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Abstract— Three challenges limit the progress of robot learn-
ing research: robots are expensive (few labs can participate),
everyone uses different robots (findings do not generalize across
labs), and we lack internet-scale robotics data. We take on these
challenges via a new benchmark: Train Offline, Test Online
(TOTO). TOTO provides remote users with access to shared
robotic hardware for evaluating methods on common tasks and
an open-source dataset of these tasks for offline training. Its
manipulation task suite requires challenging generalization to
unseen objects, positions, and lighting. We present initial results
on TOTO comparing five pretrained visual representations and
four offline policy learning baselines, remotely contributed by
five institutions. The real promise of TOTO, however, lies in the
future: we release the benchmark for additional submissions
from any user, enabling easy, direct comparison to several
methods without the need to obtain hardware or collect data.

I. INTRODUCTION

One of the biggest drivers of success in machine learning
research is arguably the availability of benchmarks. From
GLUE [1] in natural language processing to ImageNet [2]
in computer vision, benchmarks have helped identify funda-
mental advances in many areas. Meanwhile, robotics strug-
gles to establish common benchmarks due to the physical
nature of evaluation. The experimental conditions, objects
of interest, and hardware vary across labs, often making
methods sensitive to implementation details. Finally, the dif-
ficulties of purchasing, building, and installing infrastructure
make it challenging for newcomers to contribute to the field.

For robotics research to advance, we clearly need a com-
mon way to evaluate and benchmark different algorithms.
A good benchmark will not only be fair to all algorithms
but also have a low participation barrier: setup to evaluation
time should be as low as possible. Efforts like YCB [3]
and the Ranking-Based Robotics Benchmark (RB2) [4] have
aimed to standardize objects and tasks, but the onus of
setting up infrastructure still lies with each lab. A simple
way to overcome this is the use of a common physical
evaluation site, as the Amazon Picking Challenge [5] and
DARPA Robotics Challenges [6]–[8] have done. However,
the barrier is still high since participants must set up their
own training infrastructure. Both of the above frameworks
leave the method development phase unspecified and struggle
to provide apples to apples comparisons.
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Fig. 1: Train Offline, Test Online: Our benchmark lets re-
mote users test offline learning methods on shared hardware.

Many robot learning algorithms do online training, where a
policy is learned concurrently with data collection. One way
to standardize online training is with simulation [9]–[12].
While simulation mitigates issues with variation across labs,
the findings from simulated benchmarks may not transfer
to the real world. On the other hand, if we conduct online
training in the real world, comparison across labs becomes
difficult due to physical differences. In recent years, larger
offline datasets have surfaced in robotics [13]–[15], and
with them the rise of offline training algorithms. From
imitation learning to offline reinforcement learning (RL),
these algorithms can be trained using the same data and
tested in a common physical setup.

Inspired by this observation, we propose a new robotics
benchmark called TOTO (Train Offline, Test Online).
TOTO has two key components: (a) an offline manipulation
dataset to train imitation learning and offline RL algorithms,
and (b) a shared hardware setup where users can evaluate
their methods now and going forward. Because all TOTO
participants train using the same publicly-released dataset
and evaluate on shared hardware, the benchmark provides a
fair apples-apples comparison.

TOTO paves a path forward for robot learning by lowering
the entry barrier: when designing a new method, a researcher
can train their policy on our dataset, evaluate it on our
hardware, and directly compare it to the existing baselines
for our benchmark. TOTO means no more time devoted to
setting up hardware, collecting data, or tuning baselines for
one individual’s environment. In this paper, we lay out our
benchmark design and present the initial methods contributed
by benchmark beta testers across the country. These results
show that our benchmark suite is challenging yet possible,
providing room for growth as users iterate on TOTO.
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II. RELATED WORK

For a thorough description of work related to remote
robotics benchmarking, we refer to the Robotics Cloud
concept paper [16]. Here we describe related work specific
to our instantiation of a robotics cloud (TOTO).

A. Shared Tasks and Environments

A necessary step in comparing method performance is
evaluation on a common task. Common tasks might mean a
standard object set such as YCB [3], which can be distributed
to remote labs, allowing for shared metrics like grasp success
on these objects. RB2 [4] provides four common manipula-
tion tasks (similar to those we use, described in Section III-B)
as well as a framework for comparing and ranking methods
across results from multiple labs. Another route is sharing
the environment itself, as the Amazon Picking Challenge
[5] and DARPA Robotics Challenges [6]–[8] have done.
Sharing tasks or environments gives metrics by which we
can compare approaches. However, users must still develop
the approach on their own hardware in their own lab, and
recreating identical environment setups is quite challenging.

B. Shared, Remote Robots

Going one step further, remotely-accessible robots can
be shared across the community, enabling method devel-
opment and evaluation without users acquiring their own
hardware. Georgia Tech’s Robotarium [17] allows for re-
mote experimentation of multi-agent methods on a physical
robotic swarm, which has been extensively used not just in
research but also in education. OffWorld Gym [18] provides
remote access to navigation tasks using a mobile robot with
closely mirrored simulated and physical instances of the
same environment. A recent survey paper [19] provides an
overview of robotic grasping and manipulation competitions,
including some involving remotely-accessible, shared robots
such as [20]. Finally, most closely related to our work, the
Real Robot Challenge [21] runs a tri-finger manipulation
competition on cube reorientation tasks. The success of the
Real Robot Challenge inspires our work, which also allows
for evaluation of manipulation tasks on shared robots. Our
work, however, is designed to evaluate generalization in robot
learning through challenging variations (lighting, unseen test
objects, etc.) and an image-based dataset (as opposed to
assuming ground-truth state access).

