2211.06652v2 [cs.RO] 10 Mar 2023

arxXiv

Learning Neuro-symbolic Programs for Language Guided
Robot Manipulation

Namasivayam K*!, Himanshu Singh*l, Vishal Bindal*!, Arnav Tuli!, Vishwajeet Agrawal#z, Rahul Jain#2,

Parag Singla! and Rohan Paul'
! Affilitated with IIT Delhi. 2Work done when at IIT Delhi. * and # denote equal contribution.

Abstract— Given a natural language instruction and an input
scene, our goal is to train a model to output a manipulation
program that can be executed by the robot. Prior approaches
for this task possess one of the following limitations: (i) rely on
hand-coded symbols for concepts limiting generalization beyond
those seen during training [[1] (ii) infer action sequences from
instructions but require dense sub-goal supervision [2] or (iii)
lack semantics required for deeper object-centric reasoning in-
herent in interpreting complex instructions [3]. In contrast, our
approach can handle linguistic as well as perceptual variations,
end-to-end trainable and requires no intermediate supervision.
The proposed model uses symbolic reasoning constructs that
operate on a latent neural object-centric representation, allow-
ing for deeper reasoning over the input scene. Central to our
approach is a modular structure consisting of a hierarchical
instruction parser and an action simulator to learn disentangled
action representations. Qur experiments on a simulated envi-
ronment with a 7-DOF manipulator, consisting of instructions
with varying number of steps and scenes with different number
of objects, demonstrate that our model is robust to such
variations and significantly outperforms baselines, particularly
in the generalization settings. The code, dataset and experiment
videos are available at https://nsrmp.github.io

I. INTRODUCTION

As robots enter human-centric environments, they must
learn to act and achieve the intended goal based on natural
language instructions from a human partner. We address
the problem of learning to translate high level language
instructions into executable programs grounded in the robot’s
state and action space. We focus on multi-step manipulation
tasks that involve object interactions such as stacking and
assembling objects referred to by their attributes and spatial
relations. Figure |1| provides an example where the robot is
instructed to “put the block which is behind the green dice
to the right of the red cube”. We assume the presence of
natural supervision from a human teacher in the form of
input and output scenes, along with linguistic description
for a high-level manipulation task. Our goal is to learn
representations for visual and action concepts that can be
composed to achieve the task. The learning problem is hard
since (1) object attributes and actions have to be parsed
from the underlying sentence (2) object references need to
be grounded given the image and (3) the effect of executing
the specified actions has to be deciphered in the image space,
requiring complex natural language as well as image level
reasoning. Further, the model needs to be trained end-to-end,
learning representations for concepts via distant supervision.

Prior efforts can be broadly categorized as (i) Traditional
methods which learn a mapping between phrases in the

natural language to symbols representing robot state and
actions in a pre-annotated dataset [1]], [4]-[9]; they lack the
flexibility to learn the semantics of concepts and actions on
their own, an important aspect required for generalizability
(i) Approaches that model an instruction as a sequence of
action labels to be executed, without any deeper semantics,
and requiring intermediate supervision for sub-goals, which
may not be always be available [2], [10]-[16] (iii) Recent
end-to-end learning approaches [3[], [[17]-[23]; they have
limited reasoning capability both at the level of instruction
parsing, and their ability to learn varied action semantics.

In response, we introduce a neuro-symbolic approach for
jointly learning representations for concepts that can be com-
posed to form manipulation programs: symbolic programs
that explain how the world scene is likely to affected by
the input instruction. Our approach makes use of a Domain
Specific Language (DSL) which specifies various concepts
whose semantics are learned by the model. We build on
the concept learning framework by [24] for grounding of
concepts in a natural language instruction in the image. The
manipulation program is grounded into the scene to get a
sequence of actions that are fed to the low-level motion
planner of the robot, which is assumed to be given.

The contributions of this work are: (i) A novel neuro-
symbolic model that learns to perform complex object ma-
nipulation tasks requiring reasoning over scenes for a natural
language instruction, given initial and final world scenes.
(i) A demonstration of how dense representations for robot
manipulation actions can be acquired using only the initial
and final world states (scenes) as supervision without the
need for any intermediate supervision. (iii) An RL-based
learning approach that facilitates parsing of the complex
instruction into symbolic concepts, and allows for learning
of disentangled actions in the robot’s space. (iv) Evaluation
in instruction following experiments with a simulated 7-
DOF robot manipulator, demonstrating robust generalization
to novel settings improving on the state-of-the-art.

