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Abstract— Collision evaluation is of essential importance in
various applications. However, existing methods are either cum-
bersome to calculate or not exact. Therefore, considering the
cost of implementation, most whole-body planning works, which
require evaluating collision between robots and environments,
struggle to tradeoff between accuracy and computationally
efficiency. In this paper, we propose a zero-gap whole-body
collision evaluation that can be formulated as a low-dimensional
linear programming. This evaluation can be solved analytically
in linear complexity. Moreover, the method provides gradient
efficiently, making it accessible to optimization-based applica-
tions. Additionally, this method provides support for obstacles
represented by either points or hyperplanes. Experiments on
the widely used aerial and car-like robots validate the versatility
and practicality of our method.

I. INTRODUCTION

Collision Evaluation is critical in a variety of fields, such
as physics engines, computer graphics and robot naviga-
tion. In recent years, with the development of autonomy,
an increasingly large number of robots are deployed in
complex real-world scenarios, where they may be requested
to navigate through dense and highly dynamic environments,
as illustrated in Fig.7, or even to cross narrow gaps of
similar size to themselves as shown in Fig.1. These planning
problems where the robot’s shape has to be taken into
account, namely whole-body planning, urgently require exact
and efficient collision evaluation of robots and environments.

Generally, there are several expectations for a collision
evaluation method. (1) Exactitude: no gap or approximation
with the true value is expected. (2) Efficiency: low computa-
tional overhead is required. (3) Locality: instead of a rigorous
enumeration of each obstacle [1, 2], the method only focus
on a small number of obstacles around the robot.

Vast different approaches [1]–[5] have been introduced in
response to the above mentioned requirements. However,
when applied to whole-body robot motion planning, they
may suffer from difficulty in gradient calculation and struggle
to deal with different map representations. In detail, there are
some intractable challenges for collision evaluation in whole-
body planning. (1) The method should be capable of provid-
ing precise gradients efficiently, which allows it to be applied
in optimization-based frameworks. (2) With the progress of
environment reconstruction and SLAM technology, various
map representations such as point clouds [6], surfaces [7],
grid maps [8] and semantic information [9], are active in
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Fig. 1. The application of a whole-body SE(3) planning problem which
requires the multicopter to fly from the start to the end. The green rectangles
are the snapshots of the multicopter which flies along the red trajectory to
cross the narrow gap built by the two white obstacles.

different planning works. The ability to deal with different
map representations that may contain lots of redundant in-
formation without overly complex pre-processing is required
eagerly. (3) It is unacceptable to make the dimension of
the problem increase dramatically for collision avoidance,
such as Zhang’s work [10] that introduces numerous dual
variables in trajectory optimization. Because this can lead to
the optimization becoming hard to solve.

In this paper, we propose a novel method that analytically
evaluates the collisions of two convex objects, addressing
the above requirements and challenges. This method eval-
uates collision by calculating a minimum scale. One of
the objects enlarged or reduced by this scale can have a
collision with another object, as shown in Fig.2. This method
works seamlessly with objects represented by either points
or hyperplanes, which we then abbreviate with V(ertex)-
representation and H(yperplane)-representation (detailed in
Sec. III). Another highlight of our method is that it works
directly without pre-processing even for redundant points
or hyperplanes. Then we formulate the scale calculation
into a low dimensional linear programming (LP) whose
computational time is O(m) [11], where m is the sum of
the number of points or hyperplanes that make up objects,
which is also the total number of the linear inequalities in
the LP. Regardless of the number of obstacles, this method
uses only one variable, the minimum scale β ∈ R≥0 defined
in Sec.III, to evaluate the collision with the environment.
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When applied to whole-body trajectory optimization, with
the active constraints of LP, this method provides gradient
of the scale β w.r.t. the ego-motion of the scaled object
analytically (detailed in Sec. IV). Even when using a naive
trajectory that does not take into account the robot’s shape as
initial values, a safe whole-body trajectory can be obtained
after optimization with our method. Finally, to verify the
generality and practicality, we apply the proposed method
to generate SE(3) aerial robot trajectories based on the
differential flatness of multicopter, and plan 2-d car-like robot
trajectories considering nonholonomic constraints. The major
contributions of this paper are summarized as:

• We propose an exact and rapid collision evaluation
method that supports locality, via low-dimensional LP.