C. Open-Source Robotics Datasets

Collecting real-world robotics data is challenging and
expensive due to physical constraints like environment resets
and hardware failures. Thus open-source robotics datasets
serve an important role in the field by enabling larger-scale
offline robot learning. Some work has improved the way we
collect robotics data, such as self-supervised grasping [22]
and further parallelization of robots [23]. RoboTurk [14] pro-
vides a system for simple teleoperated data collection which
can be executed remotely. Much work in robot learning
has introduced datasets more generally, such as MIME [24]
(8260 demonstrations over 20 tasks), RoboNet [13] (162,000

trajectories collected across 7 robots), and Bridge Data
(7,200 demonstrations across 10 environments). However, it
is hard to understand the value of these datasets without a
common evaluation platform, something that [15] addresses
by using simulation to replicate a real-world dataset. In
contrast, we address this issue with real-world evaluation
that matches the domain of the data collection. Our initial
dataset is 2,898 trajectories, but this will grow over time as
we add evaluation trajectories collected from users’ policies.

D. Offline Robot Learning

Our benchmark focuses on offline robot learning, includ-
ing imitation learning and offline RL. Our initial set of
baselines is described and contextualized in Section V-B.

III. THE TOTO BENCHMARK

Our benchmark focuses on manipulation due to the lack
of benchmarking in this area. Our hardware (Section III-
A) is set in environments that enable a set of benchmark
manipulation tasks described in Section III-B. We collect
an initial dataset on these tasks, detailed in Section III-C.
Finally, in Section III-D, we present the evaluation protocol
for all policies contributed to our benchmark. For more infor-
mation about our dataset and contributing to the benchmark,
please see: https://toto-benchmark.org/.

A. Hardware

Our hardware includes a Franka Emika Panda robot arm
and workstation for real-time inference. A simple joint posi-
tion control stack runs at 30 Hz. The actions are joint targets,
which are converted to motor control signals using a high-
frequency PD controller. We also provide an end effector
controller in which actions are specified via the position and
orientation of the gripper. End effector control using X, Y, Z
positions alone is not feasible to solve our tasks: for example,
the orientation of the gripper must change as the robot pours.
All the results presented in this paper were attained using the
joint position controller. We use an Intel D435 RealSense
camera for recording RGB-D image observations.

We allow users to opt for a lower control frequency if
desired. The training data can be subsampled by taking one
of N frames since the actions are in absolute joint angles.
We decrease the test time control frequency accordingly.

B. Tasks

The task suite consists of two manipulation tasks that
humans encounter every day, similar to those introduced in
prior work [4], [25]. The tasks are pouring and scooping,
excluding the easiest and hardest RB2 tasks (zipping and
insertion). Example image observations for these tasks are
shown in Fig. 2. To see the original task designs, please refer
to RB2: https://agi-labs.github.io/rb2/. Our
tasks differ from those in RB2 in a few ways. We randomize
the robot start state at the beginning of each episode. We
apply a bit more noise to the target object locations. We
use different combinations of objects based on availability.
Lastly, we do not normalize the reward: the reward is the

https://toto-benchmark.org/
https://agi-labs.github.io/rb2/


Fig. 2: TOTO Task Suite. Our benchmark tasks are pouring
and scooping, similar to those in RB2 [4]. Each involves
challenging variations in objects, position, and more.

weight in grams of the material successfully scooped or
poured. For detailed information on the task configurations,
such as locations and objects, see our website.

a) Scooping: The robot starts with a spoon in its
gripper and a bowl of material on the table. The objective is
to scoop material from the bowl into the spoon. The training
set includes all combinations of three target bowls, three
materials, and six bowl locations (front left, front center,
front right, back left, back center, and back right).

b) Pouring: The robot starts with a cup containing
granular material in its gripper. The goal is to pour the
material into a target cup on the table. The training set
includes all combinations of four target cups, two materials,
and six target cup locations (same locations as scooping).
The cup in the robot gripper is always clear plastic, enabling
better perception of the material remaining in the cup.

C. Dataset

A key pillar of our benchmark is the release of a manipula-
tion dataset. Dataset statistics (number of trials, average tra-
jectory length, success rate, and data collection breakdown)
are shown in Table I. We consider a trajectory successful if
it obtains a positive reward, and unsuccessful if the reward
is zero. The initial release includes between 1000 and 2000
trajectories per task. Pouring data collection using replay and
behavior cloning proved challenging to reset (unsuccessful
trials require more cleanup), so it was nearly all collected
with teloperation. Each trajectory includes images, robot
actions (joint angle targets), joint states (joint angles), and
rewards. To improve diversity, the data were collected with
three techniques, each described below.

a) Teleoperation: We collected the majority of tra-
jectories with teleoperation using Puppet [26]. The human

TABLE I: Dataset overview

Task statistics Collection technique

Trials Length Success Teleop BC Replay

Scooping 1895 495 0.690 41% 33% 26%
Pouring 1003 324 0.977 99% 0% 1%

controls the robot in an intuitive end effector space using
an HTC Vive virtual reality headset and controller. While
this teleoperation is theoretically possible to use remotely,
we collect the data with the human and robot in the same
room, giