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Fig. 1: Overview of our “Hypothesize, Simulate, Act, Update, and Repeat” (H-SAUR) framework. We consider the
task of estimating the kinematic structure of an unknown articulated object and use that structure for efficiently manipulating
the object. Left: A generative model produces several hypothetical configurations given point cloud segments and simulates
possible actions that maximally deform a sampled configuration. Right: By applying an action and observing the outcome,
the posterior inference is performed using the same generative model by simulating and updating the posterior distribution.
We repeat the process until the convergence.

Abstract— The world is filled with articulated objects that are
difficult to determine how to use from vision alone, e.g., a door
might open inwards or outwards. Humans handle these objects
with strategic trial-and-error: first pushing a door then pulling
if that doesn’t work. We enable these capabilities in autonomous
agents by proposing “Hypothesize, Simulate, Act, Update, and
Repeat” (H-SAUR), a probabilistic generative framework that
simultaneously generates a distribution of hypotheses about how
objects articulate given input observations, captures certainty
over hypotheses over time, and infer plausible actions for
exploration and goal-conditioned manipulation. We compare
our model with existing work in manipulating objects after a
handful of exploration actions, on the PartNet-Mobility dataset.
We further propose a novel PuzzleBoxes benchmark that
contains locked boxes that require multiple steps to solve. We
show that the proposed model significantly outperforms the
current state-of-the-art articulated object manipulation frame-
work, despite using zero training data. We further improve the
test-time efficiency of H-SAUR by integrating a learned prior
from learning-based vision models.
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I. INTRODUCTION

Every day we are surrounded by a number of articulated
objects that require specific interactions to use: our laptops
can be opened or shut, windows can be raised or lowered,
and drawers can be pulled out or pushed back in. A robot
designed to function in real-world contexts should thus be
able to understand and interact with these articulated objects.

Recent advances in deep reinforcement learning (RL) have
focused on this problem and enabled robots to manipulate
articulated objects such as drawers and doors [1], [2], [3], [4].
However, these systems typically produce fixed actions based
on observations of a scene, and thus, when the articulated
joint is ambiguous (e.g., a door that slides or swings), they
cannot adapt their policies in response to failed actions. While
some systems attempt to adjust policies during test-time
exploration to recover from failure modes [5], [6], they only
propose local action adjustments (pull harder or run faster)
and so are insufficient in cases where dramatically different
strategies need to be applied, e.g., from “sliding the window”
to “pushing the window outward from the bottom.”

In contrast, humans and many other animals can quickly
figure out how to manipulate complex articulated man-made
objects, e.g., puzzle boxes, with very little training [7], [8],
[9]. These capabilities are thought to be supported by rapid,
strategic trial-and-error learning – interacting with objects in
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an intelligent way, but learning when actions lead to failures
and updating mental representations of the world to reflect
this information [10]. We argue that robotic systems that
can learn how to manipulate articulated objects should be
designed using similar principles.

In this work, we propose “Hypothesize, Simulate, Act,
Update, and Repeat” (H-SAUR), an exploration strategy that
allows an agent to figure out the underlying articulation
mechanism of man-made objects from a handful of actions.
At the core of our model is a probabilistic generative model
that generates hypotheses of how articulated objects might
deform given an action. Given a kinematic object, our model
first generates several hypothetical articulation configurations
of the object from 3D point clouds segmented by object parts.
Our model then evaluates the likelihood of each hypothesis
through analysis-by-synthesis – the proposed model simulates
objects representative of each hypothetical configuration, us-
ing a physics engine to predict likely outcomes given an action.
The virtual simulation helps resolve three critical components
in this interactive perception setup: (1) deciding real-world
exploratory actions that might produce meaningful outcomes,
(2) reducing uncertainty over beliefs after observing the action-
outcome pairs from real-world interactions, (3) generating
actions that will lead to successful execution of a given
task after fully figuring out the articulation mechanism. The
contributions of this paper can be summarized as follows:
leftmargin=*,itemsep=0mm

1) We propose a novel exploration algorithm for efficient
exploration and manipulation of puzzle boxes and artic-
ulated objects, by integrating the power of probabilistic
generative models and forward simulation. Our model
explicitly captures the uncertainty over articulation
hypotheses.

2) We compare H-SAUR against existing state-of-the-art
methods, and show it outperforms them in operating
unknown articulated object, despite requiring many
fewer interactions with the object of interest.

3) We propose a new manipulation benchmark – Puzzle-
Boxes – which consists of locked boxes that require
multi-step sequential actions to unlock and open, in
order to test the ability to explore and manipulate
complex articulated objects.

II. RELATED WORK

Kinematic Structure Estimation. A natural first step to
manipulate an object is to predict the articulation mechanism
of the object. Li et al. [11] and Wang et al. [12] proposed
models to segment object point clouds into independently
moving parts and articulated joints. However, this requires
part and articulation annotations, and thus does not generalize
to unexpected articulation mechanisms. Previous work address
this by proposing to visually parse articulated objects under
motion [13], [14], [15], [16], [17], [18]. Yet, most work
assumes the objects are manually articulated by humans or
scripted actions from the robot. In this paper, we study how an
agent can jointly infer articulation mechanism and exploratory
actions that helps to reveal the articulation of an object, i.e.,

