimates the likelihood of spotting the target object from each vantage point. (e) A Weighted
Minimum Latency Problem (WMLP) solver is used to generate an ordering of the vantage points
taking into account their likelihood scores, the initial position of the robot and the geometry of the
room. (f) The robot visits the vantage points in the planned order while inspecting its surroundings.
As soon as it spots the object, it heads directly to it.

that the robot can inspect while standing2 at x. For concreteness, visibility is defined in terms of
Euclidean distance as V (x) = {x′ ∈ X : ||x − x′|| ≤ rvis}, for some visibility range rvis > 0,
e.g., rvis = 2.5 meters (the effective range of the object detectors on the system).

We have n movable objects of interest (glasses, keys, etc.). We use [n] to denote the set {1, 2, . . . , n}.
For each pair (i, x) ∈ [n] × F , denote by pi(x) the probability that the robot spots object i while
standing at position x. These probabilities are in turn defined by n (unknown) probability distributions
{Pi, i ∈ [n]}, with support X , that determine where objects are located, so that pi(x) = Py∼Pi(y ∈
V (x)). Notice that an object can, in principle, be anywhere in the scene. The probabilities pi(x) are
unknown to the planner, and have to be learned through interactions with the environment. We model
them as pi(x) = f(φ(i, x); θ), where φ : [n]×Rd → RD is a mapping that featurizes the pair (i, x)
into a D-dimensional real vector, for some feature dimension D ≥ d, f : RD × Rm → [0, 1] is a
known function, and θ ∈ Rm is an unknown vector of parameters, for some parameter dimension m.
For instance, f(φ; θ) = σ(θ>φ), where σ is the sigmoidal function σ(z) = ezs

1+ezs with slope s at the
origin, and m = D. Our theoretical analysis uses the above generalized linear model, while in our
experimental evaluation, we compare both linear and neural models for f(·; θ).

Planning and Regret. In each navigation episode t = 1, 2, . . ., there will be only one object it ∈ [n]
in the scene3, and the identity of this object is known to the robot. The environment generates the
position yt of object it by drawing yt from Pit . Let x0,t ∈ F be the starting position of the robot
in episode t. The algorithm begins by sampling a total of k vantage points x1,t, . . . , xk,t ∈ F . The
planner has to generate a path Jt = 〈xπt(1),t, . . . , xπt(k),t〉 across them, where πt(·) is a permutation
of the indices {0} ∪ [k], with πt(0) = 0. The robot traverses the path in the order dictated by Jt, and
stops as soon as the object is spotted, as allowed by the visibility structure V (x`,t), ` ∈ {0} ∪ [k].

2We are assuming here that the robot can sample from x any pose via 360 degree rotation.
3This is not a strict requirement, our analysis can be seamlessly extended to the case where multiple instances

of the same object are simultaneously present on the scene.

3

It is also reasonable to admit that the robot may incur some detection failures during an episode,
an event we denote by Et, to which we shall assign an independent probability P(Et) to occur. We
henceforth drop the episode subscript t for notational convenience.

The path length loss L(y, J) of J is the actual distance traversed by the robot over the
points x0, x1, . . . , xk before spotting object i in position y. On the other hand, if the ob-
ject is not found, it is reasonable to stipulate that the loss incurred will be a large number
LM >

∑k
`=1

∑`
j=1,dist?(xπ(j−1), xπ(j)), bigger than the total path length of any length-k path

〈xπ(1), . . . , xπ(k)〉. Overall

L(y, J) = (1− 11{E}) (1)

×

(
k∑
`=1

11
{
y ∈ V (xπ(`)) \ (V (xπ(0)) ∪ . . . ∪ V (xπ(`−1)))

}︸ ︷︷ ︸
V (xπ(`)) is the first ball in the traversal order where object is located

×
∑̀
j=1

dist?(xπ(j−1), xπ(j))

)
+ 11{E}LM ,

where 11{·} is the indicator function of the predicate at argument, and dist?(x1, x2) denotes the A?
distance between the two vantage points x1 and x2 on the scene, i.e., the collision-free shortest path
length between x1 and x2 for our robot (notice that dist?(x1, x2) ≥ ||x1 − x2||). Observe that, in
the absence of a failure, we are assuming the object will eventually be found during each episode.
Hence, a failure will be ascertained only at the end of an episode. We approximate the above by
disregarding the overlap among the visibility balls V (xπ(`)) (hence somehow assuming these balls
do not influence one another), and then take expectation over y ∼ Pi and the independent Bernoulli
variables 11{E}, with expectation P(E). This yields the (approximate) average path length

Ei[L(y, J)] = P(E)LM + (1− P(E))

(
k∑
`=1

pi(xπ(`))
∑̀
j=1

dist?(xπ(j−1), xπ(j))

)
, (2)

where Ei[·] is a short-hand for Ey∼Pi,E [·]. We are now in a position to define our benchmark
performance measure against which regret will be defined. The benchmark planner knows the
distributions {Pi, i ∈ [n]} and the probability P(E), and computes a path J? = 〈x∗1, . . . , x?k〉
whose elements are taken from F , such that J? minimizes Ei[L(y, J)] over all length-k paths (and
permutations thereof) that can be constructed out of points from F . Given a sequence of episodes
t = 1, . . . , T with corresponding objects i1, . . . , iT (and starting positions x0,1, . . . , x0,T), we define
the cumulative regret RT (J1, . . . , JT) of a planner that generates paths J1, . . . , JT as

RT (J1, . . . , JT) =

T∑
t=1

Eit [L(yt, Jt)]− Eit [L(yt, J
?
t)] .

We would like this cumulative regret to be sublinear in T with high probability (in the random draw
of position yt at the beginning of each episode t). Notice that the last term in the RHS of (2) is
independent of J , hence LM will play no role in the regret computation.

Algorithm. Our “theoretical" algorithm is described as Algorithm 1. The algorithm operates on
an ε-cover4 Fε of F and generalized linear probabilities pit(x) = σ(θ>φ(it, x)). The algorithm
replaces the above true probabilities in the average path length (2) with lower confidence estimations
σ
(

∆̂t(x)− εt(x)
)

, and then computes Jt by minimizing (2) over the choice of k points within Fε,
as well as their order (permutation π). A sequence of signals 〈s1,t, . . . , sk′t,t〉 = 〈−1, . . . ,−1,+1〉
observed during episode t is associated with the successful path Jt in that a sequence of k′t−1 negative
signals (“−1" = object not spotted from xπt(`),t, for ` = 1, . . . , k′t − 1) precede a positive signal
(“+1" = object spotted at xπt(k′t),t). On the other hand, when the object is not found throughout the
length-k path, the sequence of signals becomes 〈s1,t, . . . , sk,t〉 = 〈−1, . . . ,−1,−1〉 (this happens
with probability P(E)).