• We implement the method in V-representation and
H-representation and derive the analytic gradient for
whole-body trajectory optimization.

• We validate our method on several challenging cases,
SE(3) aerial robots and 2-d car-like robots, testing in
both static and dynamic environments.

II. RELATED WORK

A. Collision Evaluation

The simplex-based iterative approaches Gilbert-Johnson-
Keerthi (GJK) [3] and enhancing GJK [4] have been widely
utilized to calculate the distance between two convex ob-
jects. However, these algorithms demand pre-processing to
compute support functions. When two objects intersect, the
computational cost of GJK has to consider the expanding
polytope algorithm (EPA) [5]. Gilbert et al. [1] propose a
growth distance to measure collision. Similarly, Tracy et al.
[2] calculate the minimum scale that both objects enlarge
or reduce simultaneously for an intersection to exist. They
formulate the scale computation as a conic problem solved by
primal-dual interior-point approaches, which are complex to
solve and get the gradient. Additionally, both methods do not
support locality. It means that when we demand to evaluate
the collision of a robot with many obstacles, both methods
require us to perform calculations with all the obstacles. This
leads to an increase in computational overhead as obstacles
increases. Moreover, the methods encounter problems with
unstable values when one of the objects is much larger than
the other. Recently, Lutz et al. [12] propose a constructive
solid geometry method based on two-layer LogSumExp
functions. But it has a gap with the true value.

B. Whole-Body Trajectory Optimization

As stated in Sec. I, to achieve low-cost collision avoid-
ance, there are several brilliant efforts in the field of robot
trajectory optimization considering the whole-body shape.

Extensive works [8, 13] model aerial robots as spheres.
For car-like robots, Li [14] and Ziegler [15] treat with several
circles intuitively. Simply inflating the obstacles according to
the robot’s radius, they bound the centers of the circles or
spheres in the free space of the inflate map for safety. To
generate an SE(3) trajectory that enables the drone to perch
on a moving platform, Ji et al. [16] model it as a disc to

robot
scaled robot

obstacles
collision point

Fig. 2. This figure illustrates how the robot’s corresponding scaled robot
changes when it moves through a map made up of some obstacles.

evaluate collision. However, neither the conservative methods
[8, 13]–[15] nor the task-specific method [16] can be applied
in narrow environments where the physical robot shape
should be considered. Liu et al. [17] propose an SE(3) plan-
ner which formulates the quadrotor as an ellipsoid to cross
narrow gaps. As the distance between obstacle and ellipsoid
is hard to obtain, they adopt to generate motion primitives
and check safety along every primitive. Nonetheless, this
search-based method has to raise the primitive resolution to
improve the success rate in complex environments, which
leads to an explosion in computational overhead. Zhang et
al. [10, 18] use differentiable dual variables to formulate
the distance between objects to achieve optimization-based
collision avoidance (OBCA). Whereas, since the number
of dual variables is related to the number of obstacles,
the dimension of the problem rises considerably when the
obstacles increases. Wang [7] and Han [19] generate safe
SE(3) trajectories through optimization with explicit spatial
constrains. They generate a series of convex polyhedrons
based on the free space as flight corridors and model the
robot as a convex polyhedron according to its shape, ensuring
trajectory safety by constraining the robot convex polyhedron
in the flight corridor. Similarly, for vehicles, Ding [20] and
Manzinger [21] construct safe corridor by rectangles. Both
the corridor-based methods require the intersection of two
adjacent polyhedrons of corridor to contain at least one robot
polyhedron. However, when this demanding request is not
satisfied, there is no more feasible solution.

III. PROBLEM DEFINITION

We will present the problem definition of calculating
the minimum scale in V-representation and H-representation
respectively. For ease of presentation, we will refer to the
scaled object as the body and to the other object as the
obstacle below.

A. V-representation

In V-representation, as shown in Fig.3(a), both the yellow
and blue objects are defined by a convex hull that can
contain the redundant points. However, instead of processing
points into a convex hull, the proposed method is capable of
working directly on the redundant points. For the simplicity
of visualization, we do not visualize points that are redundant
for representing object in Fig.3(b).
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Fig. 3. This figure illustrates the problem definition in V-representation.
(a): The obstacle and the body are defined by the yellow and blue convex
hull respectively. We use the yellow and blue redundant points to represent
the body and the obstacle respectively. (b): To prevent confusion in the
visualisation, the redundant points are not illustrated. The light blue points
represent the scaled body and the red line denotes the half space containing
the scaled body but not the obstacle.

