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Abstract—3D point cloud semantic segmentation is one
of the fundamental tasks for environmental understanding.
Although significant progress has been made in recent years, the
performance of classes with few examples or few points is still
far from satisfactory. In this paper, we propose a novel multi-
to-single knowledge distillation framework for the 3D point
cloud semantic segmentation task to boost the performance of
those hard classes. Instead of fusing all the points of multi-scans
directly, only the instances that belong to the previously defined
hard classes are fused. To effectively and sufficiently distill
valuable knowledge from multi-scans, we leverage a multilevel
distillation framework, i.e., feature representation distillation,
logit distillation, and affinity distillation. We further develop a
novel instance-aware affinity distillation algorithm for captur-
ing high-level structural knowledge to enhance the distillation
efficacy for hard classes. Finally, we conduct experiments on the
SemanticKITTI dataset, and the results on both the validation
and test sets demonstrate that our method yields substantial
improvements compared with the baseline method. The code is
available at https://github.com/skyshoumeng/M2SKD.

I. INTRODUCTION

3D point cloud semantic segmentation aims to classify
every point of a given scan into a certain class, which is
crucial for various applications such as the navigation of
autonomous vehicles [1], [2]. Although significant progress
has been made in recent years [3]-[6], with increased dis-
tance to the sensor, almost all approaches perform worse with
sparse point clouds [7]. This is especially true for classes
with few examples or only a small number of points in a
single scan, such as motorcyclists, trucks and poles. The
task becomes very hard even for human eyes. However, in
realistic situations, such as the autonomous driving scenario,
accurate segmentation of sparse objects can be of great
importance. For example, an object with few points, such
as pedestrians and bicyclists, could be seriously affected by
incorrect segmentation and can eventually lead to crashing
into curbs and other road traffic accidents.

In recent years, several studies have been proposed to
address the distance-dependent sparsity problem. For ex-
ample, SqueezeSeg [8] was proposed to generate a denser
range image, which meant that all point cloud information
was retained in the range image. However, since it adopted
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the commonly used 2D convolution operations for feature
extraction, it could not explore the 3D geometric pattern
very well. The Cylinder3D framework [9] proposed a cylin-
drical partition and a symmetrical 3D convolution network
to better explore the 3D geometric pattern and tackle the
difficulties caused by sparsity and varying density. However,
as the method lacked an explicit investigation of feature
representation learning for sparse objects, the segmentation
performance on these objects was still less than satisfactory.
PVKD [10] proposed a point-to-voxel knowledge distillation
approach for model compression. To enhance the distilla-
tion efficacy of the minority classes and distant objects, a
difficulty-aware sampling strategy was employed to more
frequently sample these hard classes. However, there were
also shortcomings in this method. One of them was that there
may be many background points in the supervoxels, which
could cause disturbance in distillation learning for the hard
classes. Another problem was that knowledge distillation was
only performed in a single scan, lacking the exploration of
sequential information.

Therefore, to boost the segmentation performance of in-
stances with only a small number of points in a single scan,
we propose a novel multi-to-single knowledge distillation
framework for the 3D point cloud semantic segmentation
task. Specifically, we try to generate more dense points for
these hard instances by combining multi-scans into a single
large point cloud. However, since the sequential information
cannot be obtained in inference, the enhanced point cloud is
only used as a supervision for better feature representation
learning in model training. To this aim, we propose a simple
yet effective priori-based sparse fusion strategy to make the
model focus on the hard classes naturally and reduce the
computational cost at the same time: instead of fusing all
the points of multiple past scans directly, only the instances
belonging to the previously defined classes (hard classes)
are fused. We adopt point cloud registration technology
to obtain more precise position alignment and accurate
fusion results. For knowledge distillation, we leverage a
multilevel distillation framework for knowledge translation,
i.e., feature representation distillation, logit distillation, and
affinity distillation. For affinity distillation, we develop a
novel instance-aware affinity distillation method to capture
high-level structural data more effectively for each instance,
and the distillation efficiency for the hard classes can also
be enhanced in the training procedure.

To evaluate the effectiveness of our proposed method, we
conduct experiments on the SemanticKITTI dataset [7], and
the results on both the validation and test sets demonstrate



that our algorithm can outperform the baseline method by
a large margin. We also conduct several ablation studies
to examine the efficacy of each component. Qualitative and
quantitative results are reported with a detailed description,
and an analysis is also given for future works.

