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Abstract— Terrain-aware locomotion has become an emerg-
ing topic in legged robotics. However, it is hard to generate
diverse, challenging, and realistic unstructured terrains in
simulation, which limits the way researchers evaluate their
locomotion policies. In this paper, we prototype the generation
of a terrain dataset via terrain authoring and active learning,
and the learned samplers can stably generate diverse high-
quality terrains. We expect the generated dataset to make
a terrain-robustness benchmark for legged locomotion. The
dataset, the code implementation, and some policy evaluations
are released at https://bit.ly/3bn4j7f.

I. INTRODUCTION

Terrain-aware locomotion has been gaining prominence in
the domain of legged robotics [1] [2] [3] [4]. To overcome all
kinds of unstructured terrains in the wild, legged robots need
great robustness in locomotion. However, such robustness is
difficult to quantify, especially for the unstructured terrains
that can hardly be foreseen. As a result, existing works tend
to manually build specific terrains and report the success
rates for several toy experiments [1] [4] [5] [6].

In light of this, our paper seeks a way to statistically
quantify the robustness in terms of terrains for different
locomotion policies by building a terrain-robustness bench-
mark for legged locomotion. The terrain samples should
be diverse and resemble those in the wild, so that the
robustness can be measured and improved in simulation.
Furthermore, these terrains should be challenging to traverse
in order to discriminate between different policies. Different
from [6] [7], terrains generated in this paper are more
unstructured rather than parameterized. Results also show
that, unlike structured terrains where people can easily assign
parameters, generation of high-quality unstructured terrains
is difficult. Fig. 1 exhibits some of our terrain samples in the
benchmark dataset. To our knowledge, no existing work has
built such a benchmark, and this paper makes a prototype.

To this end, three challenges must be solved: 1) to achieve
reliable quantification of robustness, the terrain samples
should resemble real terrains in the wild; 2) to achieve the
easy generation of high-quality terrains (i.e., be challenging
to a user-specified extent), the generation process should
be somewhat controllable; 3) the sampler must maintain
terrain quality and diversity simultaneously. Among these

†Corresponding author. Email: chozhang@ethz.ch
1Chong Zhang is with the Department of Mechanical and Process

Engineering, ETH Zurich, Switzerland. Email: chozhang@ethz.ch
2Lizhi Yang is with the Department of Mechanical and Civil En-

gineering, California Institute of Technology, United States. Email:
lzyang@caltech.edu

Difficulty: HardDifficulty: Medium

R
ea

l T
er

ra
in

s
G

en
er

at
ed

 T
er

ra
in

s

Fig. 1. Cherry-picked photos of real terrains and visualization of generated
terrains in the benchmark. The first two rows are pairs where the generated
terrain samples resemble the real terrains. The real terrains are irrelevant to
dataset generation, but reflect how the generated terrains are realistic. The
other three rows compare the terrains generated for two difficulty levels,
”medium” (left) and ”hard” (right), where the pairs in the same row share
somewhat similar terrains but the ”hard” one is more complex and contains
more ravines.

challenges, the first two can be viewed as mapping a con-
trolled input to a realistic terrain, and the last challenge is
to obtain a sampling policy that can generate diverse high-
quality inputs. Hence the problem is naturally divided into
two parts: one for terrain generation, and one for sampling.

With the concept of fractal [8] [9], we believe that a
local terrain elevation map can be obtained via resizing a
realistic terrain of any appropriate scale, including the scales
of the terrain data obtained by remote sensing techniques.
Based on this and referring to [10], we use the conditional
generative adversarial networks (GANs) to generate terrains
from specified control points as the inputs, and the training
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Fig. 2. The pipeline of the proposed dataset generation method. In phase
1, a generator and a discriminator are trained to ensure that the generated
terrains are realistic. In phase 2, the sampler learns through exploration and
exploitation to sample high-quality control points for terrain generation. In
phase 3, the trained sampler does no more exploration and is used to sample
high-quality terrains for the dataset.

dataset that the outputs should resemble comes from the
US map consisting of digital elevation models [11]. In this
way, together with some tricks, we can generate realistic
and unstructured terrains from small-size control point sets,
which tackles the first two challenges.

