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Abstract— Scene completion refers to obtaining dense scene
representation from an incomplete perception of complex 3D
scenes. This helps robots detect multi-scale obstacles and anal-
yse object occlusions in scenarios such as autonomous driving.
Recent advances show that implicit representation learning can
be leveraged for continuous scene completion and achieved
through physical constraints like Eikonal equations. However,
former Eikonal completion methods only demonstrate results
on watertight meshes at a scale of tens of meshes. None of them
are successfully done for non-watertight LiDAR point clouds
of open large scenes at a scale of thousands of scenes. In this
paper, we propose a novel Eikonal formulation that conditions
the implicit representation on localized shape priors which
function as dense boundary value constraints, and demonstrate
it works on SemanticKITTI and SemanticPOSS. It can also
be extended to semantic Eikonal scene completion with only
small modifications to the network architecture. With extensive
quantitative and qualitative results, we demonstrate the benefits
and drawbacks of existing Eikonal methods, which naturally
leads to the new locally conditioned formulation. Notably, we
improve IoU from 31.7% to 51.2% on SemanticKITTI and
from 40.5% to 48.7% on SemanticPOSS. We extensively ablate
our methods and demonstrate that the proposed formulation is
robust to a wide spectrum of implementation hyper-parameters.
Codes and models are publicly available at https://github.
com/AIR-DISCOVER/LODE.

I. INTRODUCTION

Representing 3D data with neural implicit functions is
actively explored recently due to its strong modeling ca-
pability and memory efficiency [1]–[7]. Meanwhile, it can
be easily meshed and rendered to facilitate human viewing.
While most methods are fully supervised [1]–[3], SIREN
[6] proposes an Eikonal implicit scene completion method
with weak supervision needed. It learns a signed distance
function (SDF), which measures the nearest distance to the
scene surface, through the process of solving an Eikonal
differential equation with only points on the surface and
without knowing SDF values in free space. This scheme is
promising for large-scale sparse LiDAR data because (1) for
non-water-tight scenes, it is hard to define signed distance
in free space and (2) it requires less supervision than non-
Eikonal formulations and thus is simpler, especially when
considering the completion of thousands of scenes.

However, even after an exhaustive parameter search,
SIREN fails to fit sparse LiDAR data (Fig. 1-a), which
limits its application in many important scenarios such as
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(a) Sparse LiDAR Input (b) SIREN

(c) Our Result (d) Our Result w/ Semantics

Fig. 1. (a) The input is a sparsity-variant point cloud of road scenes
captured by LiDAR. (b) The implicit fitting result of SIREN [6]. Note that
this is well tuned by an exhaustive parameter search. (c) The output of
our method is a neural signed distance function of arbitrary resolution, i.e.,
implicit scene completion. (d) Our result with extended semantic parsing.

autonomous driving. This is understandable as SIREN is a
pure generative model and LiDAR point clouds are extremely
sparse. Specifically, the reasons are three-fold: (1) The
sparsity of on-surface points amplifies the negative impact
of wrongly sampled off-surface anchors. (2) The normal
orientations of sparse points cannot be estimated accurately
from their neighbors, which serve as a necessary boundary
value constraint for SIREN fitting. (3) Without trustworthy
boundary values, enforcing a hard Eikonal constraint leads
to even inaccurate SDF values. As shown in Fig. 1-b, the
SIREN fitting result is fragmented.

To overcome these limitations, we develop a novel Eikonal
implicit formulation by introducing an intermediate embed-
ding domain, where localized shape priors are contained.
Instead of directly fitting a function to map 3D Cartesian
coordinates to signed distances, we first map the Euclidean
space to a corresponding high-dimensional shape embedding
space, and then the signed distance space. These shape
embeddings function as dense boundary values that entangle
both zeroth-order (on-surface points) and first-order (normal
directions) constraints, in a data-driven manner. Naturally,
the issue of enforcing a hard Eikonal constraint is also
alleviated. This proposed formulation is named Locally
Conditioned Eikonal Formulation and abbreviated as LODE.
The result of LODE is significantly better than SIREN
(Fig. 1-c). And the supplementary video demonstrates LODE
performs well on in-the-wild sequential LIDAR inputs.
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Specifically, to implement LODE, we propose a novel
hybrid architecture combining a discriminative model and
a generative model. The discriminative part of our method
exploits the strong representation learning power of sparse
convolution, generating latent shape embeddings from sparse
point cloud input. The generative model takes as input the
ground truth point cloud coordinates along with pointwise
latent shape embeddings retrieved by trilinear sampling and
predicts SDF values of these points. During inference, the
ground truth points are replaced with the points of interest.