As illustrated in Fig.3(a), we use point sets P b
body =

{(pb
b)i|i = 1, 2, ..., nb} and P b

obs = {(pb
o)j |j = 1, 2, ..., no}

to represent body and obstacle in the body frame. We define
a point ps in the body frame as scale seed point, which
the body point sets scale about. We define β ∈ R≥0 as the
scale. Then we get obstacle and scaled body point sets in
the coordinate system with the point ps as the origin as

P s
body(β) = {(ps

bs)i = β
(
(pb

b)i − pb
s

)
|i = 1, 2, ..., nb},

P s
obs = {(ps

o)j = (pb
o)j − pb

s|j = 1, 2, ..., no},
(1)

Then we define the problem of calculating the minimum
scale in V-representation to maximize the scale β with the
constraints of{

αT
o β
(
(pb

b)i − pb
s

)
≤ 1, i = 1, 2, ..., nb

αT
o

(
(pb

o)j − pb
s

)
≥ 1, j = 1, 2, ..., no

, (2)

which means a half space H = {x|αT
o x ≤ 1} is required so

that the scaled body P s
body(β) is inside the half space and

the obstacle P s
obs is outside, as shown in Fig.3(b).

We define αT = βαT
o . Since β ∈ R≥0, we can formulate

the scale calcluation as a low dimension LP problem:

maxβ

s.t.

{
αT
(
(pb

b)i − pb
s

)
≤ 1, i = 1, 2, ..., nb

αT
(
(pb

o)j − pb
s

)
≥ β, j = 1, 2, ..., no

.
(3)

B. H-representation

In H-representation, as illustrated in Fig.4(a), we use the
intersection of several redundant half spaces to represent a
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Fig. 4. This figure illustrates the problem definition in H-representation.
(a): The obstacle and the body are represented by intersections of sev-
eral redundant yellow and blue half spaces respectively. (b): For better
visualization, we do not show the half spaces that are redundant for the
representation. The dark blue points represent the scaled body and the red
point denotes the point that belongs to both the scaled body and the obstacle.

convex polyhedron. For a clear visualization, the redundant
half spaces are not shown in Fig.4(b).

As indicated in Fig.4(a), we use Cbody = {x|(αb)
T
i (x −

pb) ≤ 1, i = 1, 2, ..., nb} and Cobs = {x|(αo)Tj (x − po) ≤
1, j = 1, 2, ..., no} to represent body and obstacle in the
world frame. pb and po are points inside body and obstacle
respectively. nb and no are the numbers of half spaces whose
intersections define body and obstacle. We make the body
scale about pb, then the scaled body can be written as

Cbody(β) = {x|(αb)
T
i (x− pb) ≤ β, i = 1, 2, ..., nb}, (4)

where β ∈ R≥0 is the scale.
Referring to Eq.2 and Eq.3, we define the problem in H-

representation as

minβ

s.t.

{
(αb)

T
i (x− pb) ≤ β, i = 1, 2, ..., nb

(αo)Tj (x− po) ≤ 1, j = 1, 2, ..., no
,

(5)

which is obviously a low dimension LP problem. And the
constraints of Eq.5 means that a point x which satisfies x ∈
Cbody(β) ∩ Cobs is required as illustrated in Fig.4(b).

IV. GRADIENT COMPUTATION

Since both problems we defined in V-representation and
H-representation are in the form of LP, we only derive the
sub-gradient in V-representation in this paper and the idea
of gradient computation in H-representation is similar.

We use the active constraints of the low dimension LP
problem to get the gradient of the scale β. In n-dimensional
environment, based on the LP problem definition in Eq.3,



there are two different kinds of active constraints which can
be written in the form of linear equations:[(

(pb
b ac)i − pb

s

)T
0
] [αn×1

β

]
= 1, i = 1, 2, ..., nb ac[(

(pb
o ac)j − pb

s

)T − 1
] [

αn×1

β

]
= 0, j = 1, 2, ..., no ac

(6)
where (pb

b ac)i ∈ P b
body , (pb

o ac)j ∈ P b
obs and nb ac +no ac =

n+ 1, which means we should have n+ 1 active constraints
to solve the (n+ 1)-dimensional LP problem.

