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Abstract— A robot guide dog has compelling advantages
over animal guide dogs for its cost-effectiveness, potential
for mass production, and low maintenance burden. However,
despite the long history of guide dog robot research, previous
studies were conducted with little or no consideration of how
the guide dog handler and the guide dog work as a team
for navigation. To develop a robotic guiding system that is
genuinely beneficial to blind or visually impaired individuals, we
performed qualitative research, including interviews with guide
dog handlers and trainers and first-hand blindfold walking
experiences with various guide dogs. Grounded on the facts
learned from vivid experience and interviews, we build a
collaborative indoor navigation scheme for a guide dog robot
that includes preferred features such as speed and directional
control. For collaborative navigation, we propose a semantic-
aware local path planner that enables safe and efficient guiding
work by utilizing semantic information about the environment
and considering the handler’s position and directional cues to
determine the collision-free path. We evaluate our integrated
robotic system by testing guide blindfold walking in indoor
settings and demonstrate guide dog-like navigation behavior
by avoiding obstacles at typical gait speed (0.7m/s).

I. INTRODUCTION

According to the World Health Organisation (WHO), more
than 2.2 billion people in the world have near or distance vi-
sion impairments [1]. Guide dogs (GD) have been considered
as an effective way to improve the mobility and independence
of visually impaired individuals [2]–[4]. However, only about
2% of blind people in the U.S. work with guide dogs [5], and
the percentage is expected to decrease worldwide mainly due
to the lack of supply. Fundamental challenges of expanding
the supply are the significant cost and time that are required
to train, deploy, and maintain animal guide dogs. The cost
for training one guide dog is over $50,000 USD and the
time for breeding, raising, training, and deploying takes up
to two years. Guide dogs’ work span is typically less than
ten years and they require lifelong care from their handler,
including medical care, feeding, and daily walks. As a result,
they are not suitable for people who cannot raise a dog due
to various reasons, such as financial affordability, allergies,
and physical limitations (e.g., due to motor impairments or
natural aging) [2], [4], [6]. To remedy the issues and embrace
the potential of mass production, a cost-effective and sustain-
able guide dog robot could be a significant contribution to
the visually impaired population.
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Fig. 1. Development of a guide dog robot based on qualitative research.
Summer collaboratively works with the handler by reflecting the handler’s
directional suggestions to reach the destination in a safe and efficient manner
by seamlessly avoiding obstacles similar to an animal guide dog.

This strong need inspired researchers, and various
navigation-assistant devices have been developed for a long
time. The early study by [7] evidenced how a robotic
system can support the navigation works of a person with
visual impairment. Multiple wheeled mobile robots have
been developed from 1976 to 1983 and demonstrated au-
tonomous navigation and obstacle avoidance while guiding
a person [8]. On the other hand, researchers also developed
various forms of assistive devices such as smart canes [9],
[10], vibrating belts [11], hand-held camera traversability es-
timators [12], and head mount devices [13]. Throughout the
research, the perception assistant has been actively studied,
but the mobility of the assistant device was less highlighted.
The recent progress in locomotion control of quadruped
robots opened the chance to utilize the legged robots for
guide dog robots, and several studies using a quadruped robot
have been reported [14]–[16]. However, we discover that the
existing guide dog robots do not adequately address how the
handlers interact with their animal guide dogs in the real
world, which has been established over several decades to
support comfortable mobility and navigation efficiency.

For example, having a rigid connection is crucial for
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the handlers to perceive the motion of the guide dog and
navigate in a safe manner [17]. In addition, positioning
the handler right next to the robot is important to navigate
through sharp turns and narrow paths. However, [14], [15]
used a soft leash and [16] located a person behind a robot.
Moreover, previous studies have mainly focused on robot
control under the handler’s pulling force or autonomous
navigation rather than interactive communication during a
guiding work of a handler-guide dog unit. Besides the handle
design and the handler’s position, various aspects should
be considered in the guiding system design. Rich literature
about guide dog work and training methods exists [18]–
[20], but less guidelines have been disclosed for even basic
robot specifications such as size, weight, battery life, sensors,
walking speed, required robustness of walking controllers,
and so on [6]. For the navigation algorithm development,
we have to precisely understand the roles of a handler and
a dog because guiding work is different from autonomous
driving, which brings a person to the target location without
intermittent direction commands from the driver.