II. RELATED WORKS

Grounding Instructions to Robot Control. Traditional
approaches for grounding instructions assume a symbolic
description of the environment state and robot actions. These
approaches learn to associate phrases in an instruction with
symbols conveying their meaning from annotated datasets.
For example, [1f, [4]], [S]] map language to discrete motion
constraints that can be provided to a motion planner for

Accepted at International Conference on Robotics and Automation (ICRA), 2023

https://nsrmp.github.io/

Language J

Reasoner

Put the block which is behind the
green dice to the right of the red cube

St Visual Extractor KBRS Action Sr Sr
; .
0 o1 r2 = Visual Simulator
] Resnet 2 3 Reasoner = =
[] ——>03 123 [] H l—>] H
\:‘ Object Relational c1 04 —> Loss
‘9E embeddings embeddings C2
0y €3
Language Reasoner
Nat.ural Ianguage r 4, barser
instruction P REINFORCE
05 S <
plitter
Visual Visual [Right, 1, 2] Action
Extractor > Reasoner Simulator
T

Move(Right,Relate(Behind,
Filter(Green,Filter(Dice,Scene()))),
Filter(Red,Filter(Cube,Scene())),ldle())

Predicted grounded program:
Move object 1to 1'

Fig. 1: Model architecture. The Visual Extractor forms dense object representations from the scene image using pre-trained object detector and feature
extractor. The Language Reasoner auto-regressively induces a symbolic program from the instruction that represents rich symbolic reasoning over spatial
and action constructs inherent in the instruction. The Visual Reasoner determines which objects are affected by actions in the plan using symbolic and
spatial reasoning. The Action Simulator predicts final location of the moved object. The model is trained end-to-end with a loss on the bounding boxes,
backpropagated to action and visual modules. REINFORCE is used to train [25] the language reasoner from which symbolic programs are sampled.

trajectory generation, [0]], [[7/] parse language to a logical
parse that includes robot control actions and [8f], [9] use
sequence to sequence modeling to ground language to LTL
formulae capturing high-level task specifications. In contrast
to such approaches, the proposed work doesn’t assume a
symbolic model of the world and learns spatial and visual
concepts and action semantics from data.

Inferring Plans from Instructions. Another set of ap-
proaches focus on multi-stage tasks (e.g., cooking, assembly
etc.) and propose learners that can infer action sequences
by observing human task demonstrations. The work in [2]
proposes a recurrent neural architecture that converts a
natural language instruction to a sequence of intermediate
goals for robot execution. Efforts such as [10]-[12] learn
LTL task specifications from humans demonstrations and
introduce a model for effectively searching in the space
of programs. In another effort, [13]], authors introduce a
cognitively-inspired approach that infers a likely program
from a symbolic generative grammar for a robot manipulator
to form and re-arrange block patterns in a table top setting.
Misra et al. [[16] present a similar approach but additionally
assess plan feasibility for inferred plan candidates using a
symbolic planner in the training loop. Despite successful
demonstrations, these approaches require dense intermediate
supervision and treat robot actions in a purely symbolic
manner without learning their deep grounded semantics.
However, our method learns a latent space of composable
symbolic programs which can be executed in the latent space
of object representations. The composability of the symbolic
programs enables incremental learning through a specified
curriculum from only the initial and final state data, forgoing
the need for dense intermediate supervision.

Learning Action Models. This work builds on the rich lit-
erature on acquiring action models for planning and captures
when actions are applicable and how they affect the world.
Efforts such as [[17] and [18]] learn initiation sets for actions
implicitly learning to classify the robot’s configuration space
where an action can be initiated. [20]-[22] present neuro-
symbolic approaches for learning a latent object-centric
world model for tasks such as stacking, re-arrangement
etc. In [3]], authors introduce an end-to-end model that
jointly predicts object affordances and object displacements
specifying metric goals for robot re-arrangement and sorting
tasks. Recent parallel work by Wang et al. [26] builds on [3|]
and represents the task as an executable program parsed from
the instruction using a CCG parser, restricting the length and
variation of the instructions it can handle. Even though these
approaches successfully learn modular action models that are
amenable to planning, the scope of reasoning is limited to
one-hop reasoning over spatial relations and attributes. In
contrast, this work focuses on interpreting task instructions
that require compositional/hierarchical spatial reasoning over
an extended planning horizon.

III. PROBLEM FORMULATION

The robot perceives the world state comprising a set of
rigid objects placed on a table via a depth sensor that outputs
a depth image S € RHXWXC where H,W,C respec-
tively denote the height, width and the number of channels
(including depth) of the imaging sensor. The workspace
is co-habited by a human partner who provides language
instructions to the robot to perform assembly tasks. We
assume a closed world setting, i.e. changes to the world state
are caused only by the robot manipulator.

The robot’s goal is to interpret the human’s instruction A
in the context of the initial world state S; and determine a
sequence of low-level motions that result in the final world
state Sp conforming to the human’s intention. Following
[27], [28], planning for a complex task is factorized into
(1) high-level task planning to determine a sequence of
sub-goals, and (ii) the generation of low-level motions to
attain each sub-goal. Formally, a semantic model for a
manipulation task denoted as M anipulationProgram(.)
takes the initial scene Sy and the instruction A as input and
determines a sequence of sub-goals as (go,91,.--,9n) =
ManipulationProgram(Sr, A). Each sub-goal g; aggre-
gates the knowledge of the object, 0;, to be manipulated
and its target Cartesian SE(3) pose p;. This is provided to
the low-level motion planner to synthesize the end-effector
trajectory for the robot to execute. The robot’s motion
planner, which is assumed to be given, includes grasping
an object and synthesizing a collision-free trajectory for
positioning it at a target pose.

