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Abstract—In autonomous robot exploration tasks, a mobile
robot needs to actively explore and map an unknown envi-
ronment as fast as possible. Since the environment is being
revealed during exploration, the robot needs to frequently
re-plan its path online, as new information is acquired by
onboard sensors and used to update its partial map. While
state-of-the-art exploration planners are frontier- and sampling-
based, encouraged by the recent development in deep reinforce-
ment learning (DRL), we propose ARIADNE, an attention-
based neural approach to obtain real-time, non-myopic path
planning for autonomous exploration. ARIADNE is able to
learn dependencies at multiple spatial scales between areas of
the agent’s partial map, and implicitly predict potential gains
associated with exploring those areas. This allows the agent
to sequence movement actions that balance the natural trade-
off between exploitation/refinement of the map in known areas
and exploration of new areas. We experimentally demonstrate
that our method outperforms both learning and non-learning
state-of-the-art baselines in terms of average trajectory length
to complete exploration in hundreds of simplified 2D indoor
scenarios. We further validate our approach in high-fidelity
Robot Operating System (ROS) simulations, where we consider
a real sensor model and a realistic low-level motion controller,
toward deployment on real robots.

I. INTRODUCTION

Autonomous robot exploration (ARE) refers to the task,
in which a robot needs to autonomously explore and map an
unknown environment as efficiently and quickly as possible.
The robot is usually equipped with a sensor (e.g., LIDAR
or camera) to obtain measurements of its surroundings and
build/update a partial map of the environment. In practice,
the (high-dimensional) collected sensor data (e.g., point
cloud) is usually converted into a (simplified) occupancy grid
map or Octomap [1] that can be used for further planning [2],
[3], [4]. Such a task is also known as active SLAM [2].
Although a robot can always slowly but accurately construct
a map by carefully methodically covering the entire environ-
ment, the objective of ARE is to plan the shortest path to
complete exploration, where small noises/errors in the final
map are tolerable. In consequence, the main challenge of
ARE is to plan a non-myopic path that balances the trade-
off between exploiting surroundings (i.e., refining the map in
already-explored areas) and exploring new (usually, further
away) areas, most importantly with only partial knowledge of
the environment. Such an exploration path is usually planned
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Fig. 1: Illustration of autonomous robot exploration. A
wheeled robot is building a 3D Octomap using an onboard
LiDAR. The purple ball indicates the next viewpoint output
by our planner, which is tracked by the robot using a low-
level motion controller (yellow primitives).

incrementally online, as the partial map is updated using new
measurements along the way.

For example, conventional frontier-based methods [3], [5],
[6], [7] generate multiple candidate paths, each covering
a frontier (i.e., the boundary between explored free area
and unexplored area), and greedily select the path with
maximum gain, usually defined as a combination of utility
(i.e., number of observable frontiers along the path) and
cost (i.e., path length). However, an essential problem of
these methods is that such myopic frontier selection does
not guarantee optimality in the long term. A more recent
approach [4] reasons about the whole path to cover all
current frontiers, thus guaranteeing (near-)optimal paths in
the current partial map. However, since the environment is
only partially known, a previous optimal path often quickly
becomes sub-optimal as more of the environment is revealed,
or even worse, results in redundant movements (e.g., missing
an unexplored shortcut between two rooms which were
previously not known to be connected). Based on experi-
ences from conventional exploration planners, we note that
non-myopicity comes at two different levels in autonomous
exploration. The first level, spatial non-myopicity, requires
the planner to reason about the current partial map to balance
the exploration-exploitation trade-off, while temporal non-
myopicity requires the planner to estimate the future influence
of current decisions (e.g., predict the changes in the partial
map that may stem from given path planning decisions).

To achieve non-myopicity at these two levels, we propose
a deep reinforcement learning (DRL) based approach for
ARE, named ARiADNE, which relies on two attention-based
neural networks. These networks allow the agent to reason



about dependencies of different areas in the partial map at
different spatial scales, thus allowing the agent to sequence
spatially non-myopic decisions efficiently without the need
to optimize a long path. Furthermore, our critic network
implicitly provides the robot with the ability to estimate
potential areas that might be found by learning the state-
action value, which furthermore helps make decisions bene-
ficial to the long-term efficiency, thus addressing temporally
non-myopicity. Specifically, we first formulate autonomous
exploration as a sequential decision-making problem on a
collision-free graph that covers the known traversable area,
where one of the nodes is the robot’s current position.
We then use our attention-based neural network to select
one neighboring node of the current robot position as the
next viewpoint for the robot. In this work, we focus on
training and testing our approach in indoor environments
based on 2D occupancy grid maps, ranging from simple
scenarios (single room) to relatively complex ones (multiple
rooms with complicated corridors). There, we experimentally
demonstrate that our approach outperforms state-of-the-art
conventional methods on average. We also validate our
approach in high-fidelity ROS (Robot Operating System)
simulations, where we consider a real sensor model and a
motion controller, showing the generalizability of our model
to realistic environments.