In this study, we aim to identify important design com-
ponents of a guide dog robot to support effective navigation
and obstacle avoidance based on the established interaction
mechanisms between the handler and animal guide dogs.
To understand the interaction mechanisms, we conducted
interviews with guide dog handlers and trainers, followed by
several observation sessions to investigate how the handler
navigates with the guide dog in real-world settings. Our team
also performed blindfold walking with four different guide
dogs under a guide dog trainer’s supervision to understand
the navigation process better. Based on qualitative data
analysis, we configure the development directions of a guide
dog robot and build an interactive navigation scheme and
local path planning algorithm.

In terms of hardware design, we adopted the handle
developed for animal guide dog users and installed a custom-
designed button interface to allow the handlers to adjust
speed and give walking direction cues, which are the most
frequently used cues in guiding work. The handle can be
completely detachable from the robot’s body to help the
handlers to easily keep the robot underneath their seat when
they use public transportation. For the local path planner,
we primarily focus on rapid response to the environment
change to safely navigate a dynamic environment. Special
effort is made to enable seamless pedestrian avoidance while
maintaining the handler’s normal walking speed to provide
a comfortable guiding work experience.

The proposed semantics-aware local path planner selects
a path from a cost map made with a pretrained semantic
segmentation network [21] without extra geometrical route
computation to save computation power. In addition, our
method relies only on built-in RGB cameras without depth
estimation and a standard NVIDIA GPU computing unit.
Similar navigation approaches that use pretrained image
processing backbones [22], [23] have been proposed, but less
have been explored to directly utilize semantic segmentation
as a local path planner. [24] proposed to utilize off-the-

TABLE I
PARTICIPANT DEMOGRAPHICS

Subject Age Gender Experience (years) Session type

H01 60 F 36 Interview, observation
H02 69 M 30 Interview, observation
H03 63 M 11 Interview, observation
H04 69 F 30 Interview, observation
H05 59 M 21 Interview, observation
T01 65 M 45 Interview
T02 52 M 19 Interview, observation
T03 58 M 35 Interview, observation

shelf semantic segmentation for indoor mobile robots but
did not deploy the methods on actual robotic systems. [25]
explored the idea of indoor navigation based on semantic
segmentation, in which they trained various segmentation
networks and analyzed their computational efficiency, and
in [26], [27], the researchers deployed semantic segmen-
tation on an actual robot for indoor navigation, and both
relied on the egocentric view of the segmented scene for
target point creation and subsequent target point following.
However, such methods are sensitive to the noise of the
segmentation network, which is inappropriate for safety-
critical applications. Our planner provides robustness against
the segmentation error by employing simple cost map-based
path selection and rule-based stop criteria.

Primary contributions of our work are summarized as
follows: 1) human-centered system integration of a guide dog
robot based on qualitative research with guide dog handlers
and trainers, 2) development of a guiding work framework
with a safety-oriented local path planner that imitates animal
guide dogs’ navigation works, and 3) experimental evaluation
of the robot in real-world indoor environments and demon-
stration of animal guide dog-like behavior at a preferred
walking speed. The video

II. GUIDE DOG ROBOT CONFIGURATION

Guide dogs work with the handler as a team, called a unit,
to safely navigate to the desired destination. Also, unlike
a white cane, guide dogs provide efficient navigation by
seamlessly avoiding obstacles at a walking speed. Based on
qualitative research with five guide dog handlers (GDHs)
and three guide dog trainers (GDTs), we discovered 1) core
components that must be considered when developing a
guide dog robot to ensure safety and 2) advanced components
to enhance efficiency in navigation and increase comfort
for the handler. We elaborate on our guide dog robot’s
configuration by specifying the hardware requirements for
real-world deployment. The participants’ demographics are
summarized in Table I.