Training data consists of demonstrations, corresponding
to task instructions A, in the form of initial and final world
states (S;, Sr). Given data D={S%, S% A*}M the model
parameters are trained by optimizing a loss £(N}, St.) where
St =Simulate(ManipulationProgram(St, A; ©)) is the
final state estimated by simulating the plan inferred by
ManipulationProgram(S%, A) on initial state S¢. We seek
strong generalization on novel scenes, instructions and plan
lengths beyond those encountered during training, along with
interpretability in sub-goals.

IV. TECHNICAL APPROACH

We propose a neuro-symbolic architecture to solve the task
planning problem described in section Our architecture
is inspired by [24] and is trained end-to-end with no inter-
mediate supervision. We assume that the reasoning required
to infer the sub-goals can be represented as a program
determined by a domain specific language (DSL). Table [I|
lists the keywords and operators in our DSL, along with
the implementation details of the operators. We assume a
lexer that identifies all the keywords that are referred to in
the instruction A. We do not assume prior knowledge of the
semantics of the DSL constructs, and they are learned purely
from the data. Our architecture (ref. Figure [I)) consists of
the following key modules (a) Language Reasoner (LR) to
parse the instruction into a hierarchical plan consisting of
references to visual and action concepts and operators (b)
Visual Extractor (VE) to obtain the initial bounding boxes
from the input image (c) Visual Reasoner (VR) to ground
the object related concepts present in the parsed instruction
with respect to the input image (d) Action Simulator (AS)
to learn the semantics of actions to be executed to produce
a sequence of sub-goals. Figure [2|illustrates our approach.

A. Language Reasoner (LR)

The language reasoner (LR) deduces a hierarchical sym-
bolic program that corresponds to the manipulation task
implied by the human’s utterance to the robot. The deduced

Keywords and their classes

Object-level concepts Other concepts
Color: {Red, Blue, Cyan,...} RelCpt: {Left, Behind, Front,...}
Type: {Cube, Lego, Dice} ActCpt: {MovRight, MovTop....}

Operators: (Input — Output)

Scene : None — ObjSet Unique: ObjSet — Obj
Filter : (ObjSet, ObjCpt)— ObjSet | Relate : (Obj, RelCpt) — ObjSet
Move : (ActCpt, World) — World Idle : World — World

ObjectSet € RN, N = Num objects, Object = one-hot ObjectSet
World = {(b;,d)}}; € R5, bounding boxes and depth for all objects

TABLE I: Domain Specific Language.

program consists of symbolic reasoning constructs that op-
erate on neural concepts grounded in the state space of the
scene and the action space of the robot. Since a high-level
task instruction may imply a sequence of actions, we adopt
a hierarchical model where an LSTM [29] network first
splits the instruction into a sequence of sub-instructions, each
corresponding to one grounded action. The semantic parse
of each sub-instruction is then inferred using a hierarchical
seq2tree architecture similar to [24], [30]. The sequence
of programs thus generated are composed to produce the
symbolic program for the original language instruction.

B. Visual Extractor (VE)

The visual extractor forms an object-centric view of the
world by extracting object proposals in the form of bounding
boxes for the objects (and class labels) using a pre-trained
object detector [31]. Following [[24]], dense object representa-
tions are obtained by passing the bounding boxes (after non-
maximal suppression) through a feature extractor as [32].
The data association between object proposals is estimated
greedily based on cosine similarity between the dense object
features in the initial/final scenes.

C. Visual Reasoner (VR)

The visual reasoner performs visuo-spatial, object-centric
reasoning to compute a sequence of sub-goals grounded in
the scene from the symbolic program. E.g., the instruction
“put the block which is behind the green dice” requires the
robot to perform reasoning to resolve the specific world
object that conforms to the relations/attributes as being
behind a dice with colour attribute of green.

The visual reasoner parameterizes object-level and rela-
tional concepts in the DSL (Table |I) with neural embeddings.
Similar to [24], a differentiable framework is defined for the
execution of operators such as Filter, Unique, Relate, Idle.
As in [24], intermediate results of execution are represented
in a probabilistic manner. For e.g., a set of objects is
represented as a vector of probabilities where the i-th element
represents the probability of the ¢-th object being an element
of the set. Filter, Unique, Relate etc. sequentially modify this
vector to ultimately yield the referred object/set of objects.
This execution framework is used to execute the symbolic
program on top of the visual features (extracted by the visual
extractor) resulting in the grounding of the program, II, on
the world state.

