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Abstract— Detecting obstacles is crucial for safe and efficient
autonomous driving. To this end, we present NVRadarNet, a
deep neural network (DNN) that detects dynamic obstacles
and drivable free space using automotive RADAR sensors. The
network utilizes temporally accumulated data from multiple
RADAR sensors to detect dynamic obstacles and compute their
orientation in a top-down bird’s-eye view (BEV). The network
also regresses drivable free space to detect unclassified obstacles.
Our DNN is the first of its kind to utilize sparse RADAR
signals in order to perform obstacle and free space detection
in real time from RADAR data only. The network has been
successfully used for perception on our autonomous vehicles
in real self-driving scenarios. The network runs faster than
real time on an embedded GPU and shows good generalization
across geographic regions.ﬂ

I. INTRODUCTION

The ability to detect dynamic and stationary obstacles
(e.g., cars, trucks, pedestrians, bicycles, hazards) is critical
for autonomous vehicles. This is particularly important in
semi-urban and urban settings characterized by complex
scenes with large amounts of occlusion and varieties of
shapes.

Previous perception methods rely heavily on utilizing
cameras [1] [2] [3] or LiDARs [4] [5] [6] [7] to detect
obstacles. These methods have a number of drawbacks: they
are unreliable in cases of heavy occlusions, the sensors may
be prohibitively expensive, they can be unreliable in adverse
weather conditions [8] or at night. Traditional RADAR based
obstacle detection methods work well in detecting moving
objects that have good reflection properties, but tend to
struggle when estimating object dimensions and orientations
and can often fail in detecting stationary objects or objects
with poor RADAR reflectivity.

In this paper, we present a deep neural network (DNN)
that detects moving and stationary obstacles, computes their
orientation and size, and detects drivable free space from
RADAR data alone. We do this in top-down bird’s-eye
view (BEV) for highway and urban scenarios while using
readily available automotive RADARs. Our method relies
on RADAR peak detections alone [9] [10] since automo-
tive RADAR firmware provides only this data. In contrast,
other approaches [11] [12], require expensive Fast Fourier
Transformation operations on the raw RADAR data cube
cross-sections, which are often not available in commercial
automotive sensors.

Video at https://youtu.be/WlwIIMltoJY, .

Our deep learning approach is able to accurately distin-
guish between stationary obstacles, such as cars, and sta-
tionary background noise. This is important when navigating
in a cluttered urban environment. In addition, our approach
allows us to regress the dimensions and orientations of
these obstacles, which classical methods cannot provide.
Our DNN can even detect obstacles with poor reflectivity
like pedestrians. Finally, our method provides an occupancy
probability map to mark unclassified obstacles and regresses
drivable free space.

We have tested our NVRadarNet DNN in real-world au-
tonomous driving on our vehicles running NVIDIA DRIVE
AGX’s embedded GPU. Our DNN runs faster than real-time
at 1.5 ms end-to-end and provides sufficient time for the
planner to react safely.

Our contributions are as follows:

o NVRadarNet: A first of its kind multi-class deep neu-
ral network that detects dynamic and stationary ob-
stacles end-to-end without post-processing in a top-
down bird’s-eye view (BEV) using only peak detections
coming from automotive RADARS;

o A novel semi-supervised drivable free space detection
method using only RADAR peak detections;

o A DNN architecture that runs faster than real-time at
1.5 ms end-to-end on an embedded GPU.

II. PREVIOUS WORK

Obstacle Detection. Fast and efficient obstacle percep-
tion is a core component of a self-driving vehicle. Au-
tomotive RADAR sensors provide a cost-efficient way of
obtaining rich 3D positioning and velocity information and
are widely available on most modern cars. Several recent
papers examined the use of the dense RADAR data cubes
in order to perform obstacle detection [11] [12]. However,
these methods require high input/output bandwidth to obtain
such rich data, making them difficult to implement in real-
world autonomous vehicles. Thus, most classical methods
in automotive RADAR applications utilize post-processed
peak detections from the data cube in order to perform
classification and occupancy grid detection [13] [14] [15].
Others realized that the RADAR peak detections can be
viewed as a sparse 3D point cloud and therefore can be used
in sensor fusion along with 3D LiDAR points in approaches
similar to LiDAR DNNs [4] [16] [17] [5] [18]. There were


https://youtu.be/WlwJJMltoJY

also attempts to enhance camera 3D obstacle detection by
fusing it with RADAR [19].