When the object is found, Algorithm 1 uses the observed signals to update over time a D-dimensional
weight vector θ̂, and a (D ×D)-dimensional matrix M . Vector θ̂t is used to estimate θ>φ(it, x),
through ∆̂t(x), while matrix Mt delivers a standard confidence bound via ε2t (x). The update rule

4Recall that Fε is an ε-cover of F if Fε ⊆ F and for all x ∈ F there is x′ ∈ Fε for which dist?(x, x
′) ≤ ε.

It is easy to see that, given a 2D-scene, the cardinality |Fε| of Fε is O(1/ε2).

4

Algorithm 1 Simplified contextual bandit planning algorithm.
Input: Learning rate η > 0, exploration parameter α ≥ 0, ε-cover Fε of F , ε > 0, path length k.
Init: M0 = kI ∈ RD×D, θ̂1 = 0 ∈ RD, c1 = 1.
For t = 1, 2, . . . , T

1. Get object identity it , and initial position of the robot x0,t ;
2. For x ∈ F , set

∆̂t(x) = θ̂>ctφ(it, x) and ε2t (x) = αφ(it, x)>M−1ct−1φ(it, x)

3. Compute Jt = 〈xπt(1),t, . . . , xπt(k),t〉 as //solve WMLP at episode t

Jt = arg min
x1...xk∈Fε
permutation π

k∑
`=1

σ
(

∆̂t(xπ(`))− εt(xπ(`))
)∑̀
j=1

dist?(xπ(j−1), xπ(j))

4. Observe signal


〈s1,t, . . . , sk′t,t〉 = 〈−1, . . . ,−1,+1〉 set mt = k′t
or
〈s1,t, . . . , sk,t〉 = 〈−1, . . . ,−1,−1〉 set mt = 0

5. For j = 1, . . . ,mt (in the order of occurrence of items xj in Jt) update:

Mct+j−1 = Mct+j−2 + φ(it, xj)φ(it, xj)
>,

θ̂ct+j = θ̂ct+j−1 + η σ
(
−sj,t θ̂>ct+j−1φ(it, xj)

)
sj,tM

−1
ct+j−1φ(it, xj)

6. ct+1 ← ct +mt .

implements a second-order descent method on logistic loss trying to learn the unknown vector θ out
of the signals sj,t. In particular, the update θ̂ct+j−1 → θ̂ct+j is done by computing a standard online
Newton step (e.g., [35]). Notice that at each episode t, both matrix M and vector θ̂ get updated
mt = k′t times, which corresponds to the number of (valid) signals received in that episode. Counter
ct accumulates the number of such updates across (non-failing) episodes. On the contrary, when the
object is not found, we know that there has been a failure, hence we disregard all (negative) signals
received and jump to the next episode with no updates (mt = 0).

From a computational standpoint, calculating Jt as described in Algorithm 1 is hard, since the
planning problem the algorithm is solving at each episode is essentially equivalent to a Weighted
Minimum Latency Problem (WMLP) [62], also called traveling repairman problem, which, on a
generic metric space is NP-hard and also MAX-SNP-hard [7]. Fast algorithms are available only
for very special metric graphs, like paths [2, 28] edge-unweighted trees [45], trees of diameter 3
[7], trees of constant number of leaves [39], and the like [63]. Even for weighted trees the problem
remains NP-hard [56]. Approximation algorithms are indeed available [18], but they are not practical
enough for real-world deployment. In our experiments (Sections 3–4), we implement and compare
fast planning approximations to Algorithm 1.

In both the planning and the training of the contextual bandit algorithm, we are using the average
path length as a minimization objective because it is easier for the WMLP solver to handle. However,
when it comes to evaluating performance in our experiments, we use the Success weighted by Path
Length (SPL) metric [4] because it is a more established metric in the object-nav literature.

Regret Analysis. From a statistical standpoint, Algorithm 1 is a simplified version of the slightly
more complex Algorithm 2 which is the one our regret analysis applies to. Please refer to Appendix
A for a discussion on Algorithm 2.

Theorem 1 Let DM = maxx,x′∈F dist?(x, x
′) be the diameter of the scene. Also, let the feature

mapping φ : [n]×Rd → RD be such that ||φ(i, x)|| ≤ 1 for all i ∈ [n] and x ∈ F , and let constant
B be such that ||θ|| ≤ B. Then a variant of Algorithm 1 exists that operates in episode t with an
ε-covering Fε of F with ε = k/

√
t, such that with probability at least 1 − δ, with δ < 1/e, the

cumulative regret of this algorithm satisfies, on any sequence of objects i1, . . . , iT ,

5

RT (J1, . . . , JT) = O
(

(1− p)k2
√
T +DM k

√
(1− p)kT α(k,D, T, δ, B)D log(1 + kT)

)
,

where α(k,D, T, δ, B) = O
[
e2B

(
k +D log

(
1 + kDT

δ

))]
, and p = P(Et) is the (constant) failure

probability. In the above, the big-oh notation hides additive and multiplicative constants independent
of T , D, B, k, p, and δ.

In a nutshell, the above analysis provides a high-probability regret guarantee of the form k2D
√
T . We

present the proof of this theorem in Appendix A. The learning rate η and the exploration parameter α
in Algorithm 1 are hyper-parameters.

3 Proposed Method

In this section, we present a practical algorithm that replicates Algorithm 1. We have three main steps:
(a) Sampling k vantage-points that maximally cover the navigable part F of the given scene; (b)
Importance assignment to the sampled points using an online learning contextual bandit algorithm; and
(c) Path planning through the vantage points. We use Model Predictive Control (MPC) [29, 61, 42, 26]
to execute the selected path. This guarantees collision-free shortest-path trajectories between vantage
points while satisfying given safety constraints, optimality criteria, and kinodynamic models. The
resulting system is interpretable and safe. We will elaborate on each of these.

3.1 Sampling vantage points

Our algorithm begins by sampling a sparse set of vantage points that are navigable and spread all
over the scene in a way that the agent’s vision is able to cover the space to a large extent by visiting
these points and looking around. First, we extract all the navigable points (at a resolution of 0.1
meter) from the robot’s occupancy map. Next, we select our vantage points using the Farthest Point
Sub-sampling (FPS) algorithm. FPS is a simple, yet effective method of extracting a small number of
points from a given point-cloud to cover the extremities of the point-cloud and capture prominent
point features. Given a point cloud of size N and a distance metric df , the FPS algorithm works by
picking a starting point (randomly or by some heuristic criterion) from the point cloud and iteratively
adding new points that are maximally distant – according to df – from the current set of selected
points, till the required number of points k is reached. This method is popularly used in image
processing [24] and computer vision [49]. Since FPS requires O(N) distance calculations in each
iteration, we choose the Eucledian distance for df in our experiments for computational ease.