Visual extractor Visual reasoner

-

Object Relational
embeddings embeddings

ice - -,
sehind Il Bl M 0, 02 03 04 05

!
el —
fl
=

Put the block which

is behind the green

dice to the right of ‘

the red cube

l Behind| Filter

¥
Relate
|

;
Language Green FiIlter

v ¥
reasoner Dice| Scene

(a)

Visual extractor Visual reasoner —

p [N
aq, :l.l.l :..lll 8%
Object Relational Dice NH BN - -
2|: embeddings embeddings eehind i B M 0, 02 03 04 05 -.M
Put the block which (=0 Give the 3D co-ordinates to a low-level
is behind the green motion planner to generate the trajectory
dice to the right of l ot
the red cube R.;m Map loc} and loc} (bounding box +
° e depth) to 3D coordinates using a learnt
o1 2 MLP.
L {888 ¢ '
Language ot |> Q10 01O _.
reasoner ol 3
Action simulator

Fig. 2: Quasi-symbolic program execution. We postulate a latent space of hierarchical, symbolic programs that performs explicit reasoning over action,
spatial and visual concepts. a) The language reasoner infers a program belonging to this space, capturing the semantics of the language instruction. The
program is executed over the latent object representations extracted from the initial scene to get a grounded program. b) The grounded program is used by
the action simulator to compute the final location of the moved object. This is fed into a low-level motion planner for computing the low-level trajectory.

D. Action Simulator (AS)

The action simulator learns the semantics of action con-
cepts of the DSL. It takes as input, the action concept, the
initial locations of the object to be manipulated and the
reference object respectively and outputs the target location
of the former. The outputted target location of the object
being manipulated serves as a sub-goal for the low-level
motion planner. We determine the location of an object by
the corners b = (x1,¥y1,x2,y2) of the enclosing bounding
box and the depth of the object from the camera face.
Overall, the model can be summarized as follows:

e P «+ LR(A;0p,0s), where P is a symbolic program
composed of DSL constructs.

o II < VR(P,VE(Sr;0g);0v). The visual reasoner then
grounds P and outputs II, the grounded program. For
example, in Figure [T] red and blue subprograms are
grounded to object 1 and 2 respectively.

e G + AS(II; 0 4). The action simulator then takes IT and
returns a sequence of sub-goals, G = (go, g1, -, gn—1)>
for the motion planner.

Here, 0’s are the parameters of the corresponding module.

E. Loss Function and Model Training

Given a single-step instruction A, the parser predicts a
symbolic program P. The visual reasoner grounds P to predict
a sequence of sub-goals. The action simulator computes
the low-level action corresponding to each sub-goal. The
sequence of low-level actions is executed on the initial
scene Sy to get the predicted final locations of the objects

{Z?c}}iil Let {loc%}Y | be the true locations in the gold
final state, Sp. As mentioned above loc = (b,d), where b
is the corners of bounding box and d is the depth. The loss
function Lye = SV ||locy — lock|| + B(1 — ToU(b, b))
is used to train the action simulator and the visual modules.
Since there is no explicit supervision to the parser, we train
the parser using the policy gradient algorithm REINFORCE
with the reward set to —L,.. During initial training, an
explicit expectation (subtracting the mean action loss as the
baseline) is computed over all programs to inform the loss,
ameliorating the variance issue arising in REINFORCE. The

Language Reasoner is trained using REINFORCE and the
other modules using backpropagation.

The following training curriculum is adopted: (i) training
on single step commands with reasoning involving individual
object features only, (ii) the trained action simulator module
is frozen and additional training on single step commands
involving reasoning over spatial relations between objects
is carried out. (iii) the sentence splitter in the Language
Reasoner module is fine-tuned on multiple-step instructions.

E. Scene Reconstruction

We additionally train a neural model to synthesize the
scene corresponding to each sub-goal, given only the initial
scene and predicted object locations. This enables us to vi-
sualise the scene modification without the need of execution
by a robot manipulator along with providing interpretability
to the model’s latent program space. The reconstruction
architecture is adapted from [33]], where the scene graph is
constructed with nodes having object features and bounding
boxes. This graph is updated with predicted bounding boxes
at each step, yielding generated scenes. Presence of initial
and final scenes in our data means we can train in a
supervised manner, unlike [33].

V. EVALUATION AND RESULTS
A. Experimental Setup

Data collection. The dataset is collected in a PyBullet
tabletop environment using a simulated Franka Emika Panda
robot arm. The workspace consists of a tabletop with blocks
of different shapes and colors. Each datapoint consists of
an initial scene paired with a language instruction and the
expected resulting final scene. For training, close to 5000
synthetic scenes and language instructions(with a 80:20 train-
test split) are sampled with 3-5 blocks of varying colors and
shapes and placed at randomized orientations on the table.