A. Hardware requirements to serve as a guide dog robot

To address the various physical attributes of various blind
or visually impaired individuals, guide dog trainers walk with
the potential guide dog handler beforehand and match with
the appropriate guide dog considering features including the
size and pulling force. For a guide dog robot, compact size
and small weight are desirable as they allow handlers to be
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Fig. 2. Pulling force measurement of animal guide dogs and the guide
dog robot, Summer. (a) We performed blindfold walk with different guide
dogs. A digital force gauge was used to measure the pulling force while
walking. (b) Go1’s built-in controller is evaluated on a testbed that pulls the
robot with the horizontal force up to 34.32N (3.5 kg). (c) Pulling forces
measured during blindfold walking with two different guide dogs.

able to independently carry and put the robot under seats,
especially when they use public transportation such as buses,
trains, or taxi cabs. For an animal dog, this can be easier as
they have a flexible body as one of the handlers mentioned:

“Whereas a guide dog, being squishy, you train
him to, even a dog his size, get on the floor area
and lay down.” - H01

Although minimizing the weight is beneficial for porta-
bility, it should still be heavier than a certain mass to
handle the nominal pulling force of a handler and to address
emergent stops. To identify the range of pulling force in
guide dog work, we measured the pulling force with a force
gauge during our blindfold walking with different dogs as
in Fig. 2’ (a). We found that the pulling force of a guide
dog remained mostly under 40N even in the case of a
dog with strong pulling strength (guide dog 1 in Fig. 2
(c)). We experimentally validated that the robot’s locomotion
controller is robust enough to manage a similar external
disturbance by letting the robot walk while being pulled by
3 kg weight as shown in Fig. 2 (b).

B. Core components in GD work to ensure safety

1) Rigid connection and correct positioning:
“I think it can’t be done without some sort of
device that you have some sort of handle. . . .
Because, when you’re working with whatever to
get someplace, you are feeling that thing move. . . .
if I’m holding a dog or holding a two-point handle
to something if it stops, I would stop.” - H01

As one of the GDH subjects mentioned, in guide dog work,
the rigid connection between the handle and the guide dog
is critical. Most guide dog handlers primarily use a harness
while walking since it can provide instant feedback of the

(a) (b)

Fig. 3. Observation of the guide dog handler’s walking with their guide
dogs. (a) The handler-guide dog unit is turning based on the handler’s
directional cue. (b) The handler-guide dog units are seamlessly avoiding
obstacles (e.g., a chair, a tree, and a person) in their local community.

guide dog’s motion while it is challenging to interpret the
motion of the guide dog using only a soft leash.

Walking at a proper position relative to the guide dog
(next to the dog’s hindquarters) while walking is also critical
for various safety purposes. For example, when the animal
guide dog stops at a curb, the handler can use the foot
within a single step to reach out to recognize and locate
the curb. Also, it is ideal to be in the recommended position
to reduce the range of motion and turning speed for safety.
Additionally, note that most guide dogs are trained to walk
on the handler’s left-hand side because most handlers are
right-handed. This enforces the handler to use their left hand
to hold the harness handle and to use their right hand to
perform additional tasks or search around when a dog stops.
This setup can be uncomfortable for left-handed handlers,
but it is hard to accommodate them because switching the
position requires additional training.

Considering the aforementioned safety concerns, we use
a rigid harness handle structure provided by Ruffwear. The
length-adjustable design is expected to support various poten-
tial handlers, having different physical features, to maintain
the proper position while walking. On top of the safety
benefits, the rotating handle structure enables easy transition
between left-handed and right-handed handlers. Also, the
detachable harness structure is desirable considering the
handler’s portability.

2) Collaborative navigation: Unlike autonomous naviga-
tion, in most guiding work, the handler needs to provide cues
to the guide dog to some extent, especially when initiating
turns and deciding when to cross a street, which can also be
observed in Fig 3 (a). In the basic setup between a handler
and a guide dog, the handler is responsible for knowing the
directions to the target location based on cognitive maps and
making decisions about whether it is safe to make a move
by interpreting nonvisual information [19], [28].

“We have to have some idea of where you want
to go. So it becomes the person’s job to tell them
straight, forward, left, right, find the way, look for



whatever they’re aiming for.” - T03
We implement such collaborative navigation by 1) de-

signing a button interface that takes the combination of
touch sensor signals provided by the handler as input and
2) allowing our proposed semantics-aware local path planner
to take this input into the path selection process. With such
implementation, Summer interprets the handler’s directional
suggestions to safely take turns when available.

Based on the feedback obtained from the GDHs, we
designed a wireless button interface that allows the handler
to suggest directional cues to Summer. We minimized the
number of buttons to reduce the complexity of usage. These
two buttons are digitally connected to an Arduino Nano
which is attached to a Bluetooth HC-05 module. Note that
the wireless communication paradigm allows the harness
handle to maintain its detachability. With a single press of
the button, a handler can give a directional command to the
local path planner that takes the command into consideration
when deciding the most desirable path which the details are
provided in Section III.