To tackle the third challenge, we model the generation of
control points as a Markov decision process (MDP) on a
directed acyclic graph (DAG), and refer to the arising active
learning method generative flow networks (GFlowNets) [12]
to get the control point samplers. It has been shown that, such
an active learning method not only outperforms sampling-
based methods in data efficiency, but also maintains a high
diversity of candidates compared with reinforcement learning
methods [13]. In this paper, the learned samplers can gener-
ate diverse hard-to-obtain samples or sets of control points,
with high quality regarding legged locomotion.

Based on how the three challenges are met, this paper
proposes a pipeline to learn the desired sampler, as is shown
in Fig. 2. Three models are trained: 1) a terrain generator, 2)
a terrain discriminator, and 3) a control-point sampler. The
terrain discriminator ensures that the generated terrains are
realistic. Using the sampler and the terrain generator, we can
sample diverse high-quality terrain samples after only a few
iterations, without costly real data collection (e.g., in [14]).

Our contributions in this paper are summarized as follows:
1) An adaptation of realistic terrain authoring to take

small-size sets of control points as the inputs;

2) Learned control point samplers to generate high-quality
terrain samples for legged locomotion;

3) The generation of the first benchmark dataset to our
knowledge to statistically evaluate the robustness of
legged locomotion on unstructured terrains.

II. RELATED WORKS

A. Terrain-aware legged locomotion

This paper tries to generate a terrain-robustness benchmark
for terrain-aware legged locomotion, which is an emerging
topic in the robotics community. Generally speaking, there
are two kinds of solutions to terrain-aware locomotion:
optimization-based methods and learning-based methods.

Optimization-based methods typically obtain reasonable
footholds and trajectories through searching and optimiza-
tion, with heuristic scores or losses [5] [6]. Often, the
robustness tests are done on stairs or stacked bricks and tiles,
without many trials or high terrain diversity.

Learning-based methods learn trajectories [15], footholds
[2] [4] [16] or joint-level outputs [3] [17] [18] in a data-
driven way. Although various terrains are generated in sim-
ulation to feed the data-hungry learning process, they either
consist of simple stairs and steps, or are non-realistic and
generated from uncontrollable noises. Despite some success-
ful deployments in the wild [3], robustness tests are done
either on limited real terrains, or statistically on non-realistic
low-quality ones in simulation, on top of the heuristically
defined structured terrains.

B. Terrain generation

Terrains, in the domain of terrain-aware legged loco-
motion, are typically represented by heightmaps, i.e., two-
dimensional matrices of real numbers indicating the height
at different points. A traditional method for terrain generation
is to use Perlin noise [19], as is adopted by existing works
[3] [7]. Although policies can be trained in simulation with
such terrains, verifications must be done on real robots after
sim-to-real transfer, because using Perlin noise does not lead
to realistic heightmaps [9].

Alternative methods are to generate fractal terrains, e.g.,
to use the diamond square algorithm [20] and the fractal
brownian motion algorithm [21]. However, it is difficult to
regard them as realistic.

An emerging way to generate realistic terrains is to use
GANs [22], where a discriminator tries to classify whether
a sample comes from the dataset, and a generator tries to
cheat the discriminator by generating samples from noises.
Examples of GAN-based terrain generation are [23] and [24].
Yet, to achieve partially controllable generation and actively
generate a dataset, we need interactive terrain authoring
based on conditional GANs [10]. To be specific, the discrim-
inator classifies whether the samples together with certain
features are from the training dataset, and the generator
generates fake samples from not only noises but also the
features. Finally, the generator can generate realistic terrains
from given input features, and the noises only affect small-
scale details.



C. Active learning

Active learning is a technique that selects a subset of
all possible candidates and gets them labeled to improve
the model performance [25]. In this paper, we adopt this
technique as it can be extremely hard and data-inefficient to
directly get high-quality terrains by random sampling. Also,
it can be time-consuming to evaluate a terrain, e.g., reporting
the performance of multiple gaits on the same terrain with
varying dynamical parameters, although we would only use
a heuristic terrain score for a prototype in this paper.