The dataset consists of both single-step(e.g. “Put the red
block on the green block”) and double step commands(e.g.
“Put the red block which is behind the white dice to right of
the blue cube, then put the lego block on top of red block”).
On the basis of the level of reasoning involved in the given
instruction, we can classify the dataset into (i) simple that
involve reasoning over individual object features only and

TABLE II: Comparison between Proposed Model and NMN+ (BB: Bounding Boxes)

[Model [Overall [Single-step | Double step | Simple [Complex |
IOU | IOU-M Program IOU | IOU-M | IOU | IOU-M | IOU | IOU-M | IOU | I0U-M
(Action/Subj/Pred)
NMN+ (gold BB) 0.77 0.55 —/0.81/0.76 0.80 0.56 0.71 0.52 0.90 0.71 0.64 0.31
Ours (gold BB) 0.87 0.72 0.99/0.99/0.94 091 0.64 0.87 0.62 0.92 0.73 0.87 0.64
NMN+ (extracted BB) | 0.69 0.32 —/0.81/0.55 0.78 0.49 0.58 0.22 0.79 0.55 0.60 0.20
Ours (extracted BB) 0.76 0.41 0.99/0.74/0.76 0.80 0.43 0.69 0.54 0.83 0.62 0.69 0.24

TABLE III: Comparison b/w Proposed Model and CLIPort

‘ Model | Overall | Simple | Complex |
Id. Acc. | PL. Acc. | Id. Acc. | PL. Acc. | Id. Acc. | PL. Acc.
CLIPort 0.46 0.39 0.55 0.47 0.32 0.26
CLIPort(5x) 0.76 0.61 0.90 0.74 0.55 0.39
Ours (gold BB) 0.94 0.93 1.0 1.0 0.83 0.81
Sr Visual Extractor ASubject Sr Sr
ttention
[m] 0y —
B o Lo
L5

Action
Simulator

* Attention Module
Oosiauan

Natural language
instruction

Action
Decoder

Language Encoder

Fig. 3: Object-centric baseline NMN+. For a fair comparison, our model
and NMN+ share the same language encoder (with LSTM-based splitter)
and the visual extractor. Attention blocks compute language-guided attention
over object embeddings to get the subject and predicate for the manipulation
action. This is fed into the action simulator along with the action embedding
from the action decoder to get the predicted final location of the object.

complex that additionally involve reasoning over inter-object
relationships.

B. Baselines, Metrics and Comparisons

The proposed model (i) performs visuo-linguistic reason-
ing in a symbolic latent space and (ii) assumes an object-
centric state representation. We provide comparisons with
baselines that forego these two assumptions.

NMNH+, inspired from Neural Module Networks [34],
assumes an object-centric state representation. However, in
contrast to the proposed model, visuo-linguistic reasoning
required for manipulation is performed using language-
guided attention over object embeddings instead of using
symbolic reasoning constructs. Figure [3| provides the detailed
architecture. The entire architecture is neural and is trained
end-to-end with the loss same as that of the proposed model.

The following metrics are used for comparing the pro-
posed model with NMN+: (i) Intersection over Union (IOU)
of the predicted and groundtruth bounding box is calculated
in the 2D image space assuming a static camera viewing the
scene. Average IOU over all objects in the scene and mean
IOU for objects moved during execution, termed I0U-M,
are reported. (ii) Program Accuracy: The grounded program
inferred for an (instruction, scene)-pair using the proposed
model is compared with the manually annotated ground truth
program. We separately report the grounding accuracy for the

subject and predicate of our action (assumed binary) and the
accuracy of the predicted action inferred from the instruction.
Since, there is no explicit notion of grounded actions in the
baseline, we do not report this metric for the baseline.

0.65

- NMN+
—+ Ours

o
S
\

0.60

4
)

o
>

Mean loU 2D of moved object
=)
n

Mean loU 2D of moved object
)
@
)

< o
w

°
W
G

NMN+
3~ Ours

=3
N

4 6 [10 0303 2

Object Count

5 6 7
Step Count

(a) ToU vs # of objects (b) IoU vs varying # of steps

Fig. 4: Performance in generalization settings

Table [II] reports the performance of our model and the
baseline on the test set. We report both numbers: using
gold set of bounding boxes and using bounding boxes
extractedusing the approach described in Section Our
model outperforms the baseline overall. For instructions with
complex reasoning (resolution of binary spatial relations)
involved, the proposed model outperforms the baseline by
33 points in the IOU-M metric. Disentangled representations
of relations and concepts in Visual Reasoning module allow
the proposed model to reason over complex instructions.