in an interactive perception setup [19]. Niekum et al. [20]
addresses a similar setup, but only handles articulated objects
with a single joint and assumes the robot knows where to
apply forces. Kulick et al. [21] and Baum et al. [22] handle
dependency joints but assume each joint is either locked or
unlocked, which is ambiguous for general kinematic objects.
H-SAUR takes raw point clouds and part segmentations
as inputs, and infers both the joint structure of the object
and how to act. This model can handle articulated objects
with an arbitrary number of joints and joint dependencies
by leveraging off-the-shelf physics simulation for general
physical constraint reasoning.
Model-free approaches for manipulating articulated ob-
jects. Instead of explicitly inferring the articulation mecha-
nism, recent works in deep RL learn to generate plausible
object manipulation actions from pointclouds [23], [3], [5],
RGB-(D) images [4], [1], [2], or the full 3D state of the
objects and their segments [24], [25], [26]. While most of
these RL approaches learn through explicit rewards, recent
approaches have learned to manipulate objects in a self-
supervised manner, through self-driven goals or imitation
learning [27], [28]. However, all of these systems require
a large number of interactions during training and cannot
discover hidden mechanisms that are only revealed through
test-time exploratory behaviors. Furthermore, while they focus
on training-time exploration, our work focuses on testing-
time exploration where only a small number of interactions
is permitted.

III. METHOD

We consider a task of estimating kinematic structure
of an unknown articulated object and use the estimation
for efficient manipulation. We are particularly interested in
manipulating a visually ambiguous object, e.g., a closed
door that can be opened by pulling, pushing, sliding, etc. In
such a situation, the agent needs to estimate its underlying
kinematic configuration, and update its beliefs over different
configurations based on the outcome of past failed actions.

We propose “Hypothesize, Simulate, Act, Update, and
Repeat” (H-SAUR), a physics-aware generative model that
represents an articulated object manipulation scene in terms of
3D shapes of object parts, articulation joint types and positions
of each part, actions to apply on the object, and the change to
the object after applying the actions. In this work, we assume
to have access to a physics engine that can take as input 3D
meshes (estimated from a point cloud) of a target unknown
object with an estimated kinematic configuration, and produce
hypothetical simulated articulations of this object when
kinematically acted upon. The method consists of three parts.
First, we initiate a number of hypothetical configurations that
imitate a target object by sampling articulation structures from
a prior distribution. The prior distribution can be uniform or
from learned vision models. Second, we sample one of the
hypotheses to generate an action that is expected to provide
evidence for or against that hypothesis. Finally, we apply the
optimal action to the target object and update beliefs about
object joints based on the outcome.



A. Generating Hypothetical Articulated Objects

Given the observed pointcloud O of a target object along
with its part segmentation, m, we generate a number of
kinematic replicas of the object. Since the true articulation
mechanism is initially unknown, we generate these replicas
by sampling different kinematic structures from uniform prior
distributions over joint types and parameters.
Object Parts. From the observed pointcloud O and segmen-
tation masks, m1,m2, · · · ,mNv

, where Nv is number of
available views, we can break the pointcloud into part-centric
pointcloud O1, O2, · · · , ONp where Np is the total number
of object parts.
Articulation Joints. Each object part is attached to a base of
the object with a joint. We consider three most common types
of articulation joints: revolute (r), prismatic (p), and fixed
(f). For revolute and prismatic joints, we further generate
possible joint axes and positions, using the tight bounding
boxes fitted to the part-centric pointcloud to obtain a total
of J possible joints. The jth joint is denoted as θ(j) = (c, d)
where c ∈ {r, p, f} is the joint type and d ∈ R6 is the 6-DoF
pose of the joint axis. The prior distribution p(θ(j)) for the
joint type is assumed to be uniform at t = 0. One can also
use learned prior from vision models that predict joint types.

In addition, most articulated joints have lower and upper
limits of how much the joint can be deformed. We denote
the limits as θlow and θhigh. The prior distribution is sam-
pled uniformly from [−θMAX, 0] and [0, θMAX], respectively.
The full state of the joint for object part Oi is si =
(θ(σ(i)), θlowi , θhighi , θcuri), where σ(i) ∈ {1, 2, · · · , J} is the
joint configuration for the ith object part, and θcuri is the joint
position at the current time step. The prior over all the latent
variables is:

p(s1:Np) =

Np∏
i=1

p(θ(σ(i)))punif[−θMAX,0](θ
lowi)punif[0,θMAX](θ

highi).

(1)
We approximate the distribution by maintaining a particle
pool, S, where each particle in the pool represents a particular
setup for the articulation configurations.

B. Simulating and Selecting Informative Action

We utilize virtual simulations to generate an optimal
action that reduces the uncertainty of joint configuration
hypotheses. Yet, computing the optimal action that maximizes
the information gain involves integral over all latent variables,
which is intractable. One can approximate this by a sampling-
based method [19]. However, the high computational require-
ments still prohibit the agent from solving the task within
a reasonable time. We address this by using only a single
particle to make a noisy approximation of the optimal action.

We sample a joint configuration from the set of particles
s(k) ∼ S and obtain the optimal action by simulating different
actions on the object with the physics simulation. The action
at = (p, r) ∈ R6 is represented as a 3D point pt ∈ R3 on the
object and the direction rt ∈ R3 to apply force. The optimal
action is defined as the action that can maximally deform the
object or a target object part over a single step. For multi-part

objects, we maintain a list of parts-of-interest, which we will
introduce shortly, and we sample a target part from the list
to act on. We measure how much an object part i deforms
by di = ‖θcuri

t+1 − θ
curi
t ‖. Although one can naively sample

a huge number of actions and pick the best action through
simulation, we found this can be extremely inefficient with
large object parts. To improve inference speed, we instead
treat the action inference as a particle filtering problem: we
initialize a number of action proposals by randomly sampling
3D locations on the target point cloud and assign random
directions to apply force, then we use the measured distance
dj as the likelihood to update the posterior distribution of the
particles. We add noise to the action while reproducing the
particles from previous iterations. We continue this process
three times and finally sample a particle from the pool to
obtain the action a∗. 1 We found the inferred action a∗ is
often close to the oracle optimal action that maximizes di.