In summary, our contributions include the following:

1. We propose a novel multi-to-single knowledge distilla-
tion framework for 3D point cloud semantic segmentation.

2. We propose a simple yet effective priori-based sparse
fusion strategy to make the model focus on hard classes
naturally and enhance the distillation efficacy in training.

3. Multilevel knowledge distillation is adopted to fully ex-
ploit the information in the sequences, and a novel instance-
aware affinity distillation is further proposed to better capture
the high-level structural knowledge in each instance.

4. We conduct experiments on the SemanticKITTI dataset,
and superior performance is achieved over the baseline
method by a significant margin.

II. RELATED WORK
A. LiDAR Semantic Segmentation

3D point cloud semantic segmentation is a fundamental
task for the navigation of autonomous vehicles. The distance-
dependent sparsity of point clouds presents a great chal-
lenge to the semantic segmentation task. SqueezeSeg [8]
proposed generating a denser range image by exploiting the
way the rotating scanner captures the point cloud data, so
the distance-dependent sparsity problem could be partially
solved. 3DMiniNet [11] proposed learning a 2D represen-
tation from the raw points through a projection operation,
which could effectively extract local and global information
from the 3D data, showing promising and effective results.
Cylinder3D [9] proposed a new framework to better explore
the 3D geometric pattern and tackle these difficulties caused
by sparsity and varying density through cylindrical partition
and asymmetrical 3D convolution networks. (AF)2-S3Net
[12] demonstrated a multi-branch attentive feature fusion
module in the encoder and an adaptive feature selection
module in the decoder that could simultaneously capture and
emphasize fine details for smaller instances while focusing
on global contexts embodied in larger instances. In [13],
based on the observation that the distribution of objects
is severely biased, it proposed a location-guided feature
module to extract features with input-dependent convolutions
in different regions. AMVNet [14] proposed a modular-and-
hierarchical late fusion approach with an assertion-guided
sampling strategy, where features of the uncertain points
are sampled to a point head for more accurate predictions.
RPVNet [15] proposed a deep fusion framework with a
gated fusion module that aimed to utilize different view
advantages and alleviate their own shortcomings in fine-
grained segmentation tasks. Although the above models have
shown impressive performance on various benchmarks, the
performance of classes with few points is still far from sat-
isfactory. By combining multi-scans into a single large point
cloud, the point representation of objects can be enhanced.
However, how to make use of sequential information to

boost the segmentation performance on these objects with
few points has not been sufficiently exploited.

B. Knowledge Distillation

Knowledge distillation was introduced in the seminal work
[16], which aimed to minimize the KL divergence of soft
class probabilities between the teacher and the student model.
Knowledge distillation has been considered an effective
approach for both model compression and model accuracy
boosting.

SKD [17] presented two structured knowledge distillation
strategies, pair-wise distillation and holistic distillation, and
the pair-wise and high-order consistency was enforced be-
tween the outputs of the compact and cumbersome networks.
GID [18] introduced relation-based knowledge for distilla-
tion on object detection tasks and further integrated it with
response-based and feature-based knowledge, making the
student model even surpass the teacher model. PVKD [10]
proposed a point-to-voxel knowledge distillation approach
and a difficulty-aware sampling strategy to enhance the
distillation efficacy, specifically in hard cases. In [19], they
proposed a new knowledge distillation method by reinterpret-
ing the output from the teacher network to a re-represented
latent domain, which made student model learning much
easier, and it also proposed an affinity distillation module
to help the student network capture long-term dependencies
from the teacher network. WKD [20] proposed a novel
knowledge distillation method that decomposed the images
into different frequency bands with discrete wavelet trans-
formation and then only distilled the high-frequency bands.
Although previous distillation approaches have shown excel-
lent performance in broad applications in machine learning,
distillation between a single scan and sequential information
has not been fully explored. To the best of our knowledge, we
are the first to propose the multi-to-single scan point cloud
knowledge distillation.