CLIPort [3]] takes as input a dense, image-based state rep-
resentation, in contrast to our object-centric state represen-
tation. It proposes a two-stream architecture that computes
language-guided attention masks on the input scene for both
pick and place locations. It lacks explicit symbolic constructs
for reasoning about the scene. Instead, the reasoning required
for manipulation is performed by leveraging the visuo-
linguistic understanding of the large pre-trained model CLIP
[35]. Table [l compares CLIPort with our model. Since
CLIPort performs only single-step pick-and-place operations,
the numbers are calculated only on single-step examples.
The following metrics are used (i) Placement Accuracy:
fraction of examples in which the predicted place location
lies within the groundtruth bounding box of the moved
object (ii) Identification Accuracy: fraction of examples in
which the predicted pick location lies within the groundtruth
bounding box of the moved object. For the proposed model,
the centre of the predicted bounding box location is used as
the predicted place location.

'Excluded about 10% no detection cases for both models.

(a) Move the block which is a lego and green in

color on top of the cube whose color is blue blue cube

(b) Place the cyan lego object to the left of the

ne B BY BN RN R

(c) Place the thing at the right of the red lego object to the right of the green dice and put
the cyan lego block on top of the cyan dice

) Put the blue lego thing on the left side of the red lego thing and place the red cube on the left side of the white lego object and move the magenta dice
the right of the green box and move the red box on the left side of the blue lego thing and put the blue lego object to the left of the white lego thing

Fig. 5: Execution of robot manipulator on (a) compound instructions, (b) scene with 15 objects, (c) double step instruction with relational attributes, (d)
5-step instruction. (d) also shows reconstruction of the predicted scene before each step of the simulation

We observe that CLIPort on our dataset shows low accu-
racy in both predicting the object to be moved as well as
the place location. Further, its performance deteriorates in
examples with relational concepts. We note that the perfor-
mance and sample-efficiency of CLIPort critically depends
upon spatial consistency of input images i.e. objects do
not scale or distort depending on the viewing angle as in
[3]. To provide additional leverage to the baseline, we train
CLIPort on 5 times more data than the original, results of
which are reported under the title CLIPort-5x. We observe an
improvement in performance on the larger dataset, although
still worse than that of the proposed model.

C. Combinatorial Generalization

To evaluate the approaches in an out-of-distribution gener-
alization setting, we collect dataset consisting of scenes with
more objects than seen during training, and with instructions
that involve larger number of steps for carrying out the task.

Figure [a] illustrates the model generalizing combinatori-

ally to scenes with more number of objects. The models were
first trained on scenes having up to 5 objects only, and then
tested on scenes having up to 10 objects.
The superior generalization demonstrated by the model can
be attributed to reliance on an object-centric state represen-
tation and the ability to learn dense disentangled representa-
tions of spatial and action concepts, facilitating modular and
structured reasoning that scales gracefully.

Figure [b]illustrates model generalization to longer hori-
zon manipulation. We observe that the proposed model is
able to perform multiple scene manipulation and reasoning
steps with considerable accuracy up to 7 steps after being
trained with instructions translating to plans up to 2 steps.
The performance of the object-centric baseline (NMN+)
is worse and the model struggles to generalize to plans
extending to longer horizons. We attribute this to the modular
structure of our approach compared to the baseline.

D. Demonstration on a Simulated Robot

We demonstrate the learned model for interpreting instruc-
tions provided to a simulated 7-DOF Franka Emika manip-
ulator in a table top setting. The robot is provided language

instructions and uses the model to predict a program that
once executed transitions the world state to the intended one.
The 2-D bounding boxes predicted by the action simulator
are translated to 3-D coordinates in the world space via a
learned MLP using simulated data. The predicted positions
are provided to a low-level motion planner for trajectory
generation with crane grasping for picking/placing. Figure
[5] shows execution by the robot manipulator on complex
instructions, scenes having multiple objects, double step
relational instructions, and multi-step instructions. We also
visualise reconstruction of the moved objects before each
step of the actual execution. The structural similarity index
(SSIM) for the reconstruction model is 0.935.

VI. CONCLUSIONS

We present a neuro-symbolic architecture that learns
grounded manipulation programs via visual-linguistic rea-
soning for instruction understanding over a given scene,
to achieve a desired goal. Unlike previous work, we do
not assume any sub-goal supervision, and demonstrate how
our model can be trained end-to-end. Our experiments
show strong generalization to novel scenes and instructions
compared to a neural-only baseline. Directions for future
work include dealing with richer instruction space including
looping constructs, real-time recovery from errors caused by
faulty execution, and working with real workspace data.

VII.

We thank anonymous reviewers for their insightful com-
ments that helped in further improving our paper. Parag
Singla was supported by the DARPA Explainable Al (XAI)
Program, IBM Al Horizon Networks (AIHN) grant and
IBM SUR awards. Rohan Paul acknowledges Pankaj Gupta
Young Faculty Fellowship for support. We acknowledge the
support of CSE Research Acceleration fund of IIT Delhi.
Any opinions, findings, conclusions or recommendations
expressed in this paper are those of the authors and do
not necessarily reflect the views or official policies, either
expressed or implied, of the funding agencies.