Furthermore, to demonstrate the flexibility of LODE, we
extend our method to implicit semantic completion in two
ways: (1) by adding a dense discriminative head to predict
semantic labels which can be mapped to the implicit function
using K-Nearest-Neighbors; (2) by adding a parallel implicit
generative head to directly model the implicit semantic field.
We evaluate them on SemanticKITTI and achieve results
(Fig. 1-d) comparable to state-of-the-art methods.

To summarize, our contributions are as follows:
• We develop a locally conditioned Eikonal implicit scene

completion formulation that incorporates learned shape
priors as dense boundary value constraints.

• We apply the formulation in road scene understanding,
leading to the first Eikonal implicit road scene comple-
tion method without knowing SDF values in free space.

• We achieve state-of-the-art completion results on Se-
manticKITTI and SemanticPOSS, outperforming the
best Eikonal completion results by +19.5% and +8.2%
IoU. Code, data, and models will be released.

II. RELATED WORKS

Neural Implicit Representation. The general principle
of neural implicit representation is to train a neural net-
work to approximate a continuous function that is hard to
parameterize otherwise. [1] proposes to learn deep signed
distance functions conditioned on shape embeddings. [2]
approximates occupancy functions with conditional batch-
norm networks. [8] introduces data-driven shape embeddings
into occupancy networks for indoor scene completion. [3]
uses hyperplanes as compact implicit representations to
reconstruct shapes sharply and compactly. [6] shows that
using gradient supervision allows Eikonal SDF learning with
only on-surface SDF value supervision and sine activations
are critical to its success. [9] combines Gaussian ellipsoids
and implicit residuals to represent shapes accurately. Some
recent works exploit 3D implicit representations for instance-
level understanding from point cloud [10] or RGB [11]
inputs. Despite these advances, there is no work yet on
implicit scene completion on LiDAR point clouds where
the data is extremely sparse with heterogeneous distribution.
Our method bridges this gap with the proposed locally
conditioned Eikonal formulation.

LiDAR-based scene understanding. While there are
many advances in camera-based cognitive scene understand-
ing [12]–[16], LiDAR point cloud provides reliably accurate
3D structural information and thus has been mainly leveraged
in geometric scene understanding. Numerous LiDAR-based

SLAM methods are proposed to improve the quality and real-
time performance [17]–[21]. [22]–[24] further incorporate
semantic understanding into LiDAR SLAM systems. These
methods explicitly complete a scene with multiple frames
of LiDAR data, while our goal is to achieve implicit com-
pletion with a single frame. Sparse LiDAR points are also
efficiently leveraged in depth completion [25], [26], object
detection [27], [28], segmentation [29]–[34]. We believe the
performance of these methods will be boosted with LODE
completing the original sparse representation. Moreover, by
providing fine geometric details, LODE may aid in the
detection of anomalous obstacles [35] and some other tasks.

III. FORMULATION

A. Eikonal Implicit Completion Formulation

Eikonal completion methods aim at fitting the signed
distance function (SDF) of a scene. The signed distance is
the nearest distance from a point of interest to the scene
surface, with the sign denoting whether the point is located
outside (positive) or inside (negative) of the surface. The
iso-surface where the signed distance equals zero implicitly
delineates the scene. Formally, the goal of Eikonal implicit
completion is to find a function Φ(x), which satisfies a set of
M constraints Cm, to approximate the underlying SDF. Each
constraint relates the function Φ(x) or its gradient to certain
input quantities a(x) on the corresponding domain Ωm:

Cm(a(x),Φ(x),∇xΦ(x)) = 0,

∀x ∈ Ωm,m = 0, ...,M − 1.
(1)