Free Space Detection. RADAR-based drivable free space
estimation has been attempted in [20] and [21].

Our DNN performs multi-class detection of dynamic and
static obstacles together with the segmentation of drivable
free space by using RADAR peak detections alone. Our
DNN architecture is lightweight and runs faster than real-
time at 1.5 ms end-to-end on an embedded GPU (on NVIDIA
DRIVE AGX). It has been proven to be robust in real-world
driving and was tested on over 10000 km of highway and
urban roads as part of our autonomous stack. To date, we
are not aware of any RADAR peak detections only DNN
that can perform all of these tasks and can run efficiently on
autonomous vehicles.

III. METHOD
A. Input Generation

The input to our network is a top-down BEV orthographic
projection of accumulated RADAR detection peaks around
our ego-vehicle, which is placed at the center of this top-
down bird’s-eye view (BEV) with its front facing right.

To compute this input, we first accumulate RADAR peak
detections across all RADAR sensors on our vehicle (8 radars
covering 360 degrees field of view, as found in our test fleet)
and then transform them to our ego-vehicle rig coordinate
system. We also accumulate these peak detections temporally
over 0.5 seconds in order to increase the density of the signal.
Each data point gets a relative timestamp to indicate its age,
similar to [16]. Next, we perform ego-motion compensation
for the accumulated detections to the latest known vehicle
position. We propagate the older points using the known ego-
motion of our vehicle to estimate where they will be at the
time of the DNN inference (current time).

Next, we project each accumulated detection to a top-
down BEV grid using the desired space quantization to
create an input tensor for our DNN. We set our input
resolution to 800x800 pixels with = 100 m range in each
direction, resulting in 25 cm per pixel resolution. Each valid
BEV pixel (with data) gets a set of features in its depth
channel computed by averaging the raw signal features of the
RADAR detections that land in that pixel. Our final input for
time ¢ is a tensor I; € R"*®*5 where h = 800, w = 800 are
height and width of a top-down view. The 5 RADAR features
in the depth channel are the averages of: Doppler, elevation
angle, RADAR cross section (RCS), azimuth angle and the
relative detection timestamp. We normalize these values to
a [0,1] range for training stability using maximum and
minimum values provided by the hardware specifications.
The resulting tensor is used as input to our network.

B. Label Propagation

We use LiDAR-based human-annotated bounding box
labels as the ground truth for training our RADAR DNN.
These labels are created using the LiDAR data for the same
scenes on which we train our RADAR DNN. Given how
sparse the RADAR signal is, it is practically impossible

Fig. 1: Propagating bounding box labels for cars from the LIDAR domain
to the RADAR domain.

Fig. 2: Visual representation of the free space target: observed and free in
black, observed and occupied in white, unobserved in light gray and partially
observed in dark gray.

for humans to distinguish vehicles using RADAR points
alone even in the top-down BEV view. Hence, we rely on
LiDAR to label training data. We capture both LiDAR and
RADAR data at different frequencies and select the data
closest in time for processing. We then create a top-down
BEV projection of the LiDAR scene for humans to annotate
objects with the bounding box labels and free space with
polylines. For each labeled LiDAR BEV frame, we compute
the closest accumulated RADAR BEV image via the pre-
processing method described above and then transfer the
labels to the RADAR top-down view. We further clean up the
the ground truth by removing any vehicle labels that contain
fewer than 4 RADAR detections within a 70 m range. Finally,
we remove any detections with an RCS below —40 dBm as
we found that they introduce more noise than signal. An
example can be seen in Fig. [T}

C. Free Space Label Generation

The free space target is generated by using the raw
LiDAR point cloud. First, we pre-process the point cloud
by identifying and removing the points belonging to the
drivable surface itself by using surface slope angle estimation
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Fig. 3: Inferred dense occupancy probability map, in Cartesian coordinate
space, showing probabilities from low in dark to high probability in
gradients from red to yellow (highest).