The probabilistic formulation of an articulation mechanism
given past observation and action is

p(st|O1:t−1, a1:t−1)

=

∫
p(st|st−1, at−1)︸ ︷︷ ︸

forward dynamics

p(st−1|O1:t−1, a1:t−1)︸ ︷︷ ︸
obtain through recursion

,

(2)

where the first term is handled by the physics engine by
forward simulation, and the second is initialized with the prior
defined in Eq. (1) and can be obtained through recursion.

C. Updating hypotheses through analysis-by-synthesis

We apply the inferred action a∗ on the target object Ot
to observe outcome Ot+1. We then update the probability of
each hypothesis through analysis-by-synthesis: we first apply
the same action a∗ on all the "imagined" objects, s ∈ S
in the physics engine. After applying the action, we obtain
Ô

(k)
t+1 for each particle s(k). We define the likelihood of the

particle s(k) as wk = 1

dist(Ot+1,Ô
(k)
t+1)+ε

, where dist(o1, o2) =
1
|o1|
∑
x∈o1 miny∈o2 ‖x−y‖22 is the chamfer distance between

two point cloud o1 and o2. The overall updated posterior is:

p(st|O1:t, a1:t−1) ∝ p(Ot|st)p(st|O1:t−1, a1:t−1)

=

K∑
k=1

wkp(st|O1:t−1, a1:t−1),
(3)

where the second term can be computed from Eq.(2), and
the whole inference is implemented through particle filtering
with weighted sampling.

D. Handling Joints with Dependency in Goal-Conditioned
Manipulation

A real puzzle box often consists of joints with dependencies,
e.g., a lock needs to be open first in order to operate on another
lock. Randomly selecting a part to act on is ineffective and

1We found the particle filter (PF) generates nearly optimal action 1, 500
times faster compared to an oracle optimal action generated by exhaustive
search (ES). We compare deformations caused by them and found PF with
100 particles almost always generates the same action (dPF

i /dES
i = 0.995).
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Fig. 2: Percentage of particles representing different hypothetical configurations during interactions. The hypotheses start as a
uniform distribution, then with an observed action, belief tends to aggregate on the correct joint type.

Novel instances in training Categories Testing categories

Box Door Microwave Fridge Cabinet Mean Safe Table Washing Mean

Closed
PN2 100.0 43.3 97.4 72.9 69.2 76.5 55.7 56.5 45.2 54.0
Ours 100.0 85.4 100.0 98.6 96.7 96.1 89.7 98.7 100.0 96.1

PN2+Ours 100.0 80.5 90.9 98.6 97.7 93.4 96.6 99.3 93.8 96.5

Half-opened
PN2 100.0 87.5 100.0 99.1 99.8 97.4 100.0 92.2 77.4 89.9
Ours 100.0 97.6 81.8 100.0 99.0 95.7 100.0 92.8 100.0 97.6

PN2+Ours 92.3 90.2 100.0 98.6 98.6 96.0 100.0 93.4 93.8 95.7

TABLE I: Joint type estimation accuracy [%].

Box Door Microwave

Washing
MachineTableSafeCabinet

Fridge

Fig. 3: Categories from PartNet-Mobility
dataset used for our experiments.

may not be sufficient to solve the problem since (1) the agent
can act on a segment that is irrelevant to the task, e.g., a
decoration on the box, and (2) the agent can underestimate
the joint limit by ignoring the possibility that another part is
blocking the current joint. To resolve this issue, we propose
to keep track of the relevant parts and gradually grow a
dependency tree throughout the exploration process.

Given goals in the form of “moving part X towards Y”,
we maintain a parts-of-interest list qPOI to keep track of task-
relevant object parts and their desired position. For example,
consider a door with a few locks, whose goal is to pull open
the door. Thus, we initialize qPOI by adding the “door” part,
O0, and the desirable moving direction d0. When selecting an
action (see section III-B), we always act on the most recently
added object part. In the first run, we select the door since it
is the only part in the list.

Using the physics engine, we not only infer the optimal
action that would cause desirable changes to the target part,
but also detect object parts, e.g., locks on the PuzzleBoxes
we introduce shortly, that will collide with it. We consider
these collided parts as having a dependency with target part
at hand. We can further infer the desirable change direction
di for each of these collided parts Oi that would unblock the
current part. Then, we add the part along with the desired
changing direction to qPOI. Sometimes multiple directions
might lead to a successful unblock, in this case, we randomly
select one direction to be put in the list. We expect the pool
of particles to keep track of different sampling outcomes. We
can keep adding “unsolved” parts with dependencies to the
current parts to the list. A part is marked as “solved” and
removed from the list if it can be and has been changed to
a desired configuration that unblocks its parent node in the
dependency tree.

IV. EXPERIMENTS

We evaluate H-SAUR on both the PartNet-Mobility dataset
and PuzzleBoxes dataset on SAPIEN [29] physics engine.

The PartNet-Mobility dataset provides a wide variety of
synthetic articulated objects. We specifically use 8 different
categories as shown in Fig. 3 with two different settings:
In the closed setting, all movable joints are shut, which is
often the most visually ambiguous setup for an object. In the
half-opened setting, all joints are initialized at the midway
point between the joint limits.