Specifically, these constraints are required:

C0 := |∇xΦ(x)| − 1, x ∈ Ω0. (2)

C1 := ∇xΦ(x)− n(x), x ∈ Ω1. (3)

C2 := Φ(x)− SDF(x), x ∈ Ω2. (4)

Here, C0 guarantees Φ(x) satisfies the Eikonal equation in
the whole physical space of interest (Ω0), which is a intrinsic
property of SDF. C1 forces that the gradients of Φ(x) equal
the normal vectors for input on-surface points (Ω1). C2
constrains the values of Φ(x) equal the ground truth SDF
for labeled anchor points (Ω2). In this way, the problem can
be regarded as an Eikonal boundary value problem, where
the differential equation C0 is to be solved under the first-
order constraint C1 and the zeroth-order constraint C2.

However, the ground truth SDF values in free space
are difficult to obtain. A recent method named SIREN [6]
proposes an intriguing variant where the domain of C2 is
limited to on-surface points in Ω1. As the ground truth SDF
values of points in Ω1 are zero, C2 is reduced to:

C2 := Φ(x), x ∈ Ω1. (5)

To remedy the lack of constraints on off-surface points,
SIREN introduces another constraint:

C3 := ψ(Φ(x)), x ∈ Ω3. (6)

Here, ψ pushes Φ(x) values away from 0, for randomly and
uniformly sampled off-surface points (Ω3 ⊆ Ω0 \ Ω1).
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Fig. 2. Overview of our architecture. The discriminative model extracts shape priors and the generative model predicts SDF values. They are bridged by
differentiable triliner sampling. Positional Encoding is used to represent more details. Two semantic extension options are outlined in small dashed boxes.

Nevertheless, these constraints fail to cope with the sce-
nario where on-surface points in Ω1 are sampled from sparse
LiDAR point cloud data. Reasons are three-fold: (1) The
sparsity of on-surface points in Ω1 amplifies the negative
impact of C3 on the wrongly sampled off-surface anchors in
Ω3 (i.e., located on or near the surface). (2) The normal orien-
tations of sparse points in Ω1 cannot be estimated accurately
from their neighbors, leading to an incorrect constraint C1.
(3) Without trustworthy boundary value constraints C3 and
C1, enforcing the hard Eikonal constraint C0 leads to even
inaccurate SDF values in free space.

B. Locally Conditioned Eikonal Formulation (LODE)

To overcome the aforementioned limitations, we propose
a locally conditioned Eikonal formulation Φ(x, e)|e=ζ(x,Ω1)

to approximate SDF. Here, we use ζ(·, ·) to first map the
Euclidean space to a high-dimensional shape embedding
space. It functions as a dense boundary value constraint
for the differential equation. Then Φ(·, ·) maps the shape
embedding space to the signed distance space. As a result,
the constraints to be satisfied are formally re-written as:

C′0 := |∇xΦ(x, e)|e=ζ(x,Ω1)| − 1, x ∈ Ω0. (7)

C4 := ρ(ζ(x,Ω1)), x ∈ Ω0. (8)

We use ρ(ζ(x,Ω1)) to represent the underlying dense con-
straint contained in the shape embedding space, which im-
plicitly entangles correct C1, C2, and C3 constraints of the
modified formulations:

C′1 := ∇xΦ(x, e)|e=ζ(x,Ω1) − n(x), x ∈ Ω′1. (9)

C′2 := Φ(x, e)|e=ζ(x,Ω1), x ∈ Ω′1. (10)

C′3 := ψ(Φ(x, e)|e=ζ(x,Ω1)), x ∈ Ω′3. (11)

Here, Ω′1 contains the dense ground truth on-surface points
and Ω′3 ⊆ Ω0 \ Ω′1. Hence the aforementioned problem of
trustworthy boundary values is resolved. Naturally, the issue
of enforcing a hard Eikonal constraint is also alleviated.