III. PROPOSED METHOD

In this section, we first present the details of our proposed
priori-based sparse fusion strategy, and then the multilevel
knowledge distillation approach is introduced. The overview
of our proposed framework is shown in Figure [T}

A. Multi-scan Fusion

1) Priori-based Sparse Fusion: By exploiting information
from a sequence of multiple past scans, the segmentation
performance of the current scan can be improved. However,
in the standard multi-scan fusion method, the adjacent scans
are simply combined by the global pose translation. Such
a simple combination approach has one obvious problem,
i.e., the fusion result of the current scan contains a large
number of point clouds, and large quantities of computational
resources are needed. In fact, in the semantic segmentation
task, the performance for some ground or structure categories
is already fairly good, so the sequential information is of little
help to the segmentation results of these categories.
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The pipeline of our proposed multi-to-single knowledge distillation framework. There are two branches in our framework. One is the single-scan

segmentation pipeline, and the other is the multi-scan fused segmentation pipeline. It should be noted that only the instances belonging to the previously
defined hard classes are fused, and the points of multi-scans are precisely aligned by the point cloud registration algorithm. We leverage a multilevel
knowledge distillation framework to make knowledge distillation more sufficient. Furthermore, an instance-aware affinity distillation approach is proposed
to better capture high-level structural knowledge and enhance distillation efficacy for hard classes.
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Fig. 2. Our copy-paste instance augmentation pipeline. For considerations
of computational efficiency, first, data preprocessing is conducted for the
whole dataset. Then the instances in the single scan and the corresponding
fused instances are stored separately. During training, the instances in
both the instance database and the fusion instance database are sampled
synchronously and then pasted to the single-scan and multi-fused scans,
respectively.

To address the abovementioned problem, we improve the
conventional multi-scan fusion into a sparse fusion based on
a priori. Specifically, instead of fusing all the points of past
multi-scans directly, only the points belonging to the previ-
ously defined classes are fused. The classes with with a lower
IoU are selected as the candidate classes to be enhanced
by exploiting the sequential information. Our approach has
two obvious advantages compared to conventional multi-scan
fusion methods. One is the reduced computational cost of the
fused point cloud, and the other is to force the model to focus

on difficult samples in the knowledge distillation process.

For objects without instance IDs in the SemanticKITTI
dataset [21], such as traffic signs, we proposed a simple
method, for instance, ID generation. In this method, we only
try to generate an instance ID for each object using semantic
labels. However, as there may be many objects belonging to
the same class in each scan, the algorithm must be carefully
designed. Next, we provide a detailed description of the
instance ID generation method. Specifically, we first filter the
point cloud based on semantic labels, and only points that
belong to the specific class are preserved. Then, the farthest
point sampling is performed on the preserved points. If the
distance between the points sampled currently and previously
is less than a certain threshold, the sampling operation is
stopped. Next, we take the sampled points as key points,
and then a distance-based clustering algorithm is performed
with these sampled points. Finally, the unique instance IDs
were assigned to each cluster. The instance ID generation
pipeline is shown in Figure [3]

To further boost the performance of the hard class, we
also adopt the copy-paste instance augmentation approach
[22], [23] in our knowledge distillation framework. The
augmentation pipeline is shown in Figure [2]

Another challenging problem is to tackle the moving and
non-moving classes in each scan, i.e., cars and buildings.
The straightforward fusion method based on the global pose
translation cannot handle moving objects. To solve this prob-
lem, we separate the fusion process into two different parts:
moving objects and non-moving objects, respectively. Non-



moving object fusion can be simply achieved by the global
pose translation and multi-scan point cloud combination.
Because there is no pose translation information for each
object, moving object fusion becomes more difficult. To
cope with this problem, we adopt point cloud registration
technologies to obtain more precise fusion results, and the
details of the fusion by registration approach are presented
in the following section.

2) Fusion by Registration: In the priori-based sparse
fusion, one of the most straightforward ways is that for each
moving instance, we simply move the point cloud of the
corresponding instance in the adjacent scans to the current
position. However, in this case, determining the precise
location of the instance becomes crucial. We found exper-
imentally that the commonly used centroid-based methods
work well in most cases, and the centroid-based approach
is also very efficient in practice. However, in regard to the
sparser instances, such as the bicyclist and motorcyclist in
the distance, or the car in a turn, the simple centroid-based
alignment method will become fail.

To achieve a more precise fusion result, we adopt point
registration technology to solve the misalignment problem in
the fusion operation. Specifically, for each candidate instance
in the current scan, we first gather all the corresponding
instances in the adjacent scans, and then we use the centroid-
based method as a fast way to provide a feasible initialization
for the following registration algorithm. Finally, a more
precise registration-based point cloud fusion operation is
performed.

Noted that in the SemanticKITTI dataset, the instance ID
is consistent in the adjacent scans, so we can use the ground
truth data in the above registration alignment operation to
find the same instance in the adjacent scans. In other datasets
where a consistent instance ID cannot be obtained from the
annotation data, one feasible way is to generate them using
object-tracking methods.