3.2 Node Level Importance Assignment

Once we have the vantage points, we estimate the importance of each point in the context of the
target object. An important vantage point is one that has a high likelihood of the robot spotting the
target object standing there. For ease of modelling, we assume that our robot is able to spot the target
object equally well from any yaw-angle if it is within its visibility range rviz. In order to estimate the
likelihood of the robot spotting an object (which can be movable) from a given point, we need to
explore the environment. For efficient exploration, we formulate the problem as a contextual bandit
with vantage point as an arm and follow the principle of optimism in the face of uncertainty (e.g., [57])
as described in Algorithm 1. Each vantage point is described by a vector with positional, geometric
and semantic features of the point along with the identity of the target object. We triangulate the
position of the target object once the agent spots it from a vantage point. In order to improve learning
efficiency, we assign positive training signal (“+1") to all the navigable points within rvis radius from
the object. Figure 2 (left) illustrates this procedure.

We study two classes of models for estimating the importance of points in our experiments. The first is
a generalized linear model (“Gen-Lin”) as presented in Algorithm 1 with a minor modification. Since
it is difficult for a single generalized linear function to model multiple potentially non-linear decision
boundaries corresponding to different object classes, we use a disjoint set of model parameters
for each object class. The second is a simple two-layer fully connected neural network model,
approximated via Neural Tangent Kernels (NTK), as contained in Algorithms 1-2 in [66] (“Neural")
for computing uncertainties εt(x) (Step 2 in Algorithm 1) and updating θ̂ (Step 5 in Algorithm 1).
Unlike the “GenLin” model, the same neural network parameters are shared across all classes of
objects.

6

Figure 2: Left: Positive sample augmentation for improved sample efficiency. Radius rvis is the
robot’s visibility range. Right: Calculation of ground-truth likelihood scores. P (f) is the likelihood
of the object appearing on furniture f .

∑
f∈Furnitures P (f) = 1.

3.3 Planning

After estimating the importance-scores of the vantage points, we derive their sequence of visitation
by representing them as a graph – where each node is a vantage point and the edges contain the A?
distance between vantage points – and solving the Weighted Minimum Latency Problem (WMLP)
(e.g., [7, 62]). WMLP tries to minimize the average waiting time of each node in a graph, weighted
by its importance score being reached by a travelling agent. In our case, the solution of the WMLP
minimizes the average distance traveled by the robot to reach the target object – the average being
over the position of the object and the initial position of the robot. We consider two different ways of
solving the WMLP in our setting.

CP-SAT. The first approach directly faces the underlying optimization problem. We relied on a
satisfiability (SAT)-based constraint programming (CP) solver [55] from Google OR-Tools [33] that
uses a lazy clause generation solver on top of a SAT solver to reach its solution conditioned on
vantage-points, starting position, and predicted relevance of the points. Although this approach is
direct and principled, the running time of this solver may increase drastically as the number of points
grows.

One-step greedy. Starting at x, the next point x′ is chosen to maximize a weighted combination
of the estimated likelihood p̂i(x′) of spotting the target object i, and the inverse of the A? distance
traveled to reach it:

x′ = arg max
x′′∈{unvisited points}

αp
dist?(x, x′′)

+ (1− αp) p̂i(x′′) , (3)

where αp ∈ [0, 1] is a hyper-parameter whose value should be chosen to achieve a good trade-off
between minimizing the traveled distance in the next step and maximizing the likelihood of spotting
the target object. The case of αp = 0 corresponds to greedily choosing the unvisited point with the
highest estimated likelihood, while the case of αp = 1 would greedily choose the closest unvisited
point. In the above, p̂i(x) will be computed as suggested by Algorithm 1 via a lower confidence
scheme of the form p̂i(x) = σ

(
∆̂(x)−ε(x)

)
. The one-step greedy approach is myopic, as it greedily

optimizes for the next step only, but is also much faster to run, hence it should be interpreted here as
a fast approximation to the CP-SAT solution.

4 Experiments
We run experiments in two simulated and one real office kitchen environments. The two simulated
kitchens have areas 80 sq.m. and 120 sq.m., respectively. Each experiment involves training the agent
for 200 episodes followed by evaluation with frozen parameters in the same environment. For the
real kitchen experiment, we train the bandit model on a snapshot of the map in our simulator and
evaluate in the real environment.

7

Figure 3: (a) Real-kitchen sample trajectory for CP-SAT planner with the Neural model. (b) Heat map of
the estimated likelihood of spotting the goal object (“bottle”) within a distance of 1m along with ground truth
likelihoods (in green) of the object occurring on the surface of each furniture.

The simulated environments have photo-realistic scenes generated from Matterport scans [14] and
Bullet [20] based physics simulation. Our robot is a differential-drive wheeled robot from Everyday
Robots 5, which has a 3D LiDAR in the front, and depth sensors mounted on its head. It is capable of
accurate localization and safe point-to-point navigation. We consider two different ways of solving
the WMLP in our setting – a) directly solving the optimization problem using CP-SAT, a satisfiability
(SAT)-based constraint programming (CP) solver [55] from Google OR-Tools [33]; and b) a one-step
greedy approach that maximizes a weighted combination of the estimated likelihood of spotting
the target object and the inverse of the A? distance traveled to reach it – to choose the next vantage
point in the visitation sequence. Although myopic, the latter is a faster approximation of the CP-SAT
algorithm that despite being direct and more principled, suffers from drastic increases in running time
with growing number of vantage points (See Figure D.1). We use Model Predictive Control [27, 11]
to execute a path. Each vantage point x is described by a feature-vector φ(i, x) consisting of a one-hot
encoding of the target object i and a flattened 16× 16 patch of the wall-distance map centered at the
point x (see also Figure C.3 in Appendix C). A sinusoidal positional encoding [59] vector is appended
to represent the location of the point in the map. Map-resolution and positional encoding dimension
are hyper-parameters. The normalizer for the feature-vector is also a hyper-parameter that is chosen
from among: a) zero mean, unit standard-deviation, and b) unit l2-norm. All hyper-parameters (η and
α for Algorithm 1, αp for One-step greedy, the learning rate and batch size in Algorithms 1-2 in [66]
for Neural, the positional embededing size and the feature vector normalization for mapping φ(i, x),
and the sigmoidal scale s for the sigmoid in Algorithm 1) are tuned across suitable ranges (Table
D.5) using a Gaussian-Process Bandit based Blackbox optimizer [32] to maximize success weighted
by path length (SPL) [6] over the training episodes (Appendix D).