II. RELATED WORK

Frontier-based vs sampling-based approaches The first
frontier-based method was proposed by Yamauchi [5], in
which the robot is constantly driven towards the nearest
frontier. In more advanced frontier-based methods, selections
of which frontier to visit are evaluated by a gain function,
which considers the effect of both utility and cost [6],
[8], [9]. On the other hand, the past few years have
seen a number of sampling-based methods be developed,
based on Rapidly-exploring Random Trees (RRT) [3],
Rapidly-exploring Random Graphs [10], and Probabilistic
Random Maps (PRM) [11]. Sampling-based methods only
need to compute the gain of sampled paths, which avoids
the complexity of identifying and evaluating all frontiers.
Recent works demonstrated that frontier-based methods are
more suitable when frontiers are sparse (e.g., 2D indoor
scenarios), while sampling-based methods perform better
with dense frontiers (e.g., 3D outdoor scenarios) [7], [11].
Intuitively, Frontier-based methods become inefficient when
there are too many frontiers to evaluate, while sampling-
based methods underperform when informative paths are
hard to sample.

Planning for long-term objectives Both frontier-based and
sampling-based methods mostly rely on greedy strategies
to plan short-term paths. Since the robot only has access
to a partial map of the environment, such paths inevitably
lead to myopic performance in the long term. Recently, Cao
et al. [4] proposed TARE to optimize the full exploration
path and mitigate myopicity. Utilizing the full knowledge
of the current partial map, TARE was shown to significantly
outperform state-of-the-art sampling-based planners in large-

scale 3D scenarios. Similar methods were also considered
to approach the informative path planning [12] problem,
which considers information gathering usually in obstacle-
free environments (in fact, works on autonomous exploration
and informative path planning mutually promote each other,
e.g., [4] and [12], [13] and [3]).

Learning-based exploration Niroui et al. [14] first com-
bined frontier-based method with deep reinforcement learn-
ing to adaptively tune the parameter of the gain function
for frontier selections and improve performance. Schmid et
al. [15] proposed to learn the underlying gain distribution
based on the partial map by supervised learning, thus help-
ing sampling-based methods more efficiently find next-best-
views and reduce computation. While the above works focus
on improving conventional methods using machine learning,
some other works [16], [17], [18], [19] directly applied deep
reinforcement learning to select a viewpoint to visit, often
relying on convolutional neural networks (CNNs). However,
although [16], [18] argue that DRL-based methods naturally
optimize long-term objectives, it seems that [16], [17], [18],
[19] are only able to reach performance slightly better than
the nearest-frontier method so far.

IIT. PROBLEM FORMULATION

We consider a bounded and unknown environment &
represented by a = X y 2D occupancy grid map, whose
partial (occupancy grid) map is denoted as P. The partial
map consists of unknown area P, (i.e., unexplored area) and
known area P, (i.e., explored area), such that P, U P, = P.
The known area P, is further classified into free area Py
(i.e., traversable area for the robot) and occupied area P,
(i.e., obstacles) such that Py U P, = P. At the beginning
of exploration, the environment is fully unknown so the
partial map P = P,. Then, during exploration, the unknown
area in the sensor range d (the sensor we use is a 360-
degree LiDAR) is classified into either free area or occupied
area according to sensor measurements. The objective of
autonomous exploration is to find the shortest collision-free
robot trajectory * to complete exploration:

" = argmin C(¢)), s.t. P, = Py, (1

heW

where C : ¢ — R™ maps a trajectory to its length and P,
denotes the ground truth of the environment. Although the
ground truth is not accessible in real-world deployments, it
is known and can be utilized to evaluate the performance
of planners in testing. In practice, most works consider the
closure of occupied areas as P, = P, [5], [4], [18], [19].

IV. METHOD

In this section, we cast ARE as an RL problem, and in-
troduce our attention-based policy and critic neural networks
as well as details of our training.

A. Exploration as an RL Problem

Sequential Decision-making Problem Since the free area
is updated based on the robot’s movements, online planning
for ARE is a sequential decision-making problem in nature.