of adjacent LiDAR scan lines. We then overlay manually
obtained LiDAR free space labels to further clean up this
estimate. Next, a set of rays is traced from the ego-vehicle’s
origin in all angular directions, enabling us to reason about
which regions are:

¢ Observed and free

o Observed and occupied
o Unobserved

« Partially observed

Finally, we overlay our existing 3D obstacle labels on top
of the automatically derived occupancy. We explicitly mark
obstacles as observed and occupied. See Fig. 2]

D. Dataset

Our model is trained on a diverse internal dataset with over
300k training frames and over 70k validation frames sampled
from hundreds of hours of driving in several geographic
regions. The dataset includes a combination of urban and
highway data and contains synchronized LiDAR, RADAR
and IMU readings. The labels are human annotated and
include vehicles, cyclists, pedestrians and drivable free space.

E. Network Architecture

We use a DNN architecture similar to a Feature Pyramid
Network [22]. Our DNN consists of encoder and decoder
components and several heads for predicting different out-
puts. See Fig. [ for high-level structure and Table [I] for
details.

Our encoder starts with a 2D convolutional layer with 64
filters, stride 2 and 7 x 7 kernels. It is followed by 4 blocks
of 4 layers each, where each block increases the number of
filters by two, while dividing the resolution in half. Each
layer in the block contains a 2D convolution with batch
normalization and ReLU activation.

TABLE I: Network architecture for NVRadarNet

Layer | Layer description | Input | Output di
Inputs:
input | Input RADAR data | - | 5 x 800 x 800
Encoder:
1 conv (7 x 7), ReLU input 64 x 400 x 400
2a conv (3 x 3), ReLU 1 64 x 200 x 200
2b conv (3 x 3), ReLU 2a 64 x 200 x 200
3a conv (3 x 3), ReLU 2b 64 x 200 x 200
3b conv (3 x 3), ReLU 3a 64 x 200 x 200
4a conv (3 x 3), ReLU 3b 128 x 100 x 100
4b conv (3 x 3), ReLU | 4a 128 x 100 x 100
4c conv (3 x 3), ReLU 4b 128 x 100 x 100
4d conv (3 x 3), ReLU 4c 128 x 100 x 100
Sa conv (3 x 3), ReLU 4d 256 x 50 x 50
5b conv (3 x 3), ReLU 5a 256 x 50 x 50
5¢ conv (3 x 3), ReLU 5b 256 x 50 x 50
5d conv (3 x 3), ReLU 5¢ 256 x 50 x 50
6a conv (3 x 3), ReLU 5d 512 x 50 x 50
6b conv (3 x 3), ReLU 6a 512 x 50 x 50
6¢c conv (3 x 3), ReLU 6b 512 x 50 x 50
6d conv (3 x 3), ReLU 6¢c 512 x 50 x 50
Decoder:
freespace_output deconv (4 X 4), ReLU | 6d 2 x 400 x 400
regression_output | deconv (4 x 4), ReLU | 6d 6 x 200 x 200
class_output deconv (4 x 4), ReLU | 6d 4 % 200 x 200

The decoder consists of one transposed 2D convolution
with stride 4 and 4 x 4 kernels per head. We also experi-
mented with using two transposed 2D convolutions with a
skip connection in the middle. The resulting output tensor is
at 1/4 of the spatial resolution of the input.

We use the following heads in our network:

o Class segmentation head predicts a multi-channel
tensor, one channel per class. Each value contains a
confidence indicating that a given pixel belongs to a
class corresponding to its channel.

« Instance regression head predicts oriented bounding
boxes for an object using an n, (n, = 6) channels of
information for each predicted pixel. The n, element
vectors contains: [0, 0y, wo, lo, sinf, cosf], where
(0, dy) points toward the centroid of the corresponding
object, wy X [y are the object dimensions, and @ is the
orientation in the top-down BEV.

o Freespace head computes a map of occupancy proba-
bilities for each grid cell [20].