We implement the proposed LODE formulation in a data-
driven manner. The acquisition of functions ζ(·, ·) and Φ(·, ·)
can be cast in a loss function that penalizes deviations from

the constraints C′0, C′1, C′2, and C′3 on their domain:

LLODE = λ1

∫
Ω0

∥∥|∇xΦ(x, e)|e=ζ(x,Ω1)| − 1
∥∥ dx

+ λ2

∫
Ω′

1

(1− 〈∇xΦ(x, e)|e=ζ(x,Ω1),n(x)〉)dx

+ λ3

∫
Ω′

1

∥∥Φ(x, e)|e=ζ(x,Ω1)

∥∥ dx

+ λ4

∫
Ω′

3

ψ(Φ(x, e)|e=ζ(x,Ω1))dx,

(12)

where λ1 - λ4 are constant weight parameters and 〈·, ·〉
calculates cosine similarity between two vectors.

IV. METHOD

To realize LODE, we propose a hybrid neural network
architecture combining a discriminative model with a gen-
erative model, as shown in Fig. 2. The discriminative part
exploits the strong representation learning power of sparse
convolution, generating latent shape embeddings from sparse
input Ω1. It together with the differentiable trilinear sampling
module works as function ζ(·, ·). The generative model
consists of an MLP, functioning as Φ(·, ·). It takes as input
the encoded coordinates of ground truth points Ω′1 along
with pointwise latent shape embeddings and predicts SDF
values of these points. Using gradient descent, we can get
the optimized ζ(·, ·) and Φ(·, ·) in the parameterized form.

A. Discriminative Model

Intuitively, road scenes have the characteristic of repeti-
tion. Thus convolutional neural network can be employed as
the discriminative model to exploit the translation invariance.

Taking LiDAR points Ω1 as input, we first conduct vox-
elization to obtain 3D occupancy volume Vocc with size
1 × Docc × Wocc × Hocc. Then the discriminative model
maps it into a shape embedding volume Vse with size
dse ×Dse ×Wse ×Hse, where dse is the dimension of the
shape embedding outputs. To tackle the sparsity of Vocc,
we employ the sparse operations of the Minkowski Engine
[36] to build the model, which is a multiscale encoder-
decoder network. It extracts shape priors via a shape comple-
tion process: the encoder consisting of convolutional blocks
aggregates localized features, and the decoder involving
generative deconvolutional blocks generates dense results.



Yet the constant generation of new voxels will destroy the
sparsity just as the submanifold dilation problem [37]. To
avoid this, we use a pruning block to prune off redundant
voxels. It contains a convolutional layer to determine the
binary classification result of whether a voxel should be
pruned, which is supervised with binary cross-entropy loss:

Lcom = − 1

m

m∑
i=1

1

ni

ni∑
j=1

[yi,j log(pi,j)

+ (1− yi,j)log(1− pi,j)],
(13)

where m is the count of supervised blocks, ni denotes the
count of voxels in the i-th block, yi,j and pi,j are the true
and predicted existence probabilities for voxel i respectively.

B. Differentiable Trilinear Sampling Module

After generating Vse, pointwise shape embedding ei ∈
Rdse for query point xi ∈ Ω0 is needed. We use trilinear
interpolation to sample ei for xi from its 8 nearest voxel
centers to maintain the continuity of the latent shape field at
the voxel borders. Formally, with the length of voxel edge
normalized, the trilinear sampling for ei can be written as:

eci =

Dse∑
m

Wse∑
n

Hse∑
k

ecmnk ×max(0, 1− |xi − xm|)

×max(0, 1− |yi − yn|)×max(0, 1− |zi − zk|),

(14)

where eci and ecmnk are shape embeddings on channel c for
xi = (xi, yi, zi) and voxel center xmnk = (xm, yn, zk). Then
the gradient with respect to emnk for backpropagation is:

∂eci
∂ecmnk

=

Dse∑
m

Wse∑
n

Hse∑
k

max(0, 1− |xi − xm|)

×max(0, 1− |yi − yn|)×max(0, 1− |zi − zk|).

(15)

This differentiable trilinear sampling mechanism allows
loss gradients to flow back to Vse and further back to the
discriminative model, making it possible to train discrimina-
tive model and the following generative model cooperatively.