The PuzzleBoxes dataset has more challenging configu-
rations and joint dependency. Inspired by the puzzle box
experiment by Thorndike [7], we manually design Puz-
zleBoxes with different levels with different number of
locks (N locks) and dependency chains (N chain). As shown in
Fig. 5, we prepared five different settings: (N chain, N locks) ∼
{(1, 1), (2, 1), (3, 1), (1, 2), (1, 3)}, where each setting has 10
different configurations (joint type, axis, and position).

In both dataset, the 6-DoF action is implemented in the
simulator by simulating a directed force on a 3D point,
imitating actions from a suction gripper.

A. Joint type estimation

We first evaluate how well H-SAUR can estimate the type,
location, and limits of joints on an articulated object.

Settings. We test joint estimation using the PartNet-
Mobility dataset with both the closed and half-opened settings.
To measure the performance, we cast the problem into an
eight-way classification problem where the model classifies
the target joint as one of the followings: four different revolute
joints attached to the right, left, top, or bottom of the 3D
bounding boxes for the object part, three different prismatic
joints that moves along each of the X, Y, and Z axes, or a
fixed joint (see Fig. 2).

Models. We initialize a uniform prior for H-SAUR with the
eight possible joints, using 110 particles. The algorithm stops
if one of the following conditions is satisfied: (1) the model
has good confidence with more than 90% of the particles
belong to a single class, or (2) the model interacts with the
object 10 times. We compare our algorithm to a supervised



Novel instances in training categories Testing categories

Method Box Door Microwave Fridge Cabinet Mean Safe Table Washing Mean

Binary classification accuracy [%] ↑

W2A (10K) 68.6 59.7 70.6 70.1 69.7 67.7 68.5 63.9 60.3 64.2
W2A (100K) 75.9 60.2 81.1 71.3 70.0 71.7 74.1 53.5 66.1 64.6
Ours (0.01K) 96.4 79.5 97.8 93.0 93.0 91.9 93.3 97.4 91.3 94.0

Distance prediction error ↓

W2A (10K) 0.051 0.074 0.040 0.068 0.062 0.059 0.057 0.053 0.076 0.062
W2A (100K) 0.049 0.072 0.032 0.063 0.057 0.055 0.051 0.061 0.067 0.059
Ours (0.01K) 0.009 0.036 0.013 0.040 0.026 0.025 0.055 0.016 0.029 0.033

TABLE II: Affordance prediction performance.

Pull

Pull Push

Push

Fig. 4: Visualizations of distance prediction.
The warmer color shows larger deformations.

σ Box Door Microwave Fridge Cabinet Safe Table Washing Mean

0.0 100.0 85.4 100.0 98.6 96.7 89.7 98.7 100.0 96.1
0.1 96.1 94.8 100.0 87.8 90.9 95.9 96.6 87.5 93.6
0.2 95.4 92.8 100.0 82.9 100.0 95.9 82.8 87.5 92.2
0.3 95.2 92.8 100.0 85.4 100.0 93.2 96.6 93.8 94.6

TABLE III: Joint type estimation accuracy on noisy dynamics [%].

learning baseline PN2 [11], which uses PointNet++ [30] as
a feature extraction backbone to predict joint types given an
input point cloud and segmentation masks of the object parts
connected to the joint. We train the model to classify the
link as one of the eight joint types described above. We also
test the combination of H-SAUR and PointNet++, which we
denote Ours + PN2, where we use the trained PointNet++
model as a prior when initializing particles.

Results and analysis. Table I shows the joint type estima-
tion accuracy. Our model performs comparably with PN2 in
the half-opened setting and significantly outperform PN2 on
the closed setting where joint type is mostly ambiguous from
vision alone. We also show, by integrating visual prior from
PN2 with the proposed framework, we can improve in cases
where visual prior helps significantly, e.g., in half-opened
Microwave. We visualize the posterior over hypotheses in
Fig. 2. We can see our model becomes more confident after
a few interactions.

B. Joint type estimation under stochastic dynamics.

Settings. We further evaluate the performance of H-SAUR
under stochastic dynamics by adding noise to action to
imitate a stochastic dynamics. The action noise ε is uniformly
sampled from ε ∼ [−σ, σ]6 thus the action on the stochastic
dynamics will be anoise

t = at + ε. We evaluate H-SAUR with
σ ∈ {0, 0.1, 0.2, 0.3}, where σ = 0 corresponds to Ours in
Table I.

Results and analysis. Table III shows the results on
different noise levels. At its most extreme, the noise is
sampled from a uniform range of width 0.6 meters, which
is the equivalent to the size of the articulated part in
many cases, yet adding this noise has little effect on joint
estimation performance. This is partly because our method is
a probabilistic framework, thus it can handle any uncertainty
including stochastic dynamics, part segmentation, action
noises, etc.

C. Action Proposal and Affordance Map

We next measure how well the H-SAUR model can use
its estimates of joint properties to estimate whether an action
will be effective on the PartNet-Mobility dataset.

Settings. To evaluate all models, we collect 10, 000
interactions on the closed setting by randomly sampling a
point belonging on a movable part and applying a force
with a uniformly distributed direction on the surface of
the 3-d unit sphere. An action is labeled as "success" if
it causes the joint to move more than 5% of its full range.
We counterbalance "success" and "failure" interactions in the
final test set. We use two metrics to evaluate the models:
(1) Binary classification Accuracy which is the proportion
of actions correctly predicted as success or failure, and (2)
Distance Prediction which measure the `1 distance between
the predicted point translation and the ground truth.

Baseline. We compare our model with the state-of-the-
art articulated object manipulation algorithm, Where2Act
(W2A) [23], which takes the pointcloud of an articulated
object as input to predict an effectiveness score for all
points. To train the model, we collect {10K, 100K} number
of counter-balanced interactions using the same procedure
as above. For a fair comparison, we collect both the testing
and training data from only movable links by applying a
segmentation mask when sampling the position to interact as
our method assumes segmentation of the parts is given.