We refer to (pb
b ac)i and (pb

o ac)j as the active constraint
point on the body and the obstacle respectively. In Fig.5, We
show the result of the minimum scale calculation defined
in V-representation. As indicated in Fig.5(b), the red points
in the green and white convex hull are the (pb

b ac)i and
(pb

o ac)j respectively. Additionally, the points in the scaled
body obtained from the (pb

b ac)i according to Eq.1 and the
points (pb

o ac)j are on the hyperplane P = {x|αTx = β}
which is represented in Fig.5(b) by the blue plane.

We combine all the linear equations in Eq.6 and write
them in matrix form as

(
(pb

b ac)1 − pb
s

)T
...(

(pb
b ac)nb ac

− pb
s

)T(
(pb

o ac)1 − pb
s

)T
...(

(pb
o ac)no ac

− pb
s

)T

0
...
0
−1

...
−1


[
αn×1

β

]
=



1
...
1
0
...
0


. (7)

Then we block this matrix equation in Eq.7 in into[
An×n Bn×1

C1×n D1×1

] [
αn×1

β

]
=

[
En×1

F1×1

]
, (8)

which can be written into a system of linear equations with
two variables, where the variable αn×1 can be eliminated
and get an equation which only has one variable β:

C1×nA
−1
n×n(En×1 −Bn×1β) + D1×1β = F1×1. (9)

For a rigid body, the point set P b
body in body frame is not

related to the motion of the body. As for P b
obs, in practice

we can only directly obtain the obstacle’s point set Pw
obs in

world frame. In order not to lose generality, we define the
center of rotation of the rigid body in the body frame as
pb
cen, and define R and t for the rotation and translation of

the body in the world frame. Based on the body’s motion
and Pw

obs, we can get the point in P b
obs as

(pb
o)j = R−1

(
(pw

o )j − t− pb
cen

)
, (10)

Then we can conveniently use the implicit function in
Eq.9, which contains the relationship between the scale and
the motion of the rigid body, to obtain the partial derivatives
of β w.r.t. R and t. When R and t are time-dependent,
such as using a time-parameterized polynomial trajectory to
represent motion, the gradient of β w.r.t. time can also be
obtained.

(a)

(b)

Fig. 5. Illustration of calculation of the minimum scale in V-representation.
(a): The white and the green convex hull denote the obstacle and the body
respectively. (b): The yellow convex hull is the scaled body obtained by
enlarging the body to the minimum scale. The blue plane is the hyperplane
splitting the scaled body and the obstacle, and the red points represent the
active constraint points that satisfy one of the linear equations in Eq.6.
Although the objects are visualized using convex hull, the method can be
applied directly to the redundant point sets during the calculation.

V. APPLICATION ON AERIAL ROBOTS

To demonstrate the versatility of our method on aerial
robots, we apply it to a whole-body multicopter trajectory
optimization problem, based on the differential flatness of
multicopter in Wang’s work [7]. As shown in Fig.1, we
model the multicopter with a green rectangle that measures
3×2×0.6 m, and require it to fly through a narrow slit. We
adopt a segmented polynomial to represent the flat-output
trajectory, of which we use the MINCO [7] to conduct
spatial-temporal deformation. In this SE(3) trajectory opti-
mization, we set the maximum velocity 6m/s and accelera-
tion 10m/s2, considering smoothness, safety and dynamic
feasibility simultaneously. Moreover, we achieve obstacle
avoidance by constraining the minimum scale defined in
Sec. III greater than 1, which needs the gradient of the scale
w.r.t. the motion of the multicopter.

A. Gradient Computation for SE(3) Motion

We derive the calculation of the gradient in detail. As
defined in Sec. IV, we use R and t to represent the rotation
matrix and translation of the body. For convenience, in op-
timization we use a normalized quaternion q = [w, x, y, z]T

to represent rotation. Referring to [22], the rotation matrix
R can be expressed by the quaternion q and the partial
derivatives ∂R

∂q.∗ , ∗ = {w, x, y, z} can be easily obtained.
In this case where n = 3, as mentioned in Sec. IV, the

LP problem which defined in Sec. III-A should have 4 active
constraints. The specific situations of active constraints (ac)
can be divided into three types:

• 3 ac ∈ P b
body , 1 ac ∈ P b

obs;
• 2 ac ∈ P b

body , 2 ac ∈ P b
obs;

• 1 ac ∈ P b
body , 3 ac ∈ P b

obs.