B. Multilevel Knowledge Distillation

Different from the standard knowledge distillation task,
which aims to facilitate the training of a lightweight stu-
dent model under the supervision of a sophisticated teacher
model, we try to distill the enhanced feature representation
from the multi-scan combination input to the single scan
input.

1) Feature Representation Distillation: To make the
knowledge distillation from multi-scans more sufficient, we
leverage a multilevel distillation framework for knowledge
translation, i.e., feature representation distillation, logit dis-
tillation, and affinity distillation. For the feature-level knowl-
edge distillation, we select the feature from two different
middle layers of the segmentation network for knowledge
distillation learning, i.e., the feature after the second down-
sampling block and the feature after the third up-sampling
block. As mentioned in subsection [[II-A.I] we aim to encour-
age the network to focus on the features of the predefined
hard classes. Since only the classes whose segmentation
performance is below a predefined threshold are fused by the

priori-based sparse fusion operation, we simply constrain the
knowledge distillation regions at the points of fusion areas.
Finally, referring to the methods described in [24], we adopt
the smooth-L1 distance between the student and teacher
model outputs, which is directly optimized for feature-level
knowledge distillation.
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where N is the number of sampled hard points, f. is the
channels of the feature, F{; ;) and the f(; ;) are the features
of the teacher model and the student model respectively, and
T is a predefined threshold parameter.

2) Logits Distillation: In the logits output layer, knowl-
edge distillation is also conducted. Similar to feature repre-
sentation distillation, only the specific regions are considered
in the logit distillation. Following much prior work, we use
the Kullback-Leibler divergence loss to minimize the KL
divergence of class probabilities between the multi-scan and
single-scan outputs. Soft labels are always considered to
contain much more information than one-hot labels, which
can play the roles of supervisory signals and regularizations
at the same time. Therefore, in our experiment, we adopt the
softened version of the teacher and student model logits by
multiplying the logits with a temperature parameter P.

Lorp = — ZZw(Fz(i,c))i(Fl(i’c)) )

where C' is the channels of the logits, ¢() is the softmax
function.

3) Affinity Distillation: Distilling the knowledge of the
output features is insufficient since it considers only individ-
ual elements while the structural information of the surround-
ing environment is ignored. However, structural knowledge
is crucial to the 3D point cloud semantic segmentation model
as the input points are unordered, especially regarding objects
with only a small number of points. One possible solution
is the relational knowledge distillation technology proposed
in [25]. Unlike pixel-wise feature representation knowledge
distillation, relational knowledge distillation attempts to dis-
till the pair-wise relationship of all point features. However,
as mentioned in [10], the affinity distillation process became
computationally expensive and extremely difficult to learn
since the similarity matrix had too many elements. In [10],
they improved the previous relational knowledge distillation
approach by dividing the whole point cloud into several
super voxels and only sampling part of them for the relation
distillation learning. However, direct applying this method
is also problematic, as we mainly focus on obtaining better
feature representations of classes with only a small number
of points, which is most likely to be objects such as bicyclists
or motorcyclists. The supervoxel division mechanism is not
quite suitable for these small objects. Hence, we develop
a simple yet effective instance-aware affinity distillation



Fig. 3.
affinity matrix
affinity matrix [ |
n "
] — — n
5 u -
& L u
§/ o n
ES .
- .. Instance guldr?d . ..
. sampling lmlmlc
lmlmlc
[ |
[ n
B\ m A "
Supervoxel %0 l. —> I.
partition - l. |
| Fusion instance =
(a) PVKD (b) Ours

Fig. 4. Comparison between our proposed instance-aware affinity knowl-
edge distillation approach and the affinity knowledge distillation method
proposed in PVKD [10]. Note that the interference of background points is
totally removed in our approach, and the high-level structural knowledge of
each instance is captured more precisely and effectively.

strategy to overcome the above issues. We only calculate
the pair-wise similarity of point clouds belonging to the same
instances. As these objects always have only a small number
of points, the simpler similarity matrix is computationally
efficient and much easier to learn. In addition, the model can
focus on each instance in the distillation process automati-
cally. The comparison between our instance-aware affinity
distillation approach and the affinity distillation proposed in
PVKD is shown in Figure ]

The instance-aware affinity matrix is calculated according
to the following equation:

Amatrix (Za j) = Fea-(i>TFea(j-)

[ Fea(i)[|?|| Fea(j)]?
where Fea denotes the features of the teacher model or the
student model and Sy, is the point set of the kth instance.