For training in simulation, we consider the agent has successfully reached its goal if and when it
visits a vantage point that is within rvis radius from the target object. For learning good quality
likelihood maps, we set rvis = 1m during training although the default value of rvis = 2.5m is
used during evaluation in the simulated environments. For success during evaluation in the real
environment, the robot must visually detect the target object and drive up to a grasping range of the
object. For object detection, we use our implementation of the ViLD detector [34] that has a true
positive rate of 84.6% across our test objects. We have five categories of target objects: “bottle”,
“can”, “cup”, “bowl” and “chips-bag” each of which has the same frequency of occurrence across
episodes and in any given episode we have a single instance of the target object in the environment.
We compare the performances of our proposed framework using the generalized linear (“Gen-Lin”)
and neural (“Neural”) models for training the contextual bandit agent and “CP-SAT” and one-step
greedy (“Greedy”) algorithms for path planning to a purely geometric approach that solves the
Travelling Salesman Problem [40] (“TSP”). We assign a time budget of 30 seconds to the CP-SAT

5https://everydayrobots.com/

8

https://everydayrobots.com/

Real Kitchen Env. Kitchen Environment 1 Kitchen Environment 2
Neural Gen-Lin Neural GT-Scores Gen-Lin Neural GT-ScoresTSP Greedy CP-SAT TSP Greedy CP-SAT Greedy CP-SAT Greedy CP-SAT TSP Greedy CP-SAT Greedy CP-SAT Greedy CP-SAT

Train SPL - - - - 0.32 0.31 0.30 0.27 - - - 0.26 0.27 0.23 0.13 - -
Eval. Succ. 0.88 0.80 0.92 0.89 0.88 0.89 0.90 0.90 0.90 0.90 0.56 0.80 0.78 0.74 0.67 0.82 0.80
Eval. SPL 0.37 0.38 0.42 0.38 0.42 0.47 0.40 0.39 0.43 0.51 0.22 0.26 0.29 0.25 0.20 0.33 0.34

Table 1: Empirical evaluation of our agents on 3 environments in terms of object-nav metrics.

solver to have a realistic bound on robot response time. Each algorithm is evaluated over 50 episodes
in real and 300 episodes in simulated environments. During training, whenever Algorithm 1 receives
a positive signal on a given vantage point, this signal is extended to nearby points (see Appendix B
for details). Figure 3 (a) shows a sample trajectory during the real kitchen evaluation. Figure 3 (b)
shows a sample learned likelihood map for the simulated kitchen-1 environment.

We compare the performance of the agents on the following metrics: a) rate of success during
evaluation (“Eval. Succ.”), b) SPL [6] during training (“Train SPL”), and c) SPL during evaluation
(“Eval. SPL”). Higher “Train SPL” indicates faster rate of convergence. Table 1 presents the results
of our first study, where we compare different learning and planning approaches for an arbitrary
spatial distribution of test objects. The columns labeled “GT-Scores” use ground truth likelihoods
of the vantage points computed as shown in Figure 2 (right) and mapped in Figures C.1, and C.2 in
Appendix C. For both training and evaluation, we use 25 vantage points for the real environment and
the kitchen environment 1 and 50 for kitchen environment 2.

Our first observation is the significant improvement in performance achieved by our planners using
“GT-Scores” over “TSP” in all the environments, and this validates the importance of estimating the
importance of the vantage points in the context of the target object in addition to optimizing for the
room geometry. The performances for “GT-Scores” provide an upper bound for the agents that learn
the likelihood function through exploration. Although the performance of “CP-SAT” shines in the
real evaluation, under the planning time budget of 30 seconds, the performance of our proposed
one-step greedy solver regularly matches up and often beats the CP-SAT solver, especially in larger
and more cluttered kitchen environment 2. The performance of the “Neural” model often seems to
lag behind the “Gen-Lin” model. This is because the “Gen-Lin” model does not have to generalize
across all the object categories with the same set of parameters and hence has a less challenging
learning problem to solve. Please visit the project website1 for videos of real world tests.

5 Limitations and Future Work

Our proposed approach can get adversely affected due to: 1) detection failure, 2) slowness of WMLP,
and 3) early stopping of CP-SAT solver (not running the CP-SAT solver until the end may give
us feasible but poor solutions). Inclusion of orientation along with the robot’s base position can
help in mitigating missed detections. Using richer feature embeddings can also improve object
detection from distance. Related to that, the choice of the network architecture in the Neural model is
severely limited by our usage of the NTK approximation to compute confidence bounds. Leveraging
more time-efficient approximation schemes may allow for more complex (and potentially more
accurate) network architectures. Faster convergence is possible in training by using a likelihood-
guided sampling scheme but this may also create opportunities for local minima. These are among
the missing aspects we are currently investigating.

9

References

[1] Yasin Abbasi-Yadkori, David Pál, and Csaba Szepesvári. Improved algorithms for linear
stochastic bandits. In NIPS, 2011.

[2] F. Afrati, S. Cosmadakis, C. Papadimitriou, G. Papageorgiou, and N. Papakostantinou. The
complexity of the traveling repairman problem. Theoretical Informatics and Applications,
20(1):79–86, 1986.

[3] Michael Ahn, Anthony Brohan, Noah Brown, Yevgen Chebotar, Omar Cortes, Byron David,
Chelsea Finn, Keerthana Gopalakrishnan, Karol Hausman, Alex Herzog, et al. Do as i can, not
as i say: Grounding language in robotic affordances. arXiv preprint arXiv:2204.01691, 2022.

[4] Peter Anderson, Angel Chang, Devendra Singh Chaplot, Alexey Dosovitskiy, Saurabh Gupta,
Vladlen Koltun, Jana Kosecka, Jitendra Malik, Roozbeh Mottaghi, Manolis Savva, et al. On
evaluation of embodied navigation agents. arXiv preprint arXiv:1807.06757, 2018.

[5] Peter Anderson, Qi Wu, Damien Teney, Jake Bruce, Mark Johnson, Niko Sünderhauf, Ian Reid,
Stephen Gould, and Anton Van Den Hengel. Vision-and-language navigation: Interpreting
visually-grounded navigation instructions in real environments. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 3674–3683, 2018.

[6] Dhruv Batra, Aaron Gokaslan, Aniruddha Kembhavi, Oleksandr Maksymets, Roozbeh Mottaghi,
Manolis Savva, Alexander Toshev, and Erik Wijmans. Objectnav revisited: On evaluation of
embodied agents navigating to objects. CoRR, abs/2006.13171, 2020.

[7] A. Blum, P. Chalasani, D. Coppersmith, B. Pulleyblank, P. Raghavan, and M. Sudan. The
minimum latency problem. In STOC, pages 163–171, 1994.

[8] Francisco Bonin-Font, Alberto Ortiz, and Gabriel Oliver. Visual navigation for mobile robots:
A survey. Journal of intelligent and robotic systems, 53(3):263–296, 2008.

[9] Johann Borenstein and Yoram Koren. Real-time obstacle avoidance for fast mobile robots.
IEEE Transactions on systems, Man, and Cybernetics, 19(5):1179–1187, 1989.

[10] Johann Borenstein, Yoram Koren, et al. The vector field histogram-fast obstacle avoidance for
mobile robots. IEEE transactions on robotics and automation, 7(3):278–288, 1991.

[11] Eduardo F Camacho and Carlos Bordons Alba. Model predictive control. Springer science &
business media, 2013.