Unlike the common way active learning is applied to
get more labeled data, in this paper, we aim to achieve
an effective sampler that can provide a diverse set of high-
quality terrains. The recently proposed GFlowNets [12] has
provided a promising solution where candidates are sampled
in proportion to their given rewards. Different from rein-
forcement learning methods that only provide a low-variance
policy to maximize the expected return [26], GFlowNets can
maintain the diversity of selected candidates, which has been
empirically verified in domains such as molecule synthesis
[13]. Another choice for diverse sampling is the iterative
Markov chain Monte Carlo (MCMC) methods [27] [28]
which are data-inefficient and vulnerable to local exploration.

III. GENERATING TERRAINS AS TRAJECTORIES

In this section, we present how we generate realistic
terrains from features or control points, and how the terrain
generation can be viewed as an MDP.

A. Conditional GANs for terrain authoring

As is mentioned, we use the interactive terrain authoring
method in [10] to generate terrains from controlled inputs,
which is based on conditional GANs. The training of the
model is illustrated in Fig. 3. For each sample x in the dataset,
we extract features u from it, and (x,u) makes a positive
sample for the discriminator D. With the generator G and
the random noise w∼N (0,I), G(u,w) denotes the generated
fake sample, and (G(u,w),u) makes a negative sample for D.
With the positive sample and the negative sample, D predicts
the pixel-level classification for x and is trained with the
binary crossentropy loss:

LD(x,u,G,w) =−Epixel[log(D(x,u))

+ log(1−D(G(u,w),u))].
(1)

Here we take the pixel-level prediction to ensure detailed
terrain outputs according to [29] and a third-party imple-
mentation [30] of [10].

The generator G learns to fool the discriminator D. Fol-
lowing [29] and [30], the loss for G is defined as:

LG(x,u,D,w) = Epixel[−λ
G
1 log(D(G(u,w),u))

+λ
G
2 |x−G(u,w)|],

(2)

where λ G
1 and λ G

2 are manually defined coefficients, and | · |
denotes the absolute error.
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Fig. 3. The conditional GAN system for terrain authoring. The discrimi-
nator D tries to distinguish the positive samples and the negative samples,
while the generator G learns to fool the discriminator D.

B. Implementation details

1) Dataset: Regarding real heightmaps, we cherry-picked
some images with rich elevation information from the USGS
3D elevation dataset [11], which can be reproduced in our
code. The images are of 1 arc-second resolution (≈ 30 m),
and are of size (3600,3600). We split each image into 256
patch samples of size (225,225).

2) Target resolution: Our initial purpose is to generate
2.5 cm-resolution heightmaps, leading to a total size of ∼
5.6 m× 5.6 m, and the maximum height is 10× 2.5 cm if
no additional slope added. This is specified for the size and
mobility of some popular legged robots, e.g., ANYmal [31]
and A1 [32]. Despite the different resolution from the dataset,
with the idea of fractal, we believe the used elevation data
can be rescaled to the size we want while remaining realistic,
as is verified in Fig. 1. The generated terrains can also be
rescaled to other resolutions, e.g., 3 cm or 5 cm.

3) Selected features and masking: In [10], different kinds
of features are extracted: rivers, ridges, peak points, and
basin points. However, it is intractable to automatically draw
rivers and ridges as humans intuitively do. Also, we found
basin points sometimes hard to detect in our dataset. Hence,
we detect pits instead via the pysheds library [33], and
detect peaks by inverting the elevation for pit detection. The
features we used are peak points and pit points, and they
are represented as 0-1 matrices of size (225,225) to feed the
models.

Yet, in this way, there can be too many features on one
terrain. Sometimes, up to 200 feature points can be detected,
which makes it hard to generate high-quality sets of control
points. Also, we found that feature points are often too
intensive at certain areas. Thus, borrowing insights from
masked autoencoders [34], we believe most of the points
can be redundant and we randomly masked the points with
a probability of 75% per visit. In brief, extracted features
in our paper are peak points and pit points that are masked
with a probability of 75%.