C. Positional Encoding Module

Positional encoding has proved an effective technique in
neural rendering [4] [38] for its capacity to capture high-
frequency information. Thus we leverage it to represent more
geometric details of the signed distance field. Specifically, the
3D Cartesian coordinate xi is encoded into high-dimensional
feature yi = (γenc(xi), γenc(yi), γenc(zi)) ∈ Rdenc , where

γenc(p) = (sin(20πp),cos(20πp), · · · ,
sin(2L−1πp), cos(2L−1πp)).

(16)

L is the number of frequency octaves and thus denc = 6L.

D. Generative Model

We use an MLP as the generative model for implicit SDF
representation and use sine as a periodic activation function
to better model details [6]. Thus Φ can be formalized as:

Φ(x) =Wn(φn−1 ◦ φn−2 ◦ · · · ◦ φ0)(x) + bn,

xj 7→ φj(xj) = sin(Wjxj + bj),
(17)

where φj : RMj 7→ RNj is the jth layer of the model. Given
xj ∈ RMj , the layer applies the affine transform with weights
Wj ∈ RNj×Mj and biases bj ∈ RNj on it, and then pass
the resulting vector to the sine nonlinearity.

In our implementation, the concatenated vector [yi, ei] is
taken as input. And model weights are shared for all scenes.
We use the proposed loss function (12) to optimize model
weights and shape embeddings. Note that during training, xi
is sampled from dense ground truth Ω′1 instead of sparse
input Ω1. Thus, in a data-driven manner, our generative
model can effectively map the shape embedding space to the
signed distance space with abundant geometric information.

E. Semantic Extension

To demonstrate the flexibility of LODE, we extend our
method to implicit semantic completion in two ways.

Semantic Extension A. We first semantically segment
Vocc with a sparse CNN. Then a dense CNN is used to
predict coarse semantic completion results. Mapping it to our
implicit representation using K-Nearest-Neighbor, we get the
refined implicit semantic results.

Semantic Extension B. We add a parallel implicit gener-
ative head to directly model the implicit semantic label field.
Its structure is similar to aforementioned generative model,
except that it outputs the probabilities of label classification.

The results are supervised with a cross-entropy loss:

Lseg = − 1

Nseg

Nseg∑
i=1

C∑
c=1

yi,clog(pi,c), (18)

where yi,c and pi,c are the true and predicted probabilities.
Nseg points and C categories are considered.

F. Training and Inference

During training, we randomly sample Non on-surface
points from Ω′1 and Noff off-surface points from Ω′3, op-
timizing the whole neural network with loss:

Ltotal = LLODE + λ5Lcom + λ6Lseg. (19)

Here, λ5 and λ6 are constant weight parameters. Note that
λ6 = 0 when the semantic extension is not included.

During inference, we uniformly sample N3
inf points from

Ω0 at a specified resolution. And we use a threshold vth

close to zero to select the points with estimated SDF values
smaller than vth as explicit surface points for evaluation.

V. EXPERIMENTS

Dataset. We evaluate the proposed LODE on Se-
manticKITTI [39] and SemanticPOSS [40]. There are 22
sequences (8550 scans) and 6 sequences (2988 scans) of
road scene LiDAR data in the two datasets respectively. Each
scan covers a range of 51.2m ahead of the LiDAR, 25.6m
to each side, and 6.4m in height. We follow the official split
for training and validation. Metric. We use the interactions
over union (IoU) metric for evaluation. Implementation
Details. For the discriminative model, we set Docc = 256,
Wocc = 256, Hocc = 32, m = 5. For the generative model,
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Fig. 3. Qualitative results of Eikonal implicit road scene completion on the SemanticKITTI and SemanticPOSS validation set.

we use Non = Noff = 16000 and Ninf = 256. For training,
we set λ1 = 3000, λ2 = 100, λ3 = 100, λ4 = 50, λ5 = 100
and use the Adam optimizer with an initial learning rate of
10−4. When the semantic extension is included, λ6 = 50.