[12] N. Cesa-Bianchi and C. Conconi, A. Gentile. A second-order perceptron algorithm. SIAM
J.Comput., 34(3):640–668, 2005.

[13] Angel Chang, Angela Dai, Thomas Funkhouser, Maciej Halber, Matthias Niessner, Manolis
Savva, Shuran Song, Andy Zeng, and Yinda Zhang. Matterport3d: Learning from rgb-d data in
indoor environments. International Conference on 3D Vision (3DV), 2017.

[14] Angel Chang, Angela Dai, Thomas Funkhouser, Maciej Halber, Matthias Niessner, Manolis
Savva, Shuran Song, Andy Zeng, and Yinda Zhang. Matterport3d: Learning from rgb-d data in
indoor environments. arXiv preprint arXiv:1709.06158, 2017.

[15] Devendra Singh Chaplot, Dhiraj Gandhi, Abhinav Gupta, and Ruslan Salakhutdinov. Object
goal navigation using goal-oriented semantic exploration. In In Neural Information Processing
Systems (NeurIPS), 2020.

[16] Devendra Singh Chaplot, Dhiraj Gandhi, Saurabh Gupta, Abhinav Gupta, and Ruslan Salakhut-
dinov. Learning to explore using active neural slam. In International Conference on Learning
Representations (ICLR), 2020.

[17] Devendra Singh Chaplot, Ruslan Salakhutdinov, Abhinav Gupta, and Saurabh Gupta. Neural
topological slam for visual navigation. In CVPR, 2020.

[18] K. Chaudhuri, B. Godfrey, S. Rao, and K. Talwar. Paths, trees, and minimum latency tours. In
Proc. 44th Symposium on Foundations of Computer Science (FOCS 2003), pages 36–45, 2003.

[19] Tao Chen, Saurabh Gupta, and Abhinav Gupta. Learning exploration policies for navigation. In
International Conference on Learning Representations, 2019.

[20] Erwin Coumans and Yunfei Bai. Pybullet, a python module for physics simulation for games,
robotics and machine learning. http://pybullet.org, 2016–2019.

10

http://pybullet.org

[21] Abhishek Das, Samyak Datta, Georgia Gkioxari, Stefan Lee, Devi Parikh, and Dhruv Batra.
Embodied question answering. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 1–10, 2018.

[22] Guilherme N DeSouza and Avinash C Kak. Vision for mobile robot navigation: A survey. IEEE
transactions on pattern analysis and machine intelligence, 24(2):237–267, 2002.

[23] Gamini Dissanayake, Shoudong Huang, Zhan Wang, and Ravindra Ranasinghe. A review
of recent developments in simultaneous localization and mapping. In 2011 6th International
Conference on Industrial and Information Systems, pages 477–482. IEEE, 2011.

[24] Yuval Eldar, Michael Lindenbaum, Moshe Porat, and Yehoshua Y Zeevi. The farthest point
strategy for progressive image sampling. IEEE Transactions on Image Processing, 6(9):1305–
1315, 1997.

[25] Kuan Fang, Fei-Fei Li, Silvio Savarese, and Alexander Toshev. Scene memory transformer for
embodied agents in long time horizon tasks. In CVPR 2019, 2019.

[26] Thomas Fork, H. Eric Tseng, and Francesco Borrelli. Models and predictive control for
nonplanar vehicle navigation. In 24th IEEE International Intelligent Transportation Systems
Conference, ITSC 2021, Indianapolis, IN, USA, September 19-22, 2021, pages 749–754. IEEE,
2021.

[27] Anthony G Francis, Carolina Parada, Dmitry Kalashnikov, Edward Lee, Fei Xia, Jake Varley,
Jie Tan, Krzysztof Marcin Choromanski, Leila Takayama, Mikael Persson, et al. Learning
model predictive controllers with real-time attention for real-world navigation. In CoRL, 2022.

[28] A. Garcia, P. Jodra, and J. Tejel. A note on the traveling repairman problem. Networks,
40(1):27–31, 2002.

[29] Carlos E. Garcia, David M. Prett, and Manfred Morari. Model predictive control: Theory and
practice - A survey. Autom., 25(3):335–348, 1989.

[30] C. Gentile and F. Orabona. On multilabel classification and ranking with partial feedback. In
Advances in Neural Information Processing Systems, volume 25, pages 1151–1159. Curran
Associates, Inc., 2012.

[31] Georgios Georgakis, Bernadette Bucher, Karl Schmeckpeper, Siddharth Singh, and Kostas
Daniilidis. Learning to map for active semantic goal navigation. In International Conference
on Learning Representations, 2022.

[32] Daniel Golovin, Benjamin Solnik, Subhodeep Moitra, Greg Kochanski, John Karro, and
D. Sculley. Google vizier: A service for black-box optimization. In Proceedings of the
23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages
1487–1495. ACM, 2017.

[33] Google. Google OR-Tools. https://developers.google.com/optimization. [Online;
accessed 10-June-2022].

[34] Xiuye Gu, Tsung-Yi Lin, Weicheng Kuo, and Yin Cui. Open-vocabulary object detection via
vision and language knowledge distillation. arXiv preprint arXiv:2104.13921, 2021.

[35] Elad Hazan, Amit Agarwal, and Satyen Kale. Logarithmic regret algorithms for online convex
optimization. Mach. Learn., 69(2-3):169–192, 2007.

[36] Sebastian Höfer, Kostas Bekris, Ankur Handa, Juan Camilo Gamboa, Melissa Mozifian, Florian
Golemo, Chris Atkeson, Dieter Fox, Ken Goldberg, John Leonard, et al. Sim2real in robotics
and automation: Applications and challenges. IEEE transactions on automation science and
engineering, 18(2):398–400, 2021.

[37] Dongsung Kim and Ramakant Nevatia. Symbolic navigation with a generic map. Autonomous
Robots, 6(1):69–88, 1999.

[38] Eric Kolve, Roozbeh Mottaghi, Winson Han, Eli VanderBilt, Luca Weihs, Alvaro Herrasti,
Daniel Gordon, Yuke Zhu, Abhinav Kumar Gupta, and Ali Farhadi. Ai2-thor: An interactive 3d
environment for visual ai. ArXiv, abs/1712.05474, 2017.

[39] E. Koutsoupias, C. Papadimitriou, and M. Yannakakis. Searching a fixed graph. In Proc. 23nd
Colloquium on Automata, Languages and Programming, pages 280–289, 1996.

[40] Jan Karel Lenstra and AHG Rinnooy Kan. Some simple applications of the travelling salesman
problem. Journal of the Operational Research Society, 26(4):717–733, 1975.

11

https://developers.google.com/optimization

[41] Lihong Li, Wei Chu, John Langford, and Robert E Schapire. A contextual-bandit approach to
personalized news article recommendation. In Proceedings of the 19th international conference
on World wide web, pages 661–670, 2010.