4) Models: We refer to the model structures in [30], where
the generator is a U-Net [35] as in [29], and the discriminator
consists of several convolutional layers, finally activated by
the sigmoid function for pixel-level prediction. Despite the



noise inputs, the output terrains only vary little in small-scale
details for fixed features after training, which can be omitted.

5) Low-pass filtering: After training, the generator gen-
erates realistic terrains as expected. However, due to the
instability of neural network outputs, there can be spikes.
Thus, we apply a low-pass filter to the generated terrains as
post-processing. To be specific, after empirical evaluation,
we apply Gaussian blurring with kernel size (5,5) and σx =
σy = 1 for unscaled height outputs in [−1,1]. The heights
are then rescaled to [0,maximum height].

C. A DAG for terrain generation

The terrain generation can be viewed as MDP trajectory
generation, where a set of control points as the input features
mostly determines the generated terrain. Specifically, starting
from an empty control point set, the MDP goes as follows:

1) Three kinds of actions can be taken: to terminate, to
add a peak point, or to add a pit point;

2) If the action is to terminate, a terrain is generated with
the existing control points, otherwise the new point is
added to the control point set.

To make the problem tractable, we assume:
1) Two control points that are too close to each other do not

make sense, and the small change in the point positions
does not lead to significant changes in the terrain.

2) There cannot be too many control points, which will
only lead to redundancy and complexity.

Thus we discretize the rows and the columns to 75× 75
grids for actions, which means that one grid represents the
center of 3× 3 pixels. Each point-adding action occupies a
grid, limiting the number of feasible actions to 2×752+1 at
most. We also force the MDP to terminate after there have
been 60 points, which limits the complexity of the problem.

The states, as assumed above, can be defined as a set of
points:

s = {p1, . . . , pl},0≤ l ≤ 60, (3)

where s is empty if l = 0. Each point is the combination of
its position and its attribute (peak or pit). Mathematically,
we represent each point as a 3-d vector, where the first
dimension is the x coordinate normalized to [−1,1], the
second dimension is the y coordinate normalized to [−1,1],
and the third dimension is 1 for peaks and −1 for pits. Thus
the features u = u(s) are easily determined by the state s.

The action a is also represented as a 3-d vector except for
the termination. It is the 3-d vector to represent the added
point in the state.

Such an MDP makes a DAG because, one state can have
multiple (i.e. the number of points in the state) parent states,
and a fewer-point state cannot have a more-point parent state.
Denoting the transition of states via actions by s′ = T (s,a),
we have:

card(T (s,a)) = card(s)+1, (4)

where card(·) denotes the cardinality of a state. A trajectory
τ can be represented as τ = (s0, . . . ,sn) in that the transition
is deterministic, and s0 is exactly /0. The trajectory length is
defined as the cardinality n of the final state sn.

IV. GFLOWNETS FOR TERRAIN GENERATION

In this section, we detail our method to generate high-
quality control point sets via GFlowNets.

A. Formulation and optimization

Equivalent to but slightly different from GFlowNets in [12]
[13], in our configuration for the state space S and the action
space A, we define an ideal flow function F : S×A→ R+

s.t.

∑
T (s,a)=s′

F(s,a) = ∑
a∈A∗(s′)

F(s′,a),∀s′ ∈ S\{ /0}, (5)

where A∗(s′) denotes the feasible action set of s′, i.e., to
terminate the MDP or to add a peak or pit point at an
unoccupied grid. For the termination action aT , the following
boundary conditions are satisfied:

F(s,aT ) = RG(s) = EwR(G(u(s) ,w)) ,∀s ∈ S, (6)

where R(·) is the reward for a generated terrain. Because the
reward for the same s varies little w.r.t. the noise w, we can
sample only once to estimate the termination flow. Finally,
when the sampling probability goes as

P(a|s) = F(s,a)
∑a′∈A∗(s) F(s,a′)

∝ F(s,a),∀a ∈ A∗(s), (7)

the probability of sampling a final state sT at termination
satisfies

P(sT ) =
RG(sT )