C. Advanced components in GD work to enhance efficiency
and comfort

1) Seamless obstacle avoidance at high walking speed:
Guide dogs not only ensure the safety of the handler by
avoiding collision but they allow higher travel speed by
seamlessly maneuvering around obstacles that we found
from interviews and the observation session (Fig 3(b)). This
smooth mobility is difficult to get with a white cane because
a user needs to find a way to avoid obstacles in a zig-zag
manner based on tactile information [29]. One of the guide
dog trainers gives a clear idea of how seamlessly an animal
guide dog can avoid obstacles.

“Little bumps in the road and you’ll realize that
sometimes if there’s a bunch of obstacles, whether
it’s traffic cones, trees, fire hydrants, whatever it
is, you might never know them there. You can have
a guide dog for 10 years and you’ll go, ‘Oh I
didn’t know that was there,’ because the dog just
fluidly goes around. It’s a little different than using
your cane where your cane you’re aware of all the
obstacles.” - T03

Here, we focus on developing a local path planner to
provide smooth obstacle avoidance in guiding work without
slowing down or stopping the handler unless they are neces-
sary as explained in Section III-B. We also allow the handler
can control the walking speed using the button interface
because the walking speed varies by handlers; the dog’s
walking speed is one of the most important parameters to
matching a proper handler-guide dog unit.

”Fidelco (training school), before they give you
a dog, will match up your walking speed with a
harness that they pull around to see how fast, slow,
medium, or fast.”- H03

The walking speed can be controlled incrementally by
pressing the button consecutively. As an example, the walk-

Fig. 4. Handle interface design that features speed/direction control button,
adjustable handle, and detachable hook for portability.

ing speed of Summer will increase by 0.05m/s if the upper
button is pressed twice as shown in Fig. 4.

III. GUIDING WORK FRAMEWORK

As explained in Section. II-B.2, a handler provides orien-
tation cues such as forward, left, or right and a guide dog
take care of local path planning by safely and seamlessly
avoid collision or other risk for the handler. Based on the
standard guiding work setup, we focused on developing a
local path planner that can provide rapid response to the
environment change, avoiding various obstacles including
walking pedestrians without incurring uncomfortable jerky
movements or sudden stops unless they are necessary. One
challenge was avoiding walking pedestrians coming from
opposite direction while maintaining the handler’s walking
speed. Considering the average speed of humans (≈ 1 m/s)
and perception camera sight (2− 3 m), the robot has around
only 1 s before it hit the person. Therefore, we targeted to
maximize the update frequency by removing computationally
complex process and by minimizing sensor inputs. Our
image segmentation-based local planner plans and evaluates
paths at a rate of 20 Hz and is capable of robust static
and dynamic obstacle avoidance. Here we present the main
components of our navigation pipeline.

A. Local path planner

We assume the robot is constantly moving forward, and
employ a local planner based on a trajectory roll-out algo-
rithm that samples 40 trajectories parameterized by minimum
and maximum curvature. The 40 curvatures are rolled out
in front of Summer and each is then individually evaluated
according to length and visual cost. At each time step, the
best path is selected and Summer adjusts its steering angle
according to the curvature of the selected best path.

In order to evaluate the visual cost associated with the
rolled-out trajectories, a visual cost map is built based on the
semantic categories of the objects in the Summer’s field of
view. We use the front- and side-facing camera equipped on
Summer as our main input. The camera operates at the rate
of 30 fps, and two 464×400 sized RGB images are streamed
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from Summer to a laptop in the form of ROS messages [30].
Once the image is received by the laptop, it is processed
by a pretrained network with a MobileV2Dialted encoder
[31] and a convolutional decoder and converted into two
464×400 sized matrix, where pixel values are converted into
one of 150 semantic classes. As we are only concerned about
the traversable class, floor, all 150 classes are converted
into binary classes, i.e., floor = 0 vs. non-floor = 1. The
resulting binary 464 × 400 matrices are then scaled by 200
and converted into a grayscale image. The grayscale image
is then mapped down to BEV using a homography matrix
and is used as a cost map to evaluate trajectories.