Results and analysis. We show the results in Table II.
Our method significantly outperforms the baseline, despite
being 1000 times more sample efficient. We show qualitative
results of distance prediction by H-SAUR in Fig. 4.

D. Manipulation

Next we evaluate the estimated joints for manipulation task
on the PartNet-Mobility Dataset.

Settings. The task is to open the movable parts as much
as possible from completely closed setting within Nmax = 15
interactions. Our method uses first N int = 10 interactions to
estimate the joint type, and the rest to manipulate the object
while the baseline models use all Nmax interactions to open
the movable parts. For evaluation, we measure the proportion
of the part opened r = maxt∈{1,...,Nmax}(θi − θinit)/(θmax −
θinit), where r = 1 means fully opened target part.

Baselines. We again use Where2Act as the baseline for this
experiment. We also add Where2Act + HP, which employs
an additional heuristic that filters out actions that has a larger
than 90 deg angle with last-step action as done in [4]. This
heuristic helps to avoid sequences of back-and-forth actions.

Results and analysis. Table IV shows our method signifi-
cantly outperforms Where2Act in all categories and performs
better than Where2Act+HP in most settings except for boxes



Novel instances in training categories Testing categories

Box Door Microwave Fridge Cabinet Mean Safe Table Washing Mean

W2A (100K) 65.0 47.3 49.6 50.7 54.8 53.5 42.6 43.9 70.0 52.2
W2A+HP (100K) 96.2 51.3 91.0 98.4 92.9 85.9 72.8 72.0 94.3 79.7
Ours (0.01K) 83.9 90.2 99.0 94.8 95.6 92.7 82.8 98.0 93.8 91.5
Ours + PN2 87.2 86.0 100.0 94.7 97.1 93.0 85.6 99.0 97.7 94.1

TABLE IV: The proportion of the part opened [%] with fifteen testing-time
interactions.

Setting 1-chain 2-chain 3-chain 1-chain 1-chain
2-locks 3-locks

Random 23.3 6.7 0.0 13.3 3.3
Heuristic 36.7 13.3 0.0 23.3 10.0
CURL 33.3 0.0 0.0 0.0 0.0
Ours 96.7 86.7 80.0 93.3 86.7

TABLE V: Manipulation performance (%) for
solving PuzzleBoxes averaged from 3 runs.

and fridge. We found these two categories are simpler in the
sense that all boxes open in the same direction (upward), and
so do the fridges (to the left), so it is easy for Where2Act to
overfit to a single action. We can also see that the performance
of our method, when combined with the learned PN2 model,
slightly improves. It shows H-SAUR alone is already robust
to skewed prior, and one can easily improve its performance
by incorporating good prior from vision models.

E. PuzzleBoxes

Finally, we evaluate H-SAUR on a novel benchmark
PuzzleBoxes. The task is to open a door outward more than
60◦ within 100 interactions. However, opening this door
requires first moving other “locks” that restrict the door’s
range of motion as shown in Fig. 5.

Baselines. To the best of our knowledge, none of the
prior learning-based approaches can solve this long-term
manipulation problem without exhaustively interacting with
the objects before deployment time. To show this, we train
an RL agent with CURL [31], a state-of-the-art image-based
RL algorithm. We feed the model with RGBD images as
inputs and train the agent with 10K interactions. We also
compare our algorithm to two learning-free baselines: (1)
Random: a policy that uniformly sample a movable link and
apply randomly sampled action on it at each time step, (2)
Heuristic: a policy that selects an action in the same way as
Random, but keeps applying the same action if the object
moves at the previous step.

Results and analysis. We show the results in Table V.
We can see that the RL baseline trained with 10K timesteps,
which corresponds to 100x more timesteps than ours, performs
poorly on all but the simplest levels. Deep RL algorithms
generally needs enormous amount of interactions to learn, and
can fail drastically when the agent is allowed to have a limited
number of interactions. Aside from poor sample efficiency,
most learning-based policies would generate similar actions
(drawn from a fixed distribution) given similar observations
(as PuzzleBoxes are designed to look similar but have
different joint axes), since most policies only take one or
a few past observations as inputs and do not update action
distributions from past failed interactions. Even baselines that
use knowledge of the problem structure (both Random and
Heuristic) perform poorly on all levels. In contrast, H-SAUR
can solve even the most complex levels far above chance.

V. CONCLUSION

In this work, we propose a physics- and uncertainty-aware
exploration framework, H-SAUR, that can manipulate diverse

1-chain 2-chain 3-chain 1-chain 2-locks 1-chain 3-locks

Open the door step by step

Fig. 5: Top Examples from the PuzzleBoxes Benchmark.
Bottom Visualizations of how the puzzle boxes will be opened
by unlocking keys in 3-chain puzzle boxes.

articulated objects in circumstances where visual inputs do
not uniquely specify the state. We show H-SAUR can open
complex puzzle boxes requiring several steps to solve. We
also show the proposed model outperforms baselines by a
large margin, highlighting the importance of quick behavior
adaption through test-time exploration. Our model operates
directly on pointcloud segments without the needs of detailed
tracking using AR tags or any other tracking system, which
increases its chance to transfer to a real-world setup. Current
results show the model is robust to mismatch between the
object of interest and the reconstructed virtual objects from
the pointcloud segments.