∑s∈S RG(s)
∝ RG(sT ),∀sT ∈ S. (8)

We refer readers to [12] and [13] for the proof.
Yet, since s is of size 60 at maximum and A∗(s) can

contain > 10000 feasible actions, we have to approximate the
flows with a neural network. In this paper, we approximate
the logarithm F̂log of the flows, and the flow matching loss
w.r.t. each trajectory τ is defined as follows for optimization:

LF(τ) = ∑
s′∈τ\{s0}

(
log

[
ε + ∑

T (s,a)=s′
exp F̂log(s,a)

]

− log

ε +RG(s′)+ ∑
a∈A∗(s′)\{aT }

exp F̂log(s′,a)

2

,

(9)

where ε is a small positive value and we take 10−6. During
training, new trajectories are sampled with approximated
flows according to (8), and the approximation model is
optimized according to (9) on a batch of trajectories in an
”off-policy” fashion.

B. Scoring and rewarding

The generated terrains are to be evaluated to select the
challenging ones for robots to traverse. This can be done
from many aspects, e.g., to test different policies on the
terrain. In this paper, we use the heuristic foothold score as in
[5] to prototype the learning-based dataset generation. Such
a score was used to represent the safety of a foot location,
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and we use the mean score to indicate the difficulty over
the whole terrain. To be specific, the score β for a terrain
heightmap h is defined as

β (h) = λ
β

1 σ(k(h))+λ
β

2 k(h)
2
+λ

β

3
|h− h̄|

h0
, (10)

where λ
β

1,2,3 are the weights for edges, slopes, and roughness,
σ(·) is the standard deviation, k(h) is the slope angles divided
by π

2 , and h0 is the designed maximum height. In our
implementation, λ

β

1 = 0.3, λ
β

2 = 0.5, λ
β

3 = 0.2.
Typically, for our generator trained in Sec. III, the scores

are within [0.02,0.05], and the effect of the noise inputs on
the score is empirically less than 0.005 even for extreme
cases. Yet, with our learning technique, the sampled terrains
can even reach a high score of 0.08, or 10−3-level deviation
from a specified score value, while maintaining the diversity.

To demonstrate the efficacy of our method, we designed
two tasks for generation: one called ”hard” for the very
difficult terrains with a high score, and the other called
”medium” for terrains with a score close to 0.055 which is
also hard to achieve via random sampling. The performance
will be displayed in Sec. V-B.

The reward function R(·) for the ”hard” task is defined as

R(h) = ε +10150β (h)−6, (11)

which makes the probability of sampling a terrain ∼ 30 times
higher if the score is 0.01 larger according to (8).

The reward function R(·) for the ”medium” task is defined
as

R(h) = ε + exp(
0.1

|β (h)−0.055|+0.005
−10), (12)

which forms a steep spike around 0.055.

C. Neural networks for flow approximation

The neural network structure we used for F̂log approx-
imation with non-termination is illustrated in Fig. 4. To
tackle the variable cardinality of states, we took an encoder-
decoder structure, where the encoder encodes the state-
related information, and the decoder couples the state-related
information and the action-related information.

1) Encoder: The 3-d point vectors p1, . . . , pl in a state
s are first concatenated with a 1-d cardinality-related value
to inform the model of the ”progress”. With the maximum
cardinality 60, we define this normalized cardinality value
as card(s)

0.5×60 − 1. These vectors are then embedded into 128-d
vectors. To deal with the case of the empty set s, we introduce
an additional learned 128-d vector which is concatenated to
the embedded vectors, making in total card(s)+1 vectors of
length 128 to represent the states.

These vectors are then fed into two repetitive combinations
of the multi-head attention module [36] and the feed-forward
layer. The multi-head attention module is with embedding
dimension 128 and the number of heads 4, and the outputs
are added with the inputs as a residual skip connection. The
feed-forward layer is a 128-d linear layer activated by the
GELU function [37], and also takes a skip connection.

2) Decoder: The 3-d action vector a is first embedded
to a 128-d vector. Then a multi-head attention module (with
the same structure as in the encoder) takes the outputs of
the encoder for the key source and the value source, and the
query source is the embedded action vector. Then, with a skip
connection from the embedded action vector, the outputs of
the multi-head attention module are fed into a feed-forward
layer with a skip connection.