B. Trajectory adjustment, emergency stop, and path clear-
ance

We augmented the trajectory roll-out algorithm by simul-
taneously rolling out parallel trajectories, thus evaluating an
extended trajectory space that takes into account Summer’s
body width as well as the handler’s position. Furthermore,
we implemented an emergency stop mechanism in the form
of a visual cost box located directly in front of Summer in
it’s BEV local cost map. If an obstacle comes too close into
proximity or if navigation itself chose the wrong path and
was heading straight into an obstacle, then the segmented
object or non-traversable path would enter the visual cost
box, and based on a cost threshold, the forward velocity
command will halt, preventing Summer and the handler
from crashing into the obstacle. An additional cost box is
instantiated in Summer’s left BEV local cost map. The logic
of the mechanism is identical, however, this box’s function
is to instruct Summer to step to the right whenever there is
not enough space on it’s left side for the handler to traverse.

C. Handler’s direction and speed control

When the up button attached to the handle is pressed, a
right turn command is issued, and this influences the trajec-
tory evaluation algorithm by reducing the costs assigned to
the paths that lead to the right side, thereby biasing Summer
to turn right. The same mechanism applies to the left when
the down button is pressed. Moreover, we implemented a

speed control mechanism, where if the up button is pressed
twice, Summer’s forward velocity increases, enabling the
guided unit to traverse at a faster pace. The same mechanism
applies to slowing down if the down button is pressed twice.

IV. EXPERIMENTAL RESULTS

To demonstrate the robustness of the proposed local path
planner, we performed blindfold guiding work in two dif-
ferent indoor environments, which differ in basic layout,
flooring, and wall texture. In the first environment, the total
length of the navigation task is 105 m, and in the second
environment, the total length of the navigation task is 90 m.
In both environments, the task is to traverse through a
hallway while avoiding collision with static and dynamic
obstacles. Obstacles included in the experiments are card
boxes, blue mats, trash cans, a wet sign, and a moving
person. Both environments contain turns where the handler
needs to issue directional commands and a long hallway
where the path is cluttered with obstacles as close as 2 m
apart. During the experiment, a sighted person is blindfolded
and acts as a handler. The handler is situated on the left
side of Summer to demonstrate that the handle can be
easily adjusted for handedness preferences. An operator will
be following the handler while carrying a GPU-containing
laptop. In real guiding work, a handler gives direction cues,
but in our experiment, the operator provides signals on
when to give directional cues to the handler because the
blindfolded handler is not well accustomed to the layout of
the test environments.

A. Obstacle Avoidance and Command Following

In both environments, Summer and the handler success-
fully complete the task without a third person’s intervention
except for the operator’s directional cues. During the tests,
Summer smoothly walks around obstacles and keeps itself
and the handler from collision. In cases where the turn
is narrow, Summer stops and relies on its left visual cost
map to adjust its position such that the handler has enough
traversable space. In walking pedestrian avoidance, Summer
leverages its high-frequency planner and responsibly swerves
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around the incoming person. Because the direction com-
mand does not override but only biases the path selection
algorithm, the timing of the command does not need to
be precise. In our experiments, as long as the blindfolded
handler issued a direction cue before the turn, Summer was
able to follow the direction issued by the handler.

B. Robust Behavior in Unplanned Scenarios

Several unplanned scenarios occurred during the experi-
mentation process. Construction took place in one experi-
mental condition that drastically changed the appearance of
the hallway and reduced the width of the traversable area.
Despite the appearance change, the reduction in traversable
area, vaguely identified objects, Summer finds a traversable
path as long as the side walk is properly detected, which
is true most cases. Another unplanned scenario occurred
when a large trash carrier was placed on the planned route,
blocking a significant portion of the traversable area. Despite
this, Summer was able to successfully navigate around the
obstacle.

V. CONCLUSIONS

In this letter, we present a safe and resource-light guide
dog robot that is designed based on insights gathered from
qualitative research. We utilize two built-in RGB cameras on
the Go1 robot and an off-the-shelf semantic segmentation
network to establish a local path planner. We implement

navigational mechanisms that allows the robot to stop during
emergencies and avoid obstacles while accounting for the
robot’s body and position of the human handler. Custom
harness handle interface is designed and fabricated for the
interactive guiding work. Finally, we demonstrate the robust-
ness of our method in two different indoor environments.
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