Following our previous work [20] for informative path plan-
ning, we consider the robot trajectory ¢ as a sequence of
viewpoints ¢ = (to,¥1,...),¥; € Pr. At each decision
step ¢, we first uniformly distribute candidate viewpoints
Vi = {vo,v1,...}, V v; = (2;,y;) € Py in the current free
area Py, similar to [4]. Then, to find collision-free paths
between viewpoints, we connect each viewpoint with its &
nearest neighbors through a straight line and remove edges
that collide with occupied or unknown areas. In doing so,
we build a collision-free graph G, = (V;, E;), with V; a
set of uniformly distributed nodes (i.e., viewpoints) over the
free area, and E; a set of traversable edges. We finally let
the robot select one neighboring node of its current position
1 as the next viewpoint. Since the decision will be taken
upon arriving at the last selected viewpoint, the trajectory is
a sequence of waypoints such that ¢; € V.

Observation The observation of the agent is oy = (G}, ¥¢),
where G} = (V/, E;) is the augmented graph based on the
current collision-free graph G}, while v); is the robot current
position. Note that G shares the same edge set E; as G;.
In addition to the node coordinates (i.e., v; = (x4, ¥:)),
The properties of each node v in the augmented graph
further include a binary signal b;, which indicates if the node
has been visited by the agent already, and the associated
utility w;, such that v = (x;, yi, us, b;). We experimentally
found that the binary signal helps improve the learning by
allowing the robot to be aware of its previous movements.
The utility u; represents the number of observable frontiers
at node v; [4]. We consider observable frontiers as frontiers
within light of sight of the node (i.e., lines between the node
and observable frontiers are collision-free and their length
is smaller than the sensor range). The utility u; at node
v; is computed as u; = |Fo;|,Vf; € Foul||lf; — vl <
ds,L(vi, fj) N (P — Pf) = 0, where F,; denotes the
observable frontiers set at node v;, ds denotes the sensor
range and L(v;, f;) the line between node v; and frontier
f;. In practice, we scale the node coordinates and utility to
[0, 1] before feeding the observation into the neural network.
Action At each decision step ¢, given the agent’s observation
o¢, our attention-based neural network outputs a stochastic
policy to select a node out of all neighboring nodes as the
next viewpoint to visit. The policy is denoted as 7q(at|o;) =
mo(Wir1 = vy, (Y1, v;) € Ey | o), where 6 represents the set
of weights of the neural network. The robot moves to the
next viewpoint in a straight line, and updates its partial map
based on data collected along the way.

Reward To encourage efficient exploration, after taking
each movement action a;, the robot receives a reward
composed of three parts. The first part 7, = [Fj, 4, | is
the number of observed frontiers at the new viewpoint.

The second part r. = —C(t¢,%s41) is a punishment on
the distance between the previous and new viewpoints. A
20, P,=PF,

fixed finishing reward 7y = 0, otherwise, is given
at the end of the episode, if and only if the exploration
task was completed. The total reward reads: r¢(o,a;) =

a-7To+b-r.+ 1y, where a and b are scaling parameters (in

Fig. 2: Example decision step in the middle of an
exploration task in our approach, showing the unknown
area (grey cells), free area (white cells), occupied area (black
cells), frontiers (red cells), executed trajectory (blue line),
graph edges (tan lines), candidate viewpoints (small dots,
whose color represents their utility), robot current position
(purple disk), and robot starting position (light blue disk).

practice a = 1/50,b = 1/64).

B. Policy Network

The policy g is output by our attention-based neural
network, which is composed of an encoder and a decoder
(shown in Fig. [3). We first rely on the encoder to extract
salient features from the current partial map, specifically
by learning dependencies between nodes in the associated
augmented graph G’. Based on these features as well as the
current robot position, the decoder then outputs the policy
over neighboring nodes, which can be used to decide which
one to visit next. Note that, while policy-based RL agents
often have a fixed action space, our decoder is inspired by the
Pointer Network [22] to allow the action space to depend on
the number of neighboring nodes input in the network. This
allows our network to naturally adapt to our collision-free
graph, where nodes have arbitrary numbers of neighbors.
Attention Layer We use the attention layer [21] as the
fundamental building block in our model. The input of such
an attention layer is composed of a query vector h9 and a
key-and-value vector h*V. The output of this layer, h/, is the
weighted sum of the value vector, where weights depend on
the similarity between key and query:

Kk _ Vi kv
g = WOnY, ki = WERPY v, = WVRDY,

T Ui n
q; kj e’ / (2)
= —a i = WijVj,

\/E ’ Z‘;'Lzl eWij ) 7 JE::I

where W@ WK WV ¢ R4 are all learnable matrices.
Updated features are then passed through a feed-forward
sublayer, following [21].
Encoder In the encoder, we first linearly embed the node
inputs V' into d-dimensional node features h™, where hl' =
W'l +bl. We then calculate an edge mask M where m;; =
Oa (Uiavj) € Et
{ L, (vi,v5) & By

. The node features are then passed to
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Fig. 3: Attention-based policy network. Note that neighboring relationships in the augmented graph (tan) are also used as

the mask [21] in attention layers in the encoder.

multiple (6 in practice) stacked attention layers, where h? =
h¥v = h", each attention layer taking the output of the
previous one as input. An edge mask is applied to allow each
node access to its neighboring node features only, by setting
w;; =0, V(i,7), mi; = 1. Despite attention being restricted
to neighboring nodes in each layer, nodes can still obtain
non-neighboring node features by aggregating node features
multiple times through this stacked attention structure. We
empirically found that such structure is more suitable than
graph transformers [23] (like in our previous work [20]) to
learn path finding in maps with cluttered obstacles. We term
the output of the encoder, ize, the enhanced node features,
since each of these updated node features izf contains the
dependencies of v} with other nodes.

Decoder We use the decoder to output a policy based on
enhanced node features 7° and the current robot position ).
Denoting the current robot position as node v, = 1, we first
select the current node features h® and neighboring features
hnb, Vﬁ?b, (ve,v;) € Ey from the corresponding enhanced
node features. We then pass the current node features and
enhanced node features to an attention layer, where h?
he, h¥v = h", concatenate its output with A€, and project it
back to a d-dimensional feature vector. We term this vector
the enhanced current node features he. After that, we pass
the enhanced current node features and neighboring features
to a pointer layer [22], an attention layer directly outputting
the attention weights w as the output with h? = he, hFv =
h™. We finally take the output of this pointer layer as the
robot’s policy, i.e., mp(a; | 0r) = w;.

C. Critic Network

We train the policy network using the soft actor critic
(SAC) algorithm [24], [25] (see details below), where a critic
network is trained to predict state-action values. Since state-
action values approximate long-term refurns (the accumu-
lated sum of rewards), we believe that they also implicitly
predict potential gains (i.e., potential areas that might be
found), which further helps the robot sequence non-myopic
decisions. In practice, we train a critic network to approx-
imate soft state-action values (QQ4(0:,a:), where ¢ denotes
the set of weights of the critic network. The structure of
the critic network is nearly the same as the policy network,
except that there is no pointer layer at the end of the decoder.

Instead, we directly concatenate the enhanced current node
features and neighboring features, then project them to soft
state-action values.

D. Training

Soft Actor-critic SAC aims to learn a policy that maximizes
return while keeping its entropy as high as possible:

T

7% = argmax E(Ot,at)[z Y (re + aH(m(]or)))],
t=0

3)

where 7* is the optimal policy, T' the number of decision
steps, v the discount factor, and « the temperature parameter
that tunes the importance of the entropy term versus the
return. In SAC, the soft state value is calculated as: V(o;) =
Ea,[Q(o¢, ar)] — alog(m(at|or)).

The critic loss is calculated as: Jg(¢) = Eo, [3(Qg (01, at) —
(re + 1Eop,, [V (0r11)]))2]

The policy loss loss is calculated as:
E(o,,a,)[0log(ma(atlor)) — Qp(0r, ar)].

The temperature parameter is auto-tuned during the train-
ing and the temperature loss is calculated as: J(«)
E,, [—a(logm(ailor) + H),

where H denotes the target entropy. In practice, we use
double target networks for the critic network training, as
in [24], [25].

Training Details We utilize the same environments pro-
vided in [18] for training, which are generated by a random
dungeon generator. Each environment is a 640 x 480 grid
map, while the sensor range d; = 80. To build the collision-
free graph, 900 points are uniformly distributed to cover
the whole environment, with all points in the known free
area considered as candidate viewpoints V. We check the
k = 20 nearest neighbor of each viewpoint, and connect
them if such an edge is collision-free, to form the edge
set E. We consider the exploration task to be completed
once more than 99% of the ground truth has been explored
(|Px|/|Py| > 0.99). During training, we set the max episode
length to 128 decision steps, the discount factor to v = 1,
the batch size to 256, and the episode buffer size to 10, 000.
Training starts after the episode buffer collects more than
2000 steps data. The target entropy is set to 0.01 - log(k).
Each training step contains 1 iteration and happens after 1
episode finishes. We use the Adam optimizer with a learning