Finally, the outputs of the decoder go through a linear
layer to make the final output, i.e, to approximate F̂log(s,a).

D. Other details for implementation

1) Sampling-based outflow estimation: For each state,
there are more than 10000 feasible actions except for those
with 60 points. For each state-action pair, the neural network
is used to compute the flow approximation, which makes the
training time-consuming. Instead, we estimate the outflow
term ∑a∈A∗(s′)\{aT } exp F̂log(s′,a) in (9), by randomly sam-
pling 2000 actions and getting the average flow that is then
multiplied by the cardinality of A∗(s′)\{aT}. This reduces
the training time by 80%.

2) Biasing the F̂log(s,a) model output: The neural net-
work outputs are around 0 initially, which makes an initial
guess of the ideal flows. Yet, scores of the initially sampled
terrains are within [0.02,0.05], which specifies the termina-
tion flow. Therefore, if the neural network outputs too large
values compared with the termination flow, flow mismatching
between non-terminated state transitions will take the lead in
the loss, which hinders the learning for better terrains. If the
initial sampled rewards get too large, the sampler will tend
to terminate early and get stuck in local exploration. Hence,
we add a bias to the F̂log(s,a) output, 0 for ”hard” and −6
for ”medium”, to seek a balance.
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3) Clamping the flows: Flows near the root state are
exponentially large, which can lead to the floating point
overflow when calculating the loss after episodes of training.
To prevent the overflow, we clamp the logarithms of the
flows, and bias the neural network outputs instead of the
rewards. Still, this can affect the learning process after
convergence, which is further discussed in Sec. V-A.

4) Encouraging exploration: To encourage exploration,
the sampler has a probability of 0.05 to sample a random
action per step during training. We also sampled 60 random
trajectories with lengths varying from 1 to 60 before training,
so that the model can have a basic exploration of the
trajectory length.

V. RESULTS AND DISCUSSION

A. Sample efficiency

Fig. 5 shows how scores of the sampled terrains change
during training of the flow approximation models. Both mod-
els were well trained within hundreds of samples, exhibiting
high data efficiency.

Yet, their performance both went bad after certain iter-
ations, which according to our analyses were due to the
clamped flows. The flows from the root state are extremely
large and can hardly avoid overflow if we do not use very-
high-precision floating-point numbers. After the flows from
the root are clamped, further flows become mismatched,
which can mislead the optimization. That said, if we do not
clamp the flows, the loss will go to ”NaN”.

B. Distributions of high-quality trajectories

Fig. 6 and Fig. 7 show the length and score (deviation)
distributions of different samplers for the ”medium” and
”hard” tasks respectively. Different trajectory lengths for the
random samplers were tested because it is hard to determine
an optimal one.

Besides the outstanding performance, our learned samplers
generate trajectories of varying lengths, which also reflects
the sample diversity that can be further seen in the dataset.

C. Policy evaluation

Extensive evaluation for different robot platforms and
policies are done and posted on the codebase website,
including the velocity tracking challenge and the fall recov-
ery challenge. Perceptive policies in [17] outperforms non-
perceptive policies regarding velocity tracking, and a better
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initial state distribution in [38] and [39] can outperform the
random distribution regarding fall recovery. Still, the fall
recovery policies can suffer from unexpected collisions with
the terrain (see our video attachment).

VI. FUTURE WORKS

In this paper, we prototyped the generation of a terrain
dataset that can be used as a terrain-robustness benchmark
for legged locomotion. Extensive policy evaluation are also
done and the results are in line with expectations.

Our future works will focus on three aspects:
1) How our dataset can be generated in a goal-conditioned

way, i.e., to train one sampler for multiple difficulty;
2) How our dataset can be used in a data-driven way to

train terrain-robust locomotion policies;
3) How our method can be generalized to the generation

of non-rigid terrains.
In brief, we hope the extensions of our proposed method

can change the way researchers train and evaluate policies.
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