F. Loss

Our loss consists of a standard cross-entropy loss for
the classification head, with a larger weight emphasis on
the minority classes, L; loss for instance bounding box
regression, and the inverse sensor model loss for free space
detection [20].

We combine these losses using Bayesian learned weights
by modeling each task weight as a homoscedastic task-
dependent uncertainty following the method described in
[23]. This approach allows us to efficiently co-train these
three diverse tasks without affecting the overall model accu-
racy.

The total loss is defined as:

K-1
TotalLoss = Z Liw; + iy D
i=0



Fig. 4: Network architecture. Our network uses CNN for the encoder and decoder with skip connections. The network has three heads: a classification
head (produces detection probabilities), a shape regression head (produces bounding box parameters) and a free space segmentation head.

where K is the number of tasks/heads, L; is a loss for task
i, w; = e~%, §; is a learned log variance parameter per task,
and p,, is the mean of w; weights.

G. End-to-end Obstacle Detection

In order to avoid expensive non-maximum suppression
(NMS) or clustering at post-processing (e.g. DBSCAN), we
employ an end-to-end approach by classifying a single pixel
per obstacle, as inspired by OneNet [24].

First we compute the L; loss for the regression head
and the pixel-wise classification loss for the classification
head. Next, for each target obstacle, we select the foreground
pixel with the lowest total loss between (ClassWeight
ClassLossPerPixel) + RegressionLossPerPixel. This pixel is
then selected for the final loss computation while the rest
of the foreground pixels are ignored. The losses from the
background pixels are then selectively used by utilizing hard
negative mining. Finally, we perform batch normalization
by dividing the total cross-entropy loss by the number
of positive pixels selected during the above process. The
regression losses are computed only for the selected positive
pixels.

At inference time we pick all of the candidate pixels above
a certain threshold in the classification head, per class. The
obstacle dimensions are picked directly from the regression
head for each corresponding threshold candidate.

By using this technique our network is able to directly
output the final obstacle without expensive post-processing.

H. Converting ISM Head Output to a Radial Distance Map

Autonomous vehicle applications often represent drivable
free space area by its boundary contour. In this sections we
describe how to convert the boundary contour to a radial

distance map (RDM) if needed. The RDM assigns a set of
angular directions ¢y, in the top-down BEV view around
the ego-vehicle, to the distance dy between a reference
point p,.y on the ego-vehicle and the drivable free space
boundary. To compute the RDM, we first re-sample the
dense occupancy probability map (DNN output) into a polar
coordinate system centered around the reference point Py .
By employing a nearest-neighbour interpolation schema,
the re-sampling process can be expressed in terms of an
indexing operation. This assigns the value of each pixel
(¢f,ds) of the polar representation the value of a single
pixel of the predicted dense occupancy probability map.
Since this mapping only depends on the dimensions of the
occupancy map and the position of reference point p,.y, all
required indices can be calculated offline and stored in a
lookup table. Fig. [5] shows the occupancy probability map.
Fig. |3| shows it re-sampled in polar coordinates. After re-
sampling, the distance ds for each angular direction ¢y is
determined by finding the first pixel along each angular axis,
where the occupancy probability reaches some threshold
Doce- Fig. @ shows the RDM representation of the drivable
free space boundary derived by this procedure from the dense
occupancy probability map shown in Fig.

IV. EXPERIMENTS

To evaluate our method we trained and tested our model on
both the open nuScenes [25] and on our internally collected
datasets.

A. Internal Dataset Experiments

Datasets, benchmarks and published DNNs dedicated to
RADAR based obstacle and freespace detection are limited
at this time which presents difficulty when evaluating. See
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Fig. 5: Predicted dense occupancy map re-sampled into the polar coordinate
system centered around the reference point .. . Gradient colors from red
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Fig. 6: Radial distance map representation of the drivable free space
boundary extracted from the predicted dense occupancy probability map
in Cartesian coordinate space.

Table [Tl for a list of available methods and their features. The
closest works [17] [5] [19] [18] use sensor fusion and do not
share RADAR only results publicly. Thus, to the best of our
knowledge we are setting a baseline for obstacle detection,
classification and freespace regression using RADAR peaks
alone. Detection of pedestrians and cyclists is a big challenge
due to the sparsity of the RADAR signal.