A. Scene Completion Effectiveness of LODE

We compare our LODE with other recent strong Eikonal
completion methods on the validation sets of SemanticKITTI
and SemanticPOSS. The results of these Eikonal methods
are obtained by applying them to every LiDAR sweep and
taking the average. In Table.I, the first row shows that directly
comparing the input sparse point cloud with completion
ground truth yields 10.3% and 13.0% IoU. The existing
Eikonal methods improve the IoU to 31.7% and 40.5%.
Thanks to the new locally conditioned Eikonal formulation,
our approach further improves IoU to 51.2% and 48.7%.
These results demonstrate the effectiveness of LODE.

TABLE I
SCENE COMPLETION RESULTS MEASURED IN IOU (%).

Method Reference SemanticKITTI SemanticPOSS
Input - 10.3 13.0
SIREN [6] NeurIPS 2020 26.3 36.0
Fourier Features [41] NeurIPS 2020 28.6 30.9
BACON [42] CVPR 2022 30.5 40.5
DiGS [43] CVPR 2022 31.7 37.4
LODE (Ours) - 51.2 (+19.5) 48.7 (+8.2)

This large improvement is better demonstrated with quali-
tative results in Fig. 3. Though the existing Eikonal methods
are successful for clean synthetic point cloud data uniformly
sampled on watertight meshes as shown in [6], fitting large-
scale outdoor scenes captured by LiDAR (Fig.3-a) is much
more difficult. On the one hand, many regions are not
sampled thus missing in the point cloud. On the other hand,
caused by the mechanism of LiDAR, data sparsity increases
with distance and it is extremely sparse at the far end. These
result in the lack of effective boundary values for solving
the Eikonal differential equation. For this reason, as pure
generative models, these methods fail to fit road scenes
and produce lots of artifacts (Fig.3-c,d). Our LODE, on the
contrary, takes data-driven shape priors generated by a strong
sparse convolutional network as the dense boundary values
and successfully completes the scenes. As shown in Fig.3-e

and highlighted in red boxes, both occluded and incomplete
regions are better reconstructed than other Eikonal methods.

(a) SemanticKITTI (b) SemanticPOSS

Fig. 4. IoU comparisons under different thresholds.

In order to show that the significant margins reported in
Table. I are robust to Marching Cubes thresholds, we provide
an exhaustive evaluation in Fig.4. It is clear that our method
outperforms other methods under all inspected thresholds.

B. Implementation Robustness of LODE

To better understand LODE and demonstrate its robustness
to hyper-parameters in implementation, we provide a series
of ablation studies on SemanticKITTI as follows.

Discriminative model design. We investigate two factors:
(1) Where to add pruning blocks; (2) Conv layer number in
the output block that generates shape embeddings. As shown
in Table.II, LODE is robust to these design choices.

Does generative model capacity matter? Deeper and
wider models usually achieve better results for recognition.
To explore whether generative model capacity matters for
LODE, we ablate the width, depth, and activations of the
MLP. As shown in Table.III, different configurations produce
similar results. It demonstrates the capacity of generative
model is not a performance bottleneck. Interestingly, using
ReLU instead of Sine activation only brings a performance
drop of 1.75%. It suggests that in challenging scenarios like
ours, using Sine activation is not as critical as in SIREN [6].

Which dimension of shape volume matters? To study
which factor is the deciding one for the representation power
of the shape volume, we evaluate different shape embedding
dimensions and scale sizes. By scale size, we mean the
down-sampling ratio Docc

Dse
. The results are summarized in



Table.IV, showing that using shape embeddings of dimension
128 is already capable of representing our scenes well. But
increasing scale size leads to a sharp drop of IoU, which
reflects the importance of the locality of shape priors.

TABLE II
DISCRIMINATIVE MODEL.

Pruning
Blocks

Output
Block IoU (%)

Last 1 2 convs 49.5
Last 2 2 convs 49.1
Last 3 2 convs 50.6
Last 4 2 convs 51.0

All 2 convs 51.1
All 4 convs 50.9

TABLE III
GENERATIVE MODEL.

Width Depth Activations IoU (%)
128 4 Sine 51.0
256 4 Sine 51.0
512 4 Sine 50.9
256 3 Sine 49.6
256 5 Sine 50.9
256 4 ReLU 49.3

TABLE IV
SHAPE EMBEDDING.