Then, the affinity distillation loss is formulated as:

i,j €Sk, )
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C. The Final Objective Function

i=1 j=1

Our final loss function is composed of four terms, i.e., the
main segmentation task loss for the point-wise prediction of
both the student and teacher models, the smooth-L1 loss for
the feature representation distillation, the Kullback-Leibler
divergence loss for soft logits distillation, and the 12 loss
for the instance-aware affinity distillation:

_rS T
Efinal —Eseg + 51£‘geg

%)
+ B2Lrp + B3Lsrp + Balraap,

Filter by | : EPS with : . ® | Clustering based
labels | carly stopping | = 19 on keypoints

° ¢ 1@

The instance ID generation pipeline for specific classes.

where (1, B2, (3, and (B4 are the loss coefficients used to
balance the contribution of the knowledge distillation loss to
the main segmentation task loss. In our experiments, if not
otherwise stated, 51, 02 and B3 are set as 0.5, 0.01, 0.1, and
0.1.

IV. EXPERIMENTAL RESULTS
A. Datasets

SemanticKITTI [7] is a large-scale dataset for semantic
scene understanding using LiDAR sequences, which is based
on the KITTI Vision Benchmark and has a dense seman-
tic annotation for the entire KITTI Odometry Benchmark,
making it a standard dataset for evaluating LiDAR semantic
segmentation methods. This dataset presents challenges on
rare classes such as motorcyclists and other-ground due to
the limited training examples. The most frequent class, “veg-
etation", has 4.82 x 107 times more points than the least fre-
quent class, “motorcyclist”", which is heavily imbalanced. In
our experiments, we defined the bicycle, motorcycle, truck,
other-vehicle, person, bicyclist, motorcyclist, and traffic-sign
as the hard classes, and we adopt the method in [26] for
point cloud registration.

B. Main Results

As official guidance suggests, we use mean intersection-
over-union (mloU) over all classes as the evaluation metric.
The metric can be formalized as follows:

1 & TP.
ToU = = :
mae n;TPC+FPC+FNC’

(6)

where TP, denotes the number of true positive points for
class ¢, F'P. denotes the number of false positives, and F'N,
is the number of false negatives. As the name suggests, the
final IoUs are calculated for each class separately and then
the mean is taken.

To verify the effectiveness of our method, we apply our
method to both the PolarNet [37] and Cylinder3D [9] base-
lines. The experimental results are shown in Table [ Note
that the Cylinder3D* represents the result reproduced by the
model released by the author without test augmentation. For
a fair comparison, our model is only trained on the training
set. It can be seen that we surpass the PolarNet baseline by
3.7% mloU, and surpass the Cylinder3D baseline by 1.7%
mloU. Specifically, for hard classes such as bicyclist and
motorcyclist, the performance gain of our proposed multi-
to-single knowledge distillation framework becomes more
significant, we surpass the PolarNet baseline by 11.2% and



TABLE 1
QUANTITATIVE COMPARISON OF CYLINDER3D TRAINED WITH OUR FRAMEWORK. THE RESULTS ARE REPORTED IN TERMS OF THE MIOU ON THE
SEMANTICKITTI TEST SET. * REPRESENTS THE RESULT REPRODUCED BY THE OFFICIALLY RELEASED CODE AND MODELS. FROM TOP TO BOTTOM,

THE METHODS ARE GROUPED INTO POINT-BASED, PROJECTION-BASED, AND MULTI-VIEW FUSION MODELS.