We evaluated our DNN on our internal NVIDIA’s RADAR
dataset as well as on the nuScenes public dataset. We also
compared our DNN to other published works as much as
was practically possible and list all results in this section.

For our internal NVIDIA’s RADAR dataset, we used held

TABLE II: Related RADAR detection methods. Our method (in bold) uses
only RADAR data, supports object and free space detection and we provide
public results.

Method Radar | Public | Objects Freespace
Only
RadarNet [17] X v v X
FishingNet [5] X v v X
LiRaNet [18] X v v X
RADModel [11] v X v X
XSense [12] v X v X
OccupancyNet [21] | v v X v
Ours v v v v

TABLE III: Our DNN’s obstacle detection accuracy on the
internal NVIDIA dataset by class and range.

Class Range F-score, F-score,
small res.! | large res.”

vehicles 0-10m 0.728 0.770
vehicles 10-25m 0.608 0.628
vehicles 25 -40m 0.728 0.485
vehicles 40 -70 m 0.327 0.319
vehicles 70 — 100 m | 0.225 0.216
pedestrians | 0 — 10 m 0.197 0.248
pedestrians | 10 — 25 m 0.204 0.24
pedestrians | 25 — 40 m 0.145 0.174
pedestrians | 40 — 70 m 0.084 0.113
pedestrians | 70 — 100 m | 0.040 0.062
cyclists 0-10m 0.145 0.264
cyclists 10-25m 0.125 0.257
cyclists 25 -40m 0.085 0.192
cyclists 40 - 70 m 0.064 0.137
cyclists 70 — 100 m | 0.065 0.114

! Input resolution: 800 x 800 x 5.
2 Input resolution: 1024 x 1024 x 5.

out test data mentioned in section for evaluation. It
is important to note that, even after filtering out the ground
truth bounding boxes, which contain too few RADAR peak
detections (as described in section [[II-B), we still end up
with noisy ground truth labels. For example, there are many
instances where vehicles are occluded by other vehicles
and so human labelers are not able to create good ground
truth from LiDAR data alone. In such cases, RADAR still
produces valid returns and some obstacles are correctly
classified by our DNN, but are marked as false positives at
evaluation. This lowers our precision. Also, LiDAR sensor
is mounted higher on the vehicle (roof) compared to the
RADAR sensors (bumpers) and therefore some obstacles
may be visible by LiDAR but have limited RADAR visibility
which leads to noisy RADAR data and labels. This results
in false negatives and lowers our recall.

Our results for the object detection task can be seen in
Tables The metrics for the free space detection task
(Table|V)) are calculated for the free space region and the free
space RDM independently. The free space region is defined
by an occupancy probability p, < 0.4.

B. NuScenes Dataset Performance

We further train and evaluate our approach on the public
nuScenes dataset [25]. This dataset contains sensor data from
1 LiDAR and 5 RADARs. However, the sensors in this
dataset are from the older generation making direct com-
parison difficult. The LiDAR sensor used for the nuScenes



TABLE IV: Our DNN’s obstacle detection accuracy on the internal
NVIDIA dataset by class.

Class [ mAP, small resolution! [ mAP, large resolution®
vehicles 0.438 0.473
pedestrians | 0.039 0.057
cyclists 0.032 0.066

! Input resolution: 800 x 800 x 5.
2 Input resolution: 1024 x 1024 x 5.

TABLE V: Our DNN’s free space regression accuracy on the internal
NVIDIA dataset.

TABLE VII: Our DNN’s obstacle detection accuracy on nuScenes
dataset by class.

Class [ mAP, small resolution! [ mAP, large resolution®
vehicles 0.245 0.280
pedestrians | 0.002 0.003
cyclists 0.005 0.004

! Input resolution: 800 x 800 x 5.
2 Input resolution: 1024 x 1024 x 5.

TABLE VIII: Our DNN’s free space regression accuracy on nuScenes
dataset.