We then analyse each type in turn:
1) 3 ac ∈ P b

body , 1 ac ∈ P b
obs: In this case, the block

matrix equation in Eq.8 can be written as

(
(pb

b ac)1 − pb
s

)T(
(pb

b ac)2 − pb
s

)T(
(pb

b ac)3 − pb
s

)T
 0

0
0(

(pb
o ac)1 − pb

s

)T −1


[
α3×1

β

]
=


1
1
1
0

 . (11)

Then based on Eq.9, we can get

β =
(
(pb

o ac)1 − pb
s

)T 
(
(pb

b ac)1 − pb
s

)T(
(pb

b ac)2 − pb
s

)T(
(pb

b ac)3 − pb
s

)T

−1 1

1
1

 , (12)

where only (pb
o ac)1 is related to R and t. Based on Eq.10,

for brevity, we write this equation in Eq.12 as

β =
(
(pb

o ac)1 − pb
s

)T
A−1E, (13)

where A and E, defined in Eq.8, are constant in this case.
Then we can get the gradient of β w.r.t. t and q as

∂β

∂t
= −RA−1E,

∂β

∂q.∗
= −(pb

o ac)
T
1

∂RT

∂q.∗
RA−1E.

(14)
2) 2 ac ∈ P b

body , 2 ac ∈ P b
obs: In this case, the block

matrix equation in Eq.8 can be written as

(
(pb

b ac)1 − pb
s

)T(
(pb

b ac)2 − pb
s

)T
(∆pb

o ac)
T

 0
0
0(

(pb
o ac)1 − pb

s

)T −1


[
α3×1

β

]
=


1
1
0
0

 , (15)

where the ac corresponding to ∆pb
o ac is(

(pb
o ac)1 − pb

s

)T
α− β = 0,(

(pb
o ac)2 − pb

s

)T
α− β = 0,

(16)

which can be combined to obtain(
(pb

o ac)
T
1 − (pb

o ac)
T
2

)
α = (∆pb

o ac)
Tα = 0. (17)

Based on Eq.10, ∆pb
o ac can be written as

∆pb
o ac = R−1 ((pw

o )1 − (pw
o )2) . (18)

Then based on Eq.9, we can get

β =
(
(pb

o ac)1 − pb
s

)T 
(
(pb

b ac)1 − pb
s

)T(
(pb

b ac)2 − pb
s

)T
(∆pb

o ac)
T


−1 1

1
0

 , (19)

which, for brevity, we write as

β = CA−1E, (20)

where C, A and E are defined in Eq.8. In this case, C is
related to R and t, A is only related to R, and E is constant.

Then we can get the gradient of β w.r.t. t as

∂β

∂t
= −RA−1E. (21)

And we can get the gradient of β w.r.t. q as

∂β

∂q.∗
=− (pb

o ac)
T
1

∂RT

∂q.∗
RA−1E

+ CA−1

 01×3

01×3

(∆pb
o ac)

T ∂RT

∂q.∗R

A−1E.

(22)

3) 1 ac ∈ P b
body , 3 ac ∈ P b

obs: In this case, the block
matrix equation in Eq.8 can be written as


(
(pb

o ac)1 − pb
s

)T(
(pb

o ac)2 − pb
s

)T(
(pb

o ac)3 − pb
s

)T
 −1
−1
−1(

(pb
b ac)1 − pb

s

)T
0


[
α3×1

β

]
=


0
0
0
1

 . (23)

Then based on Eq.9, we can get

−
(
(pb

b ac)1 − pb
s

)T 
(
(pb

o ac)1 − pb
s

)T(
(pb

o ac)2 − pb
s

)T(
(pb

o ac)3 − pb
s

)T

−1 −1
−1
−1

β = 1,

(24)
which, for brevity, we write as

−CA−1Bβ = 1, (25)

where C, A and B are defined in Eq.8. C and B are constant
in this case. Only A is related to R and t.