[42] Spyros Maniatopoulos, Dimitra Panagou, and Kostas J. Kyriakopoulos. Model predictive control
for the navigation of a nonholonomic vehicle with field-of-view constraints. In American Control
Conference, ACC 2013, Washington, DC, USA, June 17-19, 2013, pages 3967–3972. IEEE,
2013.

[43] M. Meng and A.C. Kak. Mobile robot navigation using neural networks and nonmetrical
environmental models. IEEE Control Systems Magazine, 13(5):30–39, 1993.

[44] Min Meng and Avinash C Kak. Neuro-nav: a neural network based architecture for vision-
guided mobile robot navigation using non-metrical models of the environment. In [1993]
Proceedings IEEE International Conference on Robotics and Automation, pages 750–757.
IEEE, 1993.

[45] E. Minieka. The delivery man problem on a tree network. Ann. Oper. Res., 18:261–266, 1989.

[46] Arsalan Mousavian, Alexander Toshev, Marek Fišer, Jana Košecká, Ayzaan Wahid, and James
Davidson. Visual representations for semantic target driven navigation. In 2019 International
Conference on Robotics and Automation (ICRA), pages 8846–8852. IEEE, 2019.

[47] J Pan, DJ Pack, A Kosaka, and AC Kak. Fuzzy-nav: A vision-based robot navigation architecture
using fuzzy inference for uncertainty-reasoning. In Procs. of the World Congress on Neural
Networks, pages 602–607, 1995.

[48] Rolf Pfeifer and Fumiya Iida. Embodied artificial intelligence: Trends and challenges. Embodied
artificial intelligence, pages 1–26, 2004.

[49] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J Guibas. Pointnet++: Deep hierarchical
feature learning on point sets in a metric space. Advances in neural information processing
systems, 30, 2017.

[50] Santhosh K. Ramakrishnan, Devendra Singh Chaplot, Ziad Al-Halah, Jitendra Malik, and
Kristen Grauman. Poni: Potential functions for objectgoal navigation with interaction-free
learning. In Computer Vision and Pattern Recognition (CVPR), 2022 IEEE Conference on.
IEEE, 2022.

[51] A. Santara, G. Aggarwal, S. Li, and C. Gentile. Learning to plan variable length sequences
of actions with a cascading bandit click model of user feedback. In Proceedings of The 25th
International Conference on Artificial Intelligence and Statistics, volume 151, pages 767–797,
2022.

[52] J Santos-Victor and Giulio Sandini. Visual-based obstacle detection: a purposive approach using
the normal ow. In Proc. of the International Conference on Intelligent Autonomous Systems,
Karlsruhe, Germany. Citeseer, 1995.

[53] Manolis Savva, Abhishek Kadian, Oleksandr Maksymets, Yili Zhao, Erik Wijmans, Bhavana
Jain, Julian Straub, Jia Liu, Vladlen Koltun, Jitendra Malik, Devi Parikh, and Dhruv Batra.
Habitat: A Platform for Embodied AI Research. In Proceedings of the IEEE/CVF International
Conference on Computer Vision (ICCV), 2019.

[54] Shai Shalev-Shwartz and Amnon Shashua. On the sample complexity of end-to-end training vs.
semantic abstraction training. arXiv preprint arXiv:1604.06915, 2016.

[55] Paul Shaw, Vincent Furnon, and Bruno De Backer. A Constraint Programming Toolkit for Local
Search. Springer US, Boston, MA, 2002.

[56] R. Sitters. The minimum latency problem is np-hard for weighted trees. In Proc. 9th Interna-
tional IPCO Conference, pages 230–239, 2002.

[57] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press,
2018.

[58] Ashit Talukder, S Goldberg, Larry Matthies, and Adnan Ansar. Real-time detection of moving
objects in a dynamic scene from moving robotic vehicles. In Proceedings 2003 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS 2003)(Cat. No. 03CH37453),
volume 2, pages 1308–1313. IEEE, 2003.

12

[59] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information
processing systems, 30, 2017.

[60] Ayzaan Wahid, Austin Stone, Kevin Chen, Brian Ichter, and Alexander Toshev. Learning
object-conditioned exploration using distributed soft actor critic. CoRR, abs/2007.14545, 2020.

[61] Yang Wang and Stephen P. Boyd. Fast model predictive control using online optimization.
IEEE Trans. Control. Syst. Technol., 18(2):267–278, 2010.

[62] Ziqi Wei. New methods for solving the minimum weighted latency problem, 2018.
[63] B.Y. Wu. Polynomial time algorithms for some minimum latency problems. Inf. Process. Lett.,

75(5):225–229, 2000.
[64] Fei Xia, Amir R. Zamir, Zhi-Yang He, Alexander Sax, Jitendra Malik, and Silvio Savarese.

Gibson env: real-world perception for embodied agents. In Computer Vision and Pattern
Recognition (CVPR), 2018 IEEE Conference on. IEEE, 2018.

[65] Xin Ye and Yezhou Yang. From seeing to moving: A survey on learning for visual indoor
navigation (vin). arXiv preprint arXiv:2002.11310, 2020.

[66] Dongruo Zhou, Lihong Li, and Quanquan Gu. Neural contextual bandits with ucb-based
exploration. In International Conference on Machine Learning, pages 11492–11502. PMLR,
2020.

13

APPENDIX

A Theoretical Underpinning

In this section, we present Algorithm 2 and prove Theorem 1 from the main body of the paper. We
first need a couple of ancillary lemmas.

Lemma 1 Let Algorithm 2 be run on an ε-cover Fε with ε = O(1/
√
t). Let episode t be such that

|θ>φ(it, x)− φ(it, x)>θ̂′ct | ≤ εt(x) for all x ∈ F . Also, let DM = maxx,x′∈F dist?(x, x
′) denote

the diameter of the scene. Then

Eit [L(yt, Jt)]− Eit [L(yt, J
?)] = O

(
(1− P(Et))

(
k2√
t

+DM k

k∑
`=1

εt(xπt(`),t)

))
,

where Et denotes the failure event during episode t.

Proof. We fix episode t and remove subscript t and ct for convenience. As short-hands, let us denote
by J = 〈x1, . . . , xk〉 the path computed by Algorithm 2 in episode t and by J?ε = 〈x?1,ε, . . . , x?k,ε〉
the minimizer of (2) when the k vantage points are constrained to lie in the ε-cover Fε. We clearly
have

|Ei[L(y, J?ε)]− Ei[L(y, J?)]| ≤ (1− P(Et))k(k + 1)ε

= O

(
(1− P(Et))

k2√
t

)
.