We note that more work is needed to extend H-SAUR to
manipulate arbitrary real-world articulated objects. First, our
current model cannot handle articulated joints with arbitrary
joint axis, e.g., a door that rotates with a tilted joint, or joint
types that have not been prespecified in its hypothesis space.
This problem can potentially be addressed using motion-
based kinematic prediction [13] to propose new hypothesis
to include in the prior. Second, we assume part segments
are given. In ongoing work, we are investigating models that
jointly infers object parts and their articulations. Third, we
assume a force can be applied to any point on an object from
any direction in order to separate reasoning about joints from
manipulating them. While this is roughly similar to using a
suction gripper as in [4], [32], we plan to explore practical
constraints imposed by a real robot’s geometry, gripper, etc.
in future work.

Nonetheless, H-SAUR demonstrates a promising avenue for
systems that can reason about articulated objects, manipulate
them, and update beliefs in real time.
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APPENDIX

A. Additional Results

1) Ablation on different scoring methods to update hy-
potheses.: In this section, we compare two different scoring
functions for updating hypotheses: chamfer distance as used
in our method (described in Sec. III-C), and cosine similarity
referring [33]. The cosine similarity βk measures the cosine
of the angle between the displacement of the real object d and
the displacement of a hypothetical object. The direction d is
computed by dt = pt+1−pt, where pt is the center position
of the observed point cloud Ojt as pt = 1

‖Ot‖
∑

x∈Oj
t
x.

The cosine similarity is computed by using the direction as

βk = arccos

(
dt·d̂(k)

t

|dt||d̂(k)
t |

)
. We then use βk for the likelihood

of the k-th particle s(k) as wk = (βk+1)/2. This formulation
results in an increase of the likelihood when a hypothetical
object successfully imitates the movement of the real object.
Following [33], we assign wk = 1 when both objects do not
move, and wk = 0 in the case of only one of the two objects
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Box Door Microwave Fridge Cabinet Safe Table Washing Mean

Closed Chamfer distance 100.0 85.4 100.0 98.6 96.7 89.7 98.7 100.0 96.1
Cosine similarity 78.4 83.0 69.2 73.2 72.7 73.5 74.0 82.8 76.0

TABLE VI: Comparison of different scoring methods to
update hypotheses for joint type estimation accuracy [%].

moves, where we assume such situation can happen when
the hypothetical configuration is wrong. To wrap up, cosine
similarity-based likelihood function can be formulated as:

wk =


(βk + 1)/2 if dt 6= 0 and d̂(k)t 6= 0

1 if dt = 0 and d̂(k)t = 0

0 otherwise.

(4)

Table VI shows the comparison of the two different scoring
functions to update hypotheses for joint type estimation ex-
periments. It clearly shows that chamfer distance outperforms
the cosine similarity. We found that cosine similarity works
poorly especially when the joint state of the real object is
close to the upper or lower limit. In such situations, only either
hypothetical or real object moves and results in wk = 0, and
filtered out from the particle pool. Chamfer distance, however,
is robust to the wrong joint state or joint upper/lower limit,
because it still returns a reasonable value even if the estimated
state or joint limits is wrong.

B. Implementation Details

1) Joint Proposals from Part Segments: Given an object
part segment from the point cloud, our method initializes a set
of 19 joint proposals from the tight axis-oriented minimum
bounding box of the part segment. Figure 6 illustrates the
joint proposals from a bounding box. The 19 joint proposals
have their joint positions lie either on the surfaces of the tight
bounding box or at the center of the box, and have their joint
axes aligned to the X, Y, or Z-axis of the box. Specifically, for
revolute joints, we assume the joint lies at the center of one
of the 6 surfaces on the box, with 3 possible axes directions
aligned with the box, result in 15 different joint positions
(15 = 3× 6− 3 as there are 3 duplicate joint positions for
each axis). For prismatic joint, we assume the joint lies at
the center of the box and can move along 3 axes direction
of the box. We found these joint proposals can cover well
most articulated objects in the real world.

2) Dataset and Simulation Details: PartNet-Mobility
Dataset Detailed instance statistics and their joint types for
each object category are listed in Table VII.

Training Categories Test Categories

Category Instances Joints Rev. Pris. Category Instances Joints Rev. Pris.Train Test Train Test

Box 10 3 10 3 X - Safe 29 29 X -
Door 26 7 33 8 X - Table 62 153 X X

Microwave 8 3 8 3 X - Washing 16 16 X -
Fridge 34 9 56 17 X -

Cabinet 269 68 630 157 X X

All 347 90 737 188 X X All 107 198 X X

TABLE VII: Statistics of the data splits.

For physics simulation setups, we use frame rate 100 fps,
and all the other settings as default in SAPIEN release. When

𝑋
𝑌

𝑍

Revolute joints Prismatic joints Fixed joint 

Fig. 6: Visualizations of how to define joint positions for the
revolute, prismatic, and fixed joints. On the left, you can see
X, Y, or Z-axis revolute joints (shown by red, green, and
blue colors) are attached to each surface of the axis-aligned
bounding box. On the middle, we show the prismatic joints
that move the hypothetical object towards X, Y, or Z-axis
direction from its observed position. Finally, the fixed joint
on the right does not change position or orientation of the
hypothetical object.

interacting with an object, we apply the same force for 10
simulation steps, resulting in 10 fps simulation. To simulate
actions from position control, we set the magnitude of the
force by multiplying 100×m, where m is the mass of the
target part. Following Where2Act [23], we disable collision
simulation between every pair of two parts connected by
an articulated joint. We also set gravity to zero to better
simulate articulated objects that have an opener that needs
to be opened upwards, e.g., Boxes. Setting gravity to zero
prevents the opener to gradually fall back from open to close
without any force applied.