Then we can get the gradient of β with respect to t =
{t.x, t.y, t.z}, as

CA−1B
∂β

∂t.x
+ CA−1

1 0 0
1 0 0
1 0 0

RA−1Bβ = 0. (26)

Based Eq.25, we can obtain the gradient as
∂β

∂t
= βRA−1B. (27)

And we can get the gradient of β w.r.t. q as
1

β

∂β

∂q.∗
−CA−1 ∂A

∂q.∗
A−1Bβ = 0, (28)

which can be written as
∂β

∂q.∗
= CA−1 ∂A

∂q.∗
A−1Bβ2, (29)

where ∂A
∂q.∗ can be get by

∂A

∂q.∗
= −

(pb
o ac)

T
1

(pb
o ac)

T
2

(pb
o ac)

T
3

 ∂RT

∂q.∗
R, (30)

B. Experiment Result
L-BFGS1 [23] is adopted as an efficient quasi-Newton

method to solve the numerical optimization problem. We
use Lewis-Overton line search [24] to deal with the non-
smoothness of the scale, which sometimes occurs during
optimization. As the optimization result shows in Fig.1, the
SE(3) whole-body trajectory generated by our method is
collision-free and smooth.

1https://github.com/ZJU-FAST-Lab/LBFGS-Lite
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Fig. 6. Illustration of the trajectory optimization. The blue curve indicates
the initial trajectory, the red curve is the trajectories in optimization. (a)-(e):
Red squares indicate states on trajectories whose scale is small than 1, the
light blue squares indicate the states that meet the scale constraint. (f): The
converged trajectory is shown, as there are no states on the trajectory that
violate the scale constraint after (e). (g): The snapshot of result in CARLA.

VI. APPLICATION ON CAR-LIKE ROBOTS

To demonstrate the applicability of our approach to car-
like robots. As shown in Fig.6(g) and Fig.7, we perform the
experiments in the physical simulator CARLA [25]. Similar
to the application in Sec. V, we adopt a segmented polyno-
mial deformed by MINCO [7] to represent the blue vehicle’s
trajectory and L-BFGS to solve the numerical problem of
the optimization. The trajectory optimization simultaneously
considers smoothness, safety and dynamic feasibility. The
difference, however, is that the trajectory is 2-d and the
nonholonomic constraints are taken into account in this
application. Additionally, due to the dynamic environment
in Fig.7, we constrain the minimum scale greater than 1
in the spatial-temporal trajectory optimization for safety.
(In practice, we set the minimum scale to 1.1 for greater
security.) The gradient of the scale w.r.t. the 2-d motion is
similar to that in SE(3) and will not be detailed here.

A. Experiment in Static Environment

As shown in Fig.6(g), we apply our method to the blue
vehicle’s whole-body trajectory optimization problem in a

(c)

(b)

(a)

Fig. 7. The snapshot of the experimental validation of our method applied
in a vehicle robot. We plan the trajectory for the blue vehicle to navigate
through the dynamic environment.

static environment. To demonstrate that our method is ca-
pable of obtaining a whole-body trajectory, using a mass
point trajectory that even does not consider the robot’s shape
as the initial value. The trajectory optimization process for
this experiment is illustrated in the Fig.6(a)-6(f). Based on
a naive blue initial trajectory, as the number of iterations
increases, the states on the trajectory that do not meet the
scale constraint disappear. As indicated in the Fig.6(f) and
Fig.6(g), the final optimization result is smooth and satisfies
the whole-bdoy requirements.

B. Experiment in Dynamic Environment

As illustrated in Fig.7, we employ our method to the blue
vehicle’s whole-body trajectory optimization problem, which
requires the blue vehicle to traverse through the traffic flow
consisting of five red vehicles with maximum speeds of
4, 1, 1.5, 4, 5.5 m/s. We set the maximum velocity 8m/s
and acceleration 2m/s2 for the blue vehicle in optimization.
For a clear demonstration of the navigating process in the
dynamic environment, as shown in Fig.7, we use three
temporally consecutive images to show that the reslut where
the blue vehicle’s trajectory is safe and smooth.

VII. CONCLUSION AND FUTURE WORK

In this paper, we propose an exact whole-body collision
formulation via linear scale, which can be solved efficiently.
Furthermore, we derive its analytic gradient and applied it
to the trajectory optimization in aerial and vehicle robots.

In addition to the applications mentioned in Sec. V and
Sec. VI, the proposed method can be applied to other kinds of
robots, such as manipulators and legged robots. Moreover,
benefiting from its scale-based design, this method can be
implemented for deformable robots and swarm formations as
well. The above applications of this method will be released
in the near future. It is also worth mentioning that we
will consider continuous collision formulation in trajectory
optimization to improve the completeness of planning.
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