Moreover,

1

(1− P(Et))
Ei[L(y, J)]− Ei[L(y, J?ε)]

=

k∑
`=1

pi(x`)
∑̀
j=1

dist?(xj−1, xj)−
k∑
`=1

pi(x
?
`,ε)
∑̀
j=1

dist?(x
?
j−1,ε, x

?
j,ε)

≤
k∑
`=1

σ
(
θ>φ(i, x`)

)∑̀
j=1

dist?(xj−1, xj)−
k∑
`=1

σ
(
θ̂>φ(i, x?`,ε)− ε(x?`,ε)

)∑̀
j=1

dist?(x
?
j−1,ε, x

?
j,ε) .

In turn, the above is upper bounded by

k∑
`=1

σ
(
θ>φ(i, x`)

)∑̀
j=1

dist?(xj−1, xj)−
k∑
`=1

σ
(
θ̂>φ(i, x`)− ε(x`)

)∑̀
j=1

dist?(xj−1, xj)

≤
k∑
`=1

σ
(
θ̂>φ(i, x`) + ε(x`)

)∑̀
j=1

dist?(xj−1, xj)−
k∑
`=1

σ
(
θ̂>φ(i, x`)− ε(x`)

)∑̀
j=1

dist?(xj−1, xj)

≤
k∑
`=1

2ε(x`)
∑̀
j=1

dist?(xj−1, xj)

= O

(
DM k

k∑
`=1

ε(x`)

)
.

Putting together proves the claim.

Lemma 2 Let B > 0 be such that θ>φ(i, x) ∈ [−B,B] for all i ∈ [n] and x ∈ F . Moreover, let
cσ and cσ′ be two positive constants such that, for all ∆ ∈ [−D,D] the conditions 0 < 1 − cσ ≤
σ(∆) ≤ cσ < 1 and σ′(∆) ≥ cσ′ hold. Then with probability at least 1− δ, with δ < 1/e, we have

dct−1(θ, θ̂′ct) ≤ α(k,D, T, δ, B) ,

14

uniformly over ct ∈ [kT], where

α(k,D, T, δ, B)

= O

(
kB2 +

(
cσ
cσ′

)2

D log

(
1 +

1

k

(t cσ
1− cσ

+ log
t+ 1

δ

))
+

((
cσ
cσ′

)2

+
1 +B

cσ′

)
log

k(t+ 1)

δ

)
.

Proof. The proof follows from standard concentration arguments applied to the logistic loss, which
Algorithm 2 implicitly operates on. See, e.g., [51], Lemma 5 therein which, in turn, relies on [35]
and [30]. The argument therein can be applied to the non-failing episodes, that is, those episodes
on which state updates occur. In our bound above we are simply over-approximating the number of
non-failing episodes within the first t episodes with t itself.

Proof of Theorem 1 From Lemma 2 and the Cauchy-Schwarz inequality it follows that

(θ>φ(i, x)− φ(i, x)>θ̂′ct)
2 ≤ φ(i, x)>M−1ct−1φ(i, x) dct−1(θ, θ̂′ct)

≤
(
φ(i, x)>M−1ct−1φ(i, x)

)
α(k,D, T, δ, B)

for all i ∈ [n] and x ∈ F . Hence we can apply Lemma 1 with

ε2t (x) =
(
φ(i, x)>M−1ct−1φ(i, x)

)
α(k,D, T, δ, B) .

Let Et denote the failure event at episode t, with P(Et) = p for all t. Summing over t = 1, . . . , T , we
can write
T∑
t=1

(
Eit [L(yt, Jt)]− Eit [L(yt, J

?)]
)

= O

(1− p)k2
√
T +DM kE

 T∑
t=1, Et=0

k∑
`=1

εt(xπt(`),t)

 = O

(
(1− p)k2

√
T +DM k

√
α(k,D, T, δ, B) E

)
,

where E is a short-hand for

E

[
T∑

t=1, Et=0

k∑
`=1

√
φ(it, xπt(`),t)

>M−1ct−1φ(it, xπt(`),t)

]
.

We now follow similar arguments as in the proof of Theorem 1 in [51] by focusing on

T∑
t=1, Et=0

k∑
`=1

φ(it, xπt(`),t)
>M−1ct−1φ(it, xπt(`),t) .

First, by virtue of Lemma 6 in [51], we have, for each t,

k∑
`=1

φ(it, xπt(`),t)
>M−1ct−1φ(it, xπt(`),t) ≤ e

k∑
`=1

φ(it, xπt(`),t)
>M−1ct−1+` φ(it, xπt(`),t) ,

so that
T∑

t=1, Et=0

k∑
`=1

φ(it, xπt(`),t)
>M−1ct−1φ(it, xπt(`),t) ≤ e

T∑
t=1, Et=0

k∑
`=1

φ(it, xπt(`),t)
>M−1ct−1+` φ(it, xπt(`),t)

= O (D log(1 + kT)) ,

the last inequality following from standard upper bounds (e.g., [12, 1]). As a consequence

T∑
t=1, Et=0

k∑
`=1

√
φ(it, xπt(`),t)

>M−1ct−1φ(it, xπt(`),t) = O


√√√√kD log(1 + kT)

T∑
t=1

(1− Et)

 ,

15

Figure C.1: Map of Simulated Kitchen 1 with distribution of occurrence of the five target objects
categories “cup”, “chips-bag”, “bottle”, “bowl”, and “can”.

which we plug back. Using the concavity of the square root, this allows us to obtain

T∑
t=1

(
Eit [L(yt, Jt)]− Eit [L(yt, J

?)]
)

= O
(

(1− p)k2
√
T +DM k

√
(1− p)kT α(k,D, T, δ, B)D log(1 + kT)

)
.

Finally, observe that, since σ(z) = exp (z)
1+exp (z) , we have within the expression for α(k,D, T, δ,B) in

Lemma 2, cσ = eB

1+eB
(hence cσ

1−cσ = eB), and cσ′ = e−B/(1 + e−B)2 ≥ e−B/4. Plugging back
concludes the proof.

In a nutshell, the above analysis provides a high-probability regret guarantee of the form k2D
√
T ,

when hyperparameters η and α in Algorithm 1 are assigned specific values, as detailed in Algorithm
2.

B Data augmentation

Each vantage point is described by a vector with positional, geometric and semantic features of the
point along with the identity of the target object. We triangulate the position of the target object once
the agent spots it from a vantage point. In order to improve learning efficiency, we assign positive
training signal (“+1”) to all the navigable points within rvis radius from the object. Figure 2 (left)
illustrates this procedure.

C Object distributions

In this section, we describe the way objects are spawned in the environment in simulation. We only
consider objects that are kept on table-tops. As shown in Figures C.1 and C.2, each table in the
environment has a certain probability of housing the object. In each episode, for each object category,
a table is sampled from the corresponding probability distribution. A location on the surface of
the selected table is then picked uniformly at random to determine the object location within the
environment. We also experimented with a peaky object distribution, where each object category was
assigned a different table to be spawned exclusively on. We present the results in Table C.1 and the
observations are similar to those reported in Section 4.