Jx(0)



TABLE I: Comparison with baseline ARE planners (100 scenarios for each test set). We report the average and standard
deviation of the trajectory length to complete exploration (lower is better). For utility-based methods [6], the numbers 1, 10,
25 represent the value of A\, which is used to tune exploitation and exploration.

| Nearest | Utility 1 | Utlity 10 | Utility25 | NBVP | TARELocal | CNN | ARIiADNE

easy 772(£253) | 736(£266) | T32(E£256) | T64(258) | 745(2268) | 692(£228) | 779(£281) | 663(£257)
medium | 1248(£295) | 1266(£311) | 1179(£300) | 1227(£307) | 1217(£271) | 1170(&275) | 1169(£319) | 1130(£:334)
complex | 1669(£332) | 1873(£457) | 1662(£347) | 1711(£352) | 1744(£366) | 1646(£312) | 1647(£422) | 1599(£363)
random | 1354(£410) | 1423(£466) | 1268(£396) | 1315(2413) | 1323(£371) | 1266(1388) | 1323(£428) | 1204(£:378)

(c) complex
Fig. 4: Examples scenarios from each different test set.

(a) simple (b) medium

rate of 107 for both policy and critic networks. The target
critic network updates every 256 training steps. Our model is
trained on a workstation equipped with a 19-10980XE CPU
and an NVIDIA GeForce RTX 3090 GPU. We train our
model utilizing Ray, a distributed framework for machine
learning [26], to parallelize and accelerate data collection
(32 instances in practice). The training needs around 24h to
converge. We will release our full code upon acceptance.

V. EXPERIMENT
A. Comparison Analysis

Most previous works often only conduct experiments in
a few scenarios (often less than 10). However, we note
that the performance of exploration planners exhibits high
variance in different scenarios. Therefore, we believe a
convincing comparison should be based on evaluation in
a large number of testing environments. Although building
so many testing environments is tricky and time-consuming
even in ROS, hundreds of simplified scenarios, like the ones
we used for training, can be generated easily. Therefore, we
conduct comparison analyses on a fixed set of simplified
environments, which were never seen by our trained model.
Testing environments are divided in four sets (100 scenarios
each), named random, easy, medium, and complex. Easy
scenarios only contain one room, and complex scenarios
contain multiple rooms with complicated corridors, while the
complexity of medium scenarios lies in-between. Random
scenarios contain a mix of easy, medium, and complex
scenarios (but no repeated scenario from these test sets).

We compare ARiADNE with state-of-the-art conventional
planners, including Nearest Frontier [5], Utility-based Fron-
tier [6], NBVP [3], and TARE Local [4]. Nearest Frontier
always drives the robot towards the nearest frontier, while
Utility-based Frontier evaluates the gain of each frontier
gi = u; - e~ >CWi) and drives the robot to the frontier with
the highest gain, where u; is the utility of frontier ¢, 1; the
shortest path from the robot’s current position to frontier ¢,
and A a tunable parameter used to balance exploration and
exploitation. The same function is also used in NBVP to
evaluate sampled trajectories. We tried a series of values of A
for Utility-based Frontier and NBVP, and found that A = 10
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Fig. 5: Visual comparison of our method and baselines
in an example scenario.

(d) NBVP (1922) (e) Utility 10 (1793)

generally performs best (see Table [). Finally, TARE Local
refers to the local planner of TARE [4], which explicitly
plans a full trajectory to cover all frontiers (we do not
use TARE’s global planner, since its local planning horizon
already fits our testing environments). NBVP and TARE run
300 and 10 iterations for each decision step respectively
(15 and 1 in default [3], [4]), to make their decisions as
optimal as possible. In our tests, we adopt our collision-
free graph as the trajectory space for all baselines except
NBVP (we found RRTs mostly generate poor zig-zag paths
due to symmetries in our uniform graph), to alleviate the
randomness of sampling and ensure a fair comparison. We
further compare against a CNN-based DRL planner [18].
Since this CNN-based planner has a fixed observation range,
it only has a partial observation of the (partial) map, and
relies on a frontier-based method for exploration when there
is no nearby frontier in its field-of-view.