o i 5 g s
g 75\ R g & X S:’ ) ‘qg .5?’0
TS5 s &5 8§ s £ F 85 s 5o 5. &
=~ 3 & = 9] N
Methods § & § 5§ § & £ § § § § 5 § & £ & F F ZF |meu
LatticeNet [27] 88.6 12.0 20.8 433 248 342 399 609 888 64.6 73.8 255 869 552 764 679 547 41.5 427 |51.3
PointNL [28] 92.1 426 374 98 20.0 492 578 283 90.5 483 725 19.0 81.6 502 785 545 627 41.7 558|522
RandLa-Net [3] 942 26.0 258 40.1 389 492 482 7.2 90.7 60.3 73.7 204 869 563 814 613 668 492 477|539
KPConv [5] 96.0 30.2 425 334 443 615 61.6 11.8 888 61.3 727 31.6 905 642 848 692 69.1 564 474|588
SqueezeSegV2 [8] 82.7 21.0 226 145 159 202 243 29 88.5 424 655 187 73.8 41.0 685 369 589 129 41.0]39.6
RangeNet53 [29] 914 257 344 257 230 383 388 48 918 650 752 27.8 874 58.6 80.5 551 64.6 479 559|522
3D-MiniNet-KNN [11] | 90.5 423 42.1 28.5 294 478 44.1 145 916 642 745 254 894 608 828 60.8 66.7 48.0 56.6 | 558
SqueezeSegV3 [30] 92,5 387 365 29.6 330 456 462 20.1 917 634 748 264 89.0 594 82.0 587 654 49.6 589|559
SalsaNext [31] 91.9 483 38.6 389 319 602 59.0 194 917 63.7 758 29.1 902 642 81.8 63.6 665 543 62.1|59.5
KPRNet [32] 955 54.1 479 236 426 659 650 165 932 739 80.6 302 91.7 684 857 69.8 712 587 64.1|63.1
MVLidarNet [33] 87.1 349 329 237 249 445 443 23.1 903 56.7 73.0 19.1 856 53.0 80.9 594 639 499 51.1|525
MPF [34] 934 302 383 26.1 285 48.1 46.1 18.1 90.6 623 745 30.6 885 59.7 83.5 59.7 69.2 49.7 58.1|555
TORNADONet [35] 942 557 48.1 40.0 382 63.6 60.1 349 89.7 663 745 28.7 913 656 856 670 715 58.0 659 | 63.1
AMVNet [14] 96.2 599 542 488 457 71.0 657 11.0 90.1 71.0 758 324 924 69.1 856 717 69.6 62.7 672|653
GFNet [36] 96.0 532 483 31.7 473 628 57.3 447 936 725 80.8 31.2 940 739 852 71.1 693 61.8 68.0| 654
PolarNet [37] 93.8 40.3 30.1 229 285 432 402 56 908 61.7 744 21.7 900 613 84.0 655 678 51.8 575|543
PolarNet+Ours 935 459 363 27.6 349 550 514 158 91.1 647 738 26.1 925 670 84.6 634 674 50.7 59.5|58.0
Cylinder3D* [9] 96.7 60.1 574 432 496 70.0 65.1 120 91.6 64.6 76.0 243 90.0 63.4 848 70.7 67.6 62.0 64.0|63.9
Cylinder3D+Ours 964 60.8 548 428 512 69.1 67.8 348 922 66.5 767 304 91.1 657 855 698 68.6 60.7 610|656
TABLE 11

ABLATION STUDY OF EACH COMPONENT ON THE FINAL PERFORMANCE
ON THE SEMANTICKITTI VALIDATION SET.

Cylinder3D | PWKD | IAAD | mloU
v 64.1
Vv Vv 65.6
\/ \/ \/ 66.2

10.2%, and surpass the Cylinder3D baseline by 2.7% and
22.8% respectively.

C. Ablation Study

We performed ablation studies to examine the efficacy
of the major components of the proposed method. The
ablation results are shown in Table We reproduce the
results of Cylinder3D by the officially released code. PWKD
denotes the point-wise knowledge distillation, including the
feature distillation and the logit distillation, IAAD denotes
the instance-aware affinity distillation.

D. Visualization

Finally, we also visualize the performance gain of our
approach in different scans and mainly focus on two of
the hard classes, including truck and bicyclist. The result
is shown in Figure [5] Note that in scene A, our model gives
better results on the prediction of the truck segmentation. In
scene B, the baseline model misclassified a bicyclist as a
person, as these two classes are very similar; however, our
method gives the correct predictions.

V. CONCLUSIONS

In this work, we have developed a simple but effective
multi-to-single knowledge distillation framework for the
3D point cloud semantic segmentation task. By training
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Fig. 5.  Visualization comparison of the baseline (Cylinder3D) and our
proposed method on the SemanticKITTI dataset.

the model with supervision from multiple adjacent scans
combined, the segmentation performance of the single scan
can be improved. We adopt the priori-based sparse fusion
strategy to fuse only the predefined hard classes, which can
make the model focus on the hard classes naturally and
enhance the distillation efficacy in the training procedure. We
also propose an instance-aware affinity distillation to better
capture the high-level structural knowledge in each object
in knowledge distillation. The multi-to-single knowledge
distillation framework can also be considered as a plug-in
component and can be integrated into the recently developed
point cloud semantic segmentation approaches. We conduct
experiments on the SemanticKITTI dataset and the results
demonstrate that our algorithm can outperform the baseline
method by a significant margin. One of our future works is
to extend our proposed approach to other 3D point cloud
understanding tasks, such as 3D object detection.
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