Shape
Dimension

Scale
Size IoU (%)

128 4 50.9
512 4 51.2
256 2 50.3
256 4 51.0
256 8 49.2
256 16 44.8

TABLE V
POSITIONAL ENCODING.

Positional
Encoding

Include
xyz

Encoding
Level L IoU (%)

× - - 40.4
X X 5 40.3
X X 10 51.0
X X 15 50.9
X × 10 51.1

TABLE VI
SAMPLING STRATEGY.

Sample Strategy IoU (%)
Trilinear 51.0
Nearest 48.1

Is trilinear sampling necessary? We justify the necessity
of trilinear sampling in our method using Table. VI. A
trivial nearest neighbor sampling leads to a performance drop
of 2.9%. This is a clear margin that shows the benefit of
smoothly interpolating shape embeddings.

(a) Without Encoding (b) Encoding Level 5 (c) Encoding Level 10

Fig. 5. Qualitative results with different positional encoding strategies.

How to encode positional information? The goal of po-
sitional encoding is to represent fine geometric details of the
scene. We investigate positional encoding levels and whether
to concatenate original coordinates. As shown in Table.V,
when positional encoding is not used or the encoding level
is low, the completion IoU decreases dramatically. Through
the qualitative results in Fig. 5-a, it is clear that leaving out
positional encoding leads to the loss of details.

With these ablations and analyses, we demonstrate the
role of each module and the impact of hyper-parameters
in detail. Meanwhile, despite the performance fluctuation
under different hyper-parameters, our quantitative results are
always better than the existing Eikonal methods shown in
the second to the fifth row of Table.I, which demonstrates
the effectiveness and robustness of LODE.

C. Flexibility of LODE

Table.VII shows semantic scene completion results on
the SemanticKITTI validation set, which is evaluated on
19 categories. With little impact on original completion

(c) ×0.5 Resolution (d) ×1 Resolution (e) ×2 Resolution

(a) Input Point Cloud (b) Our Mesh

Fig. 6. Scene completion results at multiple resolutions.

results, the semantic extension A and B achieve 20.2% and
18.0% mIoU, respectively. Although they under-perform the
state-of-the-art method JS3C-Net [44], our models allow
implicit completion and models the signed distance field.
Qualitative results shown in Fig. 3-f demonstrate faithful
semantic implicit completion. Last but not least, we map
explicit semantic completion results from JS3C-Net to our
implicit completion using K-Nearest-Neighbors, achieving
23.4% mIoU. These results show the flexibility of LODE as
it can be easily extended to provide semantic information.

TABLE VII
SEMANTIC SCENE COMPLETION RESULTS ON SEMANTICKITTI.

Approach ext.A ext.B JS3C LODE w/ JS3C
mIoU (%) 20.2 18.0 22.7 23.4

D. Other Potential Benefits of LODE

As illustrated in Fig.6, with LODE, we can get mesh
reconstructions at any resolution, which is due to its continu-
ous representation of the signed distance field. Meanwhile,
as shown in Fig.1 and Fig.3, LODE enables the indiscernible
LiDAR data to be converted into human-friendly visual-
izations, which demonstrates its capacity to enhance human
understanding of robot-perceived information. Moreover, the
proposed LODE has compatibility with implicit planning
algorithms [45]–[49], and thus can be leveraged to facilitate
downstream robotic manipulation tasks.

VI. CONCLUSION

In this study, we propose a novel locally conditioned
Eikonal formulation named LODE for implicit scene comple-
tion. Learned shape embeddings are treated as dense bound-
ary values that constrain signed distance function learning.
We implement the formulation as a hybrid neural network
combining discriminant and generative models. The network
is trained to implicitly fit road scenes captured by sparse
LiDAR point clouds, without accessing exact SDF values in
free space. Large-scale evaluations on SemanticKITTI and
SemanticPOSS show that our method outperforms existing
Eikonal methods by a large margin. We also extend the
proposed method for semantic implicit completion in two
ways, achieving strong qualitative and quantitative results.
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