For the rendering settings, we use four cameras to get
pointcloud of the target object. We set the near plane to 0.1,
far plane to 100, resolution to 640× 480, and field of view
to 35◦. We obtain a pointcloud from the depth images by
back-projecting the depth image into pointclouds, removing
the far-away (background) points, and down-sampling the
point to get a total of 10K points.

For the object parts, we remove parts that are either too
small or has function irrelevant to physical articulation. For
example, some instances in the Washing Machine category
have tiny buttons for controlling the machines. We ignore
these parts and focus on articulated parts, such as doors.
PuzzleBox We aim to create a more comprehensive version of
Thorndike’s puzzle box experiment [7], where a cat needs to
escape a cage by exploring a locked door and finally opening
it. We design the boxes with different level of difficulties by
varying the number of locks and the number of decency. We
show boxes with different levels in Fig. 7.

In the 1-chain N-locks setups, the door is blocked by a
number of sliding locks and revolving locks. To solve the
task, an agent needs to figure out which locks are blocking
the door and how to manipulate these locks to resolve the
blocking dependency. In these 1-chain setups, we assume the
locks can be solved independently. To further test whether
an agent can optimally explore by only researching on task
decency locks, we also include boxes with dummy locks, e.g.,
locks that are already open and are not blocking the doors.

In the 2-chain and 3-chain setups, we test whether an agent



1-chain

1-chain
2-locks

1-chain
3-locks
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Fig. 7: All instances from the PuzzleBoxes Benchmark.

can solve a chain of locks with dependency, i.e., the locks
need to be operated in a specific order to fully unlock the
door. In Fig. 8, we show some example design of the locks.

C. Implementation Details in the Joint Type Estimation
Experiment

Types of Joints Considered To measure the performance,
we cast the problem into an eight-way classification problem
where the model classifies the target joint as one of the
followings: (4) revolute joints attached to the right, left, top,
or bottom of the 3D bounding boxes for the object part, (3)
prismatic joints that moves along each of the X, Y, and Z
axes, and a fixed joint. We illustrates the joints in Fig. 9.

PN2 Following [23], we use PointNet++ network [30] and
implementation [34] as a backbone feature extractor with
four set abstraction layers with single-scale grouping for the
encoder and four feature propagation layers for the decoder.
We feed the extracted feature into a classification network
which consists of two 256-dim fully connected layers and
8-dim fully connected layer that classifies the input into the
8 possible joints.

PN2+Ours We can initialize the hypothesis distribution
of the proposed model with prediction from PN2. However,
we found that PN2 can generates almost zero weight on a
correct hypothesis when it becomes over-confident about a

Open the door step by step

Fig. 8: Visualizations of how the puzzle boxes will be opened
by unlocking keys in 3-chain puzzle boxes.

■ RR: Revolute Right
■ RL: Revolute Left
■ RT: Revolute Top
■ RB: Revolute Bottom
■ PX: Prismatic X
■ PY: Prismatic Y
■ PZ: Prismatic Z
■ F: Fixed

RR

RT

RB

RL PX

PY

PZ

F

Fig. 9: Joint configurations used for PartNet-Mobility dataset.

false configuration. This can cause the proposed model to fail
since all the particles are initialized with the over-weighted
false configuration. To handle the problem, we impose a
minimum weight 1/16 on all the hypotheses to ensure all
hypotheses are covered in the particle pool. We found the
heuristic can significantly improve the overall performance
(from 80.5% to 96.5% on closed setting with test categories).

1) Implementation Details in the RL Experiment for Puzzle-
Boxes: This section provides more detailed implementation
settings about the RL experiment described in Sec. IV-E.

2) Environment:
a) State: For a fair comparison to H-SAUR, which

requires part segments and 3D information as point cloud, we
define the state of the environment is two frames of RGBD
image IRGBD ∈ R100×100×8. The RGB image corresponds
to part segments because all parts in PuzzleBoxes have
unique color (see Fig. 7), and the depth image gives the
3D information to an RL agent.

b) Action: The action of the agent consists of an
interaction position and direction. The position is defined by
2D continuous value apos ∈ [−1, 1]2, and we find the closest
pixel in the RGBD image and then find the corresponding



3D position to the pixel. This enables to make the action
space smaller, and makes the RL agent easier to solve the
task. The interaction direction is defined by 3D continuous
values adir ∈ [−1, 1]3, and normalized so that it will be a
unit vector.

c) Rewards: Since training an RL agent entirely from a
sparse reward is too hard to solve, we define a shaped reward
to enhance exploration, which consists of changes in position
of any joint rshape = ‖θt+1 − θt‖, where θ is a joint state
vector that consists of all movable joints.

d) Terminal conditions: An episode terminates with the
same condition with other methods as described in Sec. IV-E:
an agent opens the door outward for more than 60◦, or the
total step of an episode is over 100.

3) Agent: We used CURL [31], which uses contrastive
learning to acquire a good image representation, for our RL
experiments with the same hyper parameters used in the
original paper.

4) Training: We used a random policy to collect 1K
transitions to a replay buffer before training an RL agent,
and then trained the RL agent for 10K timesteps. The
configurations of PuzzleBoxes for train and test are different:
we use 7 configurations for training and 3 configurations for
testing, and we train RL agents for each PuzzleBoxes type
separately.

Here we provide pseudo code for the proposed method in
Algorithm 1, 2, 3, and 4. Specifically, Algorithm 3, 4 handles
joints with dependency, as described in Section 3.4. Since
objects in the PartNet-Mobility Dataset do not have such
dependency, they can be solved with Algorithm 1, 2 without
the dependency check (highlighted in red in Algorithm 1). For
objects in the PuzzleBox dataset, including the dependency
check is critical to achieve reasonable performance.