Resolution | Accuracy | IoU | RDM MAE | RDM IoU Resolution | Accuracy | IoU | RDM MAE | RDM IoU
800 x 800 x 5 0.970 0.597 | 3.129 m 0.630 800 x 800 x 5 0.896 0.351 10.621 m 0.394
1024 x 1024 x 5 | 0.968 0.576 | 2.674 m 0.712 1024 x 1024 x 5 | 0.881 0.353 | 9.584 m 0.441

data collection contains only 32 beams vs 128 beams in our
internal dataset. The extra sparsity in this dataset degrades
the quality of our auto-generated free space targets. Similarly,
the Continental ARS 408-21 RADARSs used in nuScenes
dataset produce significantly sparser detections when com-
pared to the newer generation Continental ARS430 RADAR
sensors we use in our internal dataset. Nonetheless, we
demonstrate respectable results, especially at close ranges.
See Tables and for details.

We further compare our NVRadarNet DNN free space de-
tection accuracy against the method published in [21], which
also presents results on the nuScenes dataset. However, this
method operates on a grid covering the area in front of the
ego vehicle up to 86 m with 10 m to each side, and unlike
our approach it does not regress or classify obstacles. For this
comparison we performed the evaluation on the same image
region, while converting the predicted occupancy probability
to three classes Occupied, Free and Unobserved as follows.

e Occupied: pye. > 0.65

o Free: poec < 0.35

o Unobserved: 0.35 <= pye. <= 0.65
The results are given in Table [[X] Our DNN outperforms the
other method for occupied space regression (best results in
bold) and performs similarly on other tasks.

TABLE VI: Our DNN’s obstacle detection accuracy on nuScenes
dataset by class and range.

Class Range F-score, small' | F-score, large?
vehicles 0-10 m 0.520 0.563
vehicles 10-25m 0.500 0.538
vehicles 25 -40 m 0.352 0.386
vehicles 40 - 70 m 0.180 0.199
vehicles 70 — 100 m | 0.080 0.086
pedestrians | 0 — 10 m 0.056 0.059
pedestrians | 10 — 25 m 0.046 0.052
pedestrians | 25 — 40 m 0.030 0.040
pedestrians | 40 — 70 m 0.016 0.024
pedestrians | 70 — 100 m | 0.000 0.005
cyclists 0-10m 0.050 0.030
cyclists 10-25m 0.068 0.066
cyclists 25 -40m 0.059 0.066
cyclists 40 -70 m 0.044 0.041
cyclists 70 — 100 m | 0.000 0.000

! Input resolution: 800 x 800 x 5.
2 Input resolution: 1024 x 1024 x 5.

C. NVRadarNet DNN Inference

Our NVRadarNet DNN can be trained in mixed precision
mode using INT8 quantization without any loss of accuracy.
We export the network using NVIDIA TensorRT and time
it on NVIDIA DRIVE AGX’s embedded GPU used in our
autonomous vehicles. Our DNN is able to achieve 1.5 ms
end-to-end inference with all three heads. We process all
of the surround RADARSs, perform obstacle detection and
free space segmentation much faster than real-time on the
embedded GPU. It was difficult to find other RADAR DNNs
inference timings in the literature for direct comparison. We
only found that [11] is an order of magnitude slower.

V. CONCLUSION

In this work, we presented NVRadarNet DNN, a real-
time deep neural network for obstacle and drivable free
space detection from raw RADAR data provided by common
automotive RADARs. We benchmarked our DNN on both
internal NVIDIA dataset and the public nuScenes dataset
and provided accuracy results. Our DNN runs faster than
real-time at 1.5 ms end-to-end inference time on NVIDIA
DRIVE AGX’s embedded GPU. To date, we are not aware
of any other RADAR only networks that can simultaneously
perform obstacle detection and free space regression while
running faster than real-time on automotive embedded com-
puters.
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TABLE IX: Comparison to OccupancyNet [21] on nuScenes dataset. Best
results in bold.

Method | Occupied | Free | Unobs. | mloU
OccupancyNet [21] 0.108 0.614 | 0.593 0.439
Ours @ 800 x 800 0.237 0.564 | 0.436 0.412
Ours @ 1024 x 1024 | 0.222 0.574 | 0.405 0.400
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