D Hyper-parameters

Tables D.1, D.2 and D.3 contain the hyperparameters for each of the algorithms tested in our
experiments. Table D.5 gives the values searched for each hyperparameter.

16

Algorithm 2 Contextual bandit planning algorithm.
Input: ε-cover Fε of F , ε > 0, path length k, maximal range B > 0.
Init: M0 = kI ∈ RD×D, θ̂1 = 0 ∈ RD, c1 = 1.
For t = 1, 2, . . . , T

1. Get object identity it , and initial position of the robot x0,t ;
2. For x ∈ F , set

∆̂t(x) = φ(it, x)>θ̂′ct(x) and ε2t (x) = α(k,D, T, δ, B)φ(it, x)>M−1ct−1φ(it, x) ,

where

θ̂′ct(x) = arg min
θ :−B≤θ>φ(it,x)≤B

dct−1(θ, θ̂ct) ;

and

α(k,D, T, δ, B) = O

(
kB2 +

(
cσ
cσ′

)2

D log

(
1 +

1

k

(t cσ
1− cσ

+ log
t+ 1

δ

))

+

((
cσ
cσ′

)2

+
1 +B

cσ′

)
log

k(t+ 1)

δ

)

3. Compute Jt = 〈xπt(1),t, . . . , xπt(k),t〉 as //solve WMLP at episode t

Jt = arg min
x1...xk∈Fε
permutation π

k∑
`=1

σ
(

∆̂t(xπ(`)) + εt(xπ(`))
)∑̀
j=1

dist?(xπ(j−1), xπ(j))

4. Observe signal


〈s1,t, . . . , sk′t,t〉 = 〈−1, . . . ,−1,+1〉 set mt = k′t
or
〈s1,t, . . . , sk,t〉 = 〈−1, . . . ,−1,−1〉 set mt = 0

5. For j = 1, . . . ,mt (in the order of occurrence of items xj in Jt) update:

Mct+j−1 = Mct+j−2 + φ(it, xj)φ(it, xj)
>,

θ̂ct+j = θ̂′ct+j−1 +
1

cσ′
M−1ct+j−1∇j,t ,

where∇j,t = σ(−sj,t ∆̂′t(xj)) sj,t φ(it, xj) , where ∆̂′t(xj) = φ(it, xj)
>θ̂′ct+j−1

with
θ̂′ct+j−1 = arg min

θ :−B≤θ>φ(it,xj)≤B
dct+j−2(θ, θ̂ct+j−1) ;

6. ct+1 ← ct +mt .

17

Figure C.2: Map of Simulated Kitchen 2 with distribution of occurrence of the five target objects
categories “cup”, “chips-bag”, “bottle”, “bowl”, and “can”.

Kitchen Environment 1 (Peaky distributions)
Gen-Lin Neural GT-ScoresTSP Greedy CPSAT Greedy CP-SAT Greedy CP-SAT

Train SPL - 0.39 0.37 0.35 0.28 - -
Eval Succ Rate 0.88 0.9 0.86 0.85 0.88 0.88 0.91

Eval SPL 0.40 0.46 0.55 0.41 0.45 0.56 0.65
Table C.1: Experimental comparison of performance of our agents on a peaky object distribution in
Kitchen Environment 1 against the metrics mentioned in Section 4.

Table D.1: Hyperparameters for experiments with Non-Peaky object distributions in Kitchen Envi-
ronment 1.

Gen-Lin Neural
Hyperparameter Greedy CP-SAT Greedy CP-SAT

Learning Rate (η) 0.44 100 0.01 0.01
Exploration parameter (α) 0.1 0.1 0.1 3.44
Number of vantage points (k) 25 25 25 25
Alpha planner (αp) 0.48 - 0.43 -
Map Resolution 75 75 75 75
Positional Embedding Size 50 15 50 10
Feature Vector Normalization l2-norm l2-norm l2-norm l2-norm
Sigmoid Scale (s) 1.0 1.0 20.0 19.8

Table D.2: Hyperparameters for experiments with Non-Peaky object distributions in Kitchen Envi-
ronment 2.

Gen-Lin Neural
Hyperparameter Greedy CP-SAT Greedy CP-SAT

Learning Rate (η) 16.62 10.44 0.01 0.01
Exploration parameter (α) 10 0.1 0.1 2.04
Number of vantage points (k) 50 50 50 50
Alpha planner (αp) 0.49 - 0.38 -
Map Resolution 37 37 75 75
Positional Embedding Size 20 50 50 15
Feature Vector Normalization mean-var mean-var mean-var mean-var
Sigmoid Scale (s) - - 10.00 17.56

18

Figure C.3: The image shows grid based feature space where a local image patch from various places
in the wall distance map are shown. The dotted white boxes indicated from which region the patch
features are coming and the patches show how the features look when scaled to a 16× 16 grid.

Table D.3: Hyperparameters for experiments with Peaky object distributions in Kitchen Environment
1.

Gen-Lin Neural
Hyperparameter Greedy CP-SAT Greedy CP-SAT

Learning Rate (η) 3.98 75.41 0.01 0.01
Exploration parameter (α) 7.15 2.59 0.10 1.40
Number of vantage points (k) 25 25 25 25
Alpha planner (αp) 0.59 - 0.57 -
Map Resolution 75 75 75 75
Positional Embedding Size 10 20 10 10
Feature Vector Normalization l2-norm l2-norm l2-norm l2-norm
Sigmoid Scale - - 20.00 10.67

Table D.4: Hyperparameter for experiments in the real world.
Hyperparameter Greedy CP-SAT

Learning Rate (η) 0.01 0.01
Exploration parameter (α) 0.11 0.1
Number of vantage points (k) 25 25
Alpha planner (αp) 0.49 -
Map Resolution 75 75
Positional Embedding Size 20 30
Feature Vector Normalization l2-norm l2-norm
Sigmoid Scale 18.38 15.78

Table D.5: Hyperparameter search ranges and scales.
Hyperparameter Values Searched Search Scale

Learning Rate (η) (Gen-Lin model only) [0.01, 100.0] Log
Exploration parameter (α) [0.1, 10.0] Linear
Number of vantage points (k) {25, 50} –
Alpha planner (αp) (Greedy only) [0.1, 0.9] Linear
Map Resolution {37, 75, 150} –
Positional Embedding Size {5, 10, 15, 20, 30, 50} –
Feature Vector Normalization {l2-norm,mean-var} –
Sigmoid Scale (for Neural model only) [10, 20] Linear

19

Figure D.1: Running time of CP-SAT solver on Intel Xeon 8-core CPU for different numbers of
vantage points in Kitchen Environment 2 environment.

20

	1 Introduction
	2 Model and Algorithm
	3 Proposed Method
	3.1 Sampling vantage points
	3.2 Node Level Importance Assignment
	3.3 Planning

	4 Experiments
	5 Limitations and Future Work
	A Theoretical Underpinning
	B Data augmentation
	C Object distributions
	D Hyper-parameters