We report the average and variance of the total trajectory
length to complete exploration in Table[l] Our results indicate
that ARIADNE outperforms all baselines on average, in all
test sets. We do not report the planning time of baseline
methods in Table [[} since we focused on implementing fun-
damental inner workings of the baselines, without perfectly
optimizing their computing time. In addition, we observed
that the utility/gain computation generally takes 90% of the
planning time for conventional methods in practice, while
its computing time is determined by the resolution of the
map. Therefore, computing times vary greatly in different
exploration scenarios. Despite this, we note that our method
can be used in real-time. Under our exploration setting, our
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(a) Ground truth

Fig. 6: Attention weights visualization of the critic net-
work decoder. The query vector is the node at the current
robot’s position (purple) and the keys vector are nodes in the
augmented graph (blue). Note how the different heads of the
decoder learn to focus on either local or global dependencies
of areas in the partial map.

method takes 0.7s for the observation generation on average
(utility computation and graph building) and less than 0.02s
for the neural network inference on a i9-10980XE CPU.

As discussed in the related work section, the best-tuned
frontier-based method (Utility 10) performs well in 2D ex-
ploration tasks (better than NBVP). Despite this, since these
frontier-based methods are myopic, they are outperformed by
TARE Local, which plans near-optimal long-term (full) tra-
jectories on the current partial map. While it only constructs
paths one viewpoint at a time, our learning-based method
can not only reason about the whole partial map to construct
efficient, non-myopic exploration trajectories, while learning
to predict the potential long-term gain of decisions. We
believe such an advantage results in the improvement of our
method over conventional baselines (5% better than TARE
Local in our random scenarios). Fig. [5| shows an example
where ARIADNE plans a more efficient trajectory, while
conventional methods suffer from redundant movements.
However, it should be noted that considering long-term paths
and predicting potential gains do not strictly guarantee better
performance in every scenario (e.g., predictions could be
wrong). In fact, ARIADNE plans the shortest path for 33
scenarios in our random tests, while TARE Local, NBVP,
Utility 10 perform best in 23, 21, 23 scenarios respectively.

Finally, ARiADNE also outperforms the CNN-based plan-
ner. We believe that our main advantage stems from the
attention-based neural network, which efficiently learns fea-
tures at different scales (as shown in Fig. |6} different heads
of the decoder learn to focus on either local or global
dependencies), while CNNs naturally only focus on local
dependencies. Therefore, our model can better learn depen-
dencies between different areas to reason about the entire
partial map and avoid myopic decisions.

B. Experimental validation

We validate ARiIADNE in a simulation environment for
exploration provided by [27]. It contains fundamental mod-
ules (e.g., state estimation and motion control), which allow
us to consider a real sensor model and a low-level motion

(c) Constructed occupancy grid map
Fig. 7: Validation of our method in simulation. Note that
ignoring the small left-down corner is actually a wise deci-
sion since the objective is to explore 99% of the environment.

controller. The validation is conducted in a realistic indoor
environment (approximately 70m x 40m) with long and
narrow corridors connected with tables, colums, and lobby
areas (see Fig. [7(a)). We use a wheeled robot equipped with
a 3D Velodyne Lidar with a 130m sensor range. We convert
collected data into an Octomap (see Fig. Ekb)) and then
project it to a occupancy grid map for exploration planning
(see Fig. [/(c)). The resolution of the grid map is 0.2m.
We re-plan the path every 0.2s. Although the sensor model
(i.e., sensor range and sensing frequency) of the robot is
drastically different from the one used in training, our trained
model still makes efficient decisions to avoid redundant
movements for exploration (see the colored trajectory in
Fig. [/[c), highlighting the generalizability of our approach.

VI. CONCLUSION

In this work, we propose ARiADNE, a reinforcement
learning approach that relies on attention-based deep neural
network for autonomous exploration. Our approach allows
the robot to efficiently learn dependencies between different
areas in its partial map and implicitly predict potential gains,
thus allowing it to sequence non-myopic movement decisions
in partially-known environments. In our tests, ARIADNE
exhibits improvement over state-of-the-art frontier-based,
sampling-based, and CNN-based exploration planners, in
terms of average trajectory length to complete exploration.
We also validate our approach in a high-fidelity ROS simula-
tion, where we consider a real sensor model and a low-level
motion controller, towards deployments on real robots.

Future work will focus on extending our approach to
autonomous exploration of 3D environments, where frontiers
are much denser than in 2D. Second, although in this work
we uniformly distribute nodes to construct a graph, we be-
lieve a sparser graph containing more informative viewpoints
may improve performance. Finally, we are also interested in
explicitly predicting the potential gain during exploration to
further boost planning performance.
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