Algorithm 1 Interactive Joint Type Estimation
Input Observed point cloud for the current movable

part Oi, hypothetical joint configurations θ = {θ(j)|j ∈
{1, 2, · · · , J}}, number of particles N particles, threshold δprob

to finish estimation, maximum steps to interact with the real-
world object Nmax

Output Estimated joint type j∗ and indexes of the
collided movable parts k

1: Initialize a particle pool Sstate = ∅
2: for k ← 1 to N particles do
3: Sample a joint configuration θ(σ(k)) ∼ p0(θ) . Can

use a learned prior distribution
4: Sample a joint upper limit θhighk ∼ punif[0,θMAX]

5: Sample a joint lower limit θlowk ∼ punif[−θMAX,0]

6: Add the sampled particle sk =
(θ(σ(k)), θlowk , θhighk , θcurk = 0) to the particle pool
Sstate ← Sstate ∪ sk

7: end for
8: for t← 1 to Nmax do
9: Infer an informative action a∗ using Alg. 2

10: Apply the inferred action a∗ on the real-world object
and observe the pointcloud Ot+1

11: // Handling movable parts/joints with dependency
12: if Detect contacts between the current movable part

and other movable parts then
13: Break the current loop
14: end if
15: for all k ← 1 to N particles do
16: Apply the inferred action a∗ on k-th hypothetical

object and observe the pointcloud Ôkt+1

17: Compute importance weight for the particle wk =
1

dist(Ot+1,Ôk
t+1)+ε

18: end for
19: Re-sample particles from Sstate according to the

importance weights. Compute updated posterior pt+1(θ)
from the particles.

20: if maxj∈{1,...,J} pt+1(θ
(j)) > δprob then

21: Break the current loop
22: end if
23: end for
24: return The most probable joint configuration j∗ =

arg max
j∈{1,...,J}

p(θ(j)) and indexes of the collided movable

part k



Algorithm 2 Informative Action Selection
Input Observed point cloud for the current movable part

Oi, particle pool Sstate, number of particles for generating
action N particles-action, number of particle updates N update

Output Informative action a∗

1: Sample a joint configuration s ∼ Sstate

2: Reproduce a hypothetical object using the joint configu-
ration s in a physics engine

3: Initialize a particle pool Saction = ∅
4: for k ← 1 to N particles-action do
5: Sample a point to interact pk ∼ Oi
6: Sample a force direction rk ∼ {+x,-x, +y, -y, +z, -z}
7: Add the sampled particle ak = (pk, rk) to the particle

pool Saction ← Saction ∪ ak
8: end for
9: for n← 1 to N update do

10: for k ← 1 to N particles-action do
11: Apply the sampled action ak on the hypothetical

object and observe the joint state θst+1,k

12: Compute importance weight for the particle wk =
‖θst+1,k − θst,k‖

13: end for
14: Re-sample particles from Saction according to the

importance weights
15: Add noise to the position pk ∈ Saction

16: end for
17: return The most probable particle a∗ = ak∗ , where

k∗ = arg max
k∈{1,...,N particles-action}

wk

Algorithm 3 Unlock PuzzleBoxes
Input Pointcloud of the target object O, segmentation

masks m1,m2, · · · ,mNv
, target part ID t to open, desired

direction dt to displace the target part
Output “Success” or “Failure” to solve the task

1: Obtain segmented point clouds O1, O2, · · · , ONv from
O and m1,m2, · · · ,mNv

2: Initialize the part-of-interest queue with the target part,
e.g., the door, and its desired opening direction qPOI =
{(Ot, dt)}

3: while |qPOI| ≥ 0 do
4: Get the most recently added object part and its moving

direction (Ol, dl) from the queue qPOI
5: Estimate the joint type of the target part Ol using

Alg. 1
6: if Detect collided parts during joint type estimation

then
7: Add the collided part Ok and its unknown moving

direction dk to the last of the part-of-interest list qPOI ←
qPOI ∪ {(Ok, dk)}

8: else
9: if The moving direction dl is “unknown” then

10: Compute the moving direction dl that resolves
collision using Alg. 4

11: end if
12: Infer an optimal action a∗ on the estimated joint

type using Alg. 2 while replacing the cost function wk =
‖θst+1,k − dl‖ in line.12 in Alg. 2 and apply it on the
real-world object

13: if Goal is achieved (e.g., “door is open”) then
14: Terminate this experiment with “Success”
15: else if Number of interactions exceeds Nmax-int

then
16: Terminate this experiment with “Failure”
17: else if part Ol has been successfully displaced

with dl then
18: Remove the current part and direction qPOI ←

qPOI\{(Ol, dl)}
19: end if
20: end if
21: end while
22: return “Failure”



Algorithm 4 Compute Action Direction to Resolve Collision
Input Pointcloud of the current part of interest Ol,

pointcloud of the collided object part Oc, estimated current
part’s joint configuration s = {θlow, θhigh, θl}, number of
samples to search for the desired joint state N

Output Desired joint state θ∗ for the collided object part
1: Reproduce a hypothetical object using the joint configu-

ration s in a physics engine.
2: Obtain pointclouds {Olθ1 , ..., O

l
θN
} of different joint

states θ ∈ {θ1, ..., θN} by setting the joint configuration
s with joint position θ in a physics engine, where θ is
evenly spaced between θlow and θhigh.

3: return The joint state θ∗ = arg max
θ∈{θ1,...,θN}

dist(Olθ, Oc)
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