ACKNOWLEDGEMENTS

(1]

(2]

(3]

(4]

(5]

(6]

(71

(8]

(9]

[10]

[11]

[12]

[13]

REFERENCES

R. Paul, J. Arkin, N. Roy, and T. M Howard, “Effi-
cient grounding of abstract spatial concepts for natu-
ral language interaction with robot manipulators,” in
Robotics: Science and Systems Foundation, 2016.

C. Paxton, Y. Bisk, J. Thomason, A. Byravan, and D.
Fox, “Prospection: Interpretable plans from language
by predicting the future,” in 2019 International Con-
ference on Robotics and Automation (ICRA), IEEE,
2019, pp. 6942-6948.

M. Shridhar, L. Manuelli, and D. Fox, “Cliport:
What and where pathways for robotic manipulation,”
in Conference on Robot Learning, PMLR, 2022,
pp. 894-906.

T. M. Howard, S. Tellex, and N. Roy, “A natural
language planner interface for mobile manipulators,”
in 2014 IEEE International Conference on Robotics
and Automation (ICRA), IEEE, 2014, pp. 6652-6659.
S. Tellex, T. Kollar, S. Dickerson, M. R. Walter, A. G.
Banerjee, S. Teller, and N. Roy, “Approaching the
symbol grounding problem with probabilistic graph-
ical models,” Al magazine, vol. 32, no. 4, pp. 64-76,
2011.

C. Matuszek, E. Herbst, L. Zettlemoyer, and D. Fox,
“Learning to parse natural language commands to
a robot control system,” in Experimental robotics,
Springer, 2013, pp. 403-415.

R. A. Knepper, T. Layton, J. Romanishin, and D. Rus,
“Ikeabot: An autonomous multi-robot coordinated fur-
niture assembly system,” in 2013 IEEE International
conference on robotics and automation, 1EEE, 2013,
pp- 855-862.

N. Gopalan, D. Arumugam, L. L. Wong, and S. Tellex,
“Sequence-to-sequence language grounding of non-
markovian task specifications.,” in Robotics: Science
and Systems, vol. 2018, 2018.

E. C. Williams, N. Gopalan, M. Rhee, and S. Tellex,
“Learning to parse natural language to grounded re-
ward functions with weak supervision,” in 2018 IEEE
International Conference on Robotics and Automation
(ICRA), IEEE, 2018, pp. 4430-4436.

A.J. Shah, P. Kamath, S. Li, and J. A. Shah, “Bayesian
inference of temporal task specifications from demon-
strations,” 2018.

C. Wang, C. Ross, Y.-L. Kuo, B. Katz, and A.
Barbu, “Learning a natural-language to Itl executable
semantic parser for grounded robotics,” arXiv preprint
arXiv:2008.03277, 2020.

H. Kress-Gazit, G. E. Fainekos, and G. J. Pappas,
“Translating structured english to robot controllers,”
Advanced Robotics, vol. 22, no. 12, pp. 1343—-1359,
2008.

M. Lazaro-Gredilla, D. Lin, J. S. Guntupalli, and D.
George, “Beyond imitation: Zero-shot task transfer on
robots by learning concepts as cognitive programs,’
Science Robotics, vol. 4, no. 26, 2019.

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

M. Tenorth, D. Nyga, and M. Beetz, “Understanding
and executing instructions for everyday manipulation
tasks from the world wide web,” in 2010 ieee interna-
tional conference on robotics and automation, IEEE,
2010, pp. 1486-1491.

G. Lisca, D. Nyga, F. Bélint-Benczédi, H. Langer,
and M. Beetz, “Towards robots conducting chemical
experiments,” in 2015 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS), IEEE,
2015, pp. 5202-5208.

D. K. Misra, J. Sung, K. Lee, and A. Saxena, “Tell me
dave: Context-sensitive grounding of natural language
to manipulation instructions,” The International Jour-
nal of Robotics Research, vol. 35, no. 1-3, pp. 281-
300, 2016.

G. Konidaris, L. P. Kaelbling, and T. Lozano-Perez,
“From skills to symbols: Learning symbolic represen-
tations for abstract high-level planning,” Journal of
Artificial Intelligence Research, vol. 61, pp. 215-289,
2018.

Z. Wang, C. R. Garrett, L. P. Kaelbling, and T.
Lozano-Pérez, “Learning compositional models of
robot skills for task and motion planning,” The Inter-
national Journal of Robotics Research, vol. 40, no. 6-
7, pp. 866-894, 2021.

L. S. Zettlemoyer, H. Pasula, and L. P. Kaelbling,
“Learning planning rules in noisy stochastic worlds,”
in AAAI, 2005, pp. 911-918.

V. Xia, Z. Wang, K. Allen, T. Silver, and L. P. Kael-
bling, “Learning sparse relational transition models,”
in International Conference on Learning Representa-
tions, 2018.

T. Silver, K. R. Allen, A. K. Lew, L. P. Kaelbling, and
J. Tenenbaum, “Few-shot bayesian imitation learning
with logical program policies,” in Proceedings of the
AAAI Conference on Artificial Intelligence, vol. 34,
2020, pp. 10251-10258.

Y. Zhu, J. Tremblay, S. Birchfield, and Y. Zhu, “Hier-
archical planning for long-horizon manipulation with
geometric and symbolic scene graphs,” in 2021 IEEE
International Conference on Robotics and Automation
(ICRA), IEEE, 2021, pp. 6541-6548.

A. Zeng, P. Florence, J. Tompson, S. Welker, J. Chien,
M. Attarian, T. Armstrong, I. Krasin, D. Duong, V.
Sindhwani, et al., “Transporter networks: Rearrang-
ing the visual world for robotic manipulation,” arXiv
preprint arXiv:2010.14406, 2020.

J. Mao, C. Gan, P. Kohli, J. B. Tenenbaum, and
J. Wu, “The Neuro-Symbolic Concept Learner: Inter-
preting Scenes, Words, and Sentences From Natural
Supervision,” in International Conference on Learning
Representations, 2019. [Online]. Available: https:
//openreview.net/forum?id=rJgMlhRctm.
R Williams, “A class of gradient-estimation algo-
rithms for reinforcement learning in neural networks,”
in Proceedings of the International Conference on
Neural Networks, 1987, pp. II-601.

https://openreview.net/forum?id=rJgMlhRctm
https://openreview.net/forum?id=rJgMlhRctm

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

R. Wang, J. Mao, J. Hsu, H. Zhao, J. Wu, and
Y. Gao, “Programmatically grounded, composition-
ally generalizable robotic manipulation,” in The
Eleventh International Conference on Learning Rep-
resentations, 2023. [Online]. Available: https://
openreview.net/forum?id=rZ-wylY5VI.

L. P. Kaelbling and T. Lozano-Pérez, “Hierarchical
planning in the now,” in Workshops at the Twenty-
Fourth AAAI Conference on Artificial Intelligence,
2010.

Y. Zhu, J. Tremblay, S. Birchfield, and Y. Zhu, “Hier-
archical planning for long-horizon manipulation with
geometric and symbolic scene graphs,” arXiv preprint
arXiv:2012.07277, 2020.

S. Hochreiter and J. Schmidhuber, “Long short-term
memory,” Neural Computation, 1997.

L. Dong and M. Lapata, “Language to logical form
with neural attention,” in Proceedings of the 54th
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), 2016, pp. 33-43.
J. Redmon, S. Divvala, R. Girshick, and A. Farhadi,
“You only look once: Unified, real-time object detec-
tion,” in Proceedings of the IEEE conference on com-
puter vision and pattern recognition, 2016, pp. 779—
788.

S. Targ, D. Almeida, and K. Lyman, “Resnet in resnet:
Generalizing residual architectures,” arXiv preprint
arXiv:1603.08029, 2016.

H. Dhamo, A. Farshad, 1. Laina, N. Navab, G. D.
Hager, F. Tombari, and C. Rupprecht, “Semantic im-
age manipulation using scene graphs,” in CVPR, 2020.
J. Andreas, M. Rohrbach, T. Darrell, and D. Klein,
“Neural module networks,” in Proceedings of the
IEEE conference on computer vision and pattern
recognition, 2016, pp. 39-48.

A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G.
Goh, S. Agarwal, G. Sastry, A. Askell, P. Mishkin, J.
Clark, G. Krueger, and I. Sutskever, Learning transfer-
able visual models from natural language supervision,
2021. por: 10 . 48550 / ARXIV . 2103 . 00020.
[Online]. Available: https://arxiv.org/abs/
2103.00020.

Z. Wang, A. Bovik, H. Sheikh, and E. Simoncelli,
“Image quality assessment: From error visibility to
structural similarity,” IEEE Transactions on Image
Processing, vol. 13, no. 4, pp. 600-612, 2004. DOTI:
10.1109/TIP.2003.819861l

https://openreview.net/forum?id=rZ-wylY5VI
https://openreview.net/forum?id=rZ-wylY5VI
https://doi.org/10.48550/ARXIV.2103.00020
https://arxiv.org/abs/2103.00020
https://arxiv.org/abs/2103.00020
https://doi.org/10.1109/TIP.2003.819861

	I Introduction
	II Related Works
	III Problem Formulation
	IV Technical Approach
	IV-A Language Reasoner (LR)
	IV-B Visual Extractor (VE)
	IV-C Visual Reasoner (VR)
	IV-D Action Simulator (AS)
	IV-E Loss Function and Model Training
	IV-F Scene Reconstruction

	V Evaluation and Results
	V-A Experimental Setup
	V-B Baselines, Metrics and Comparisons
	V-C Combinatorial Generalization
	V-D Demonstration on a Simulated Robot

	VI Conclusions
	VII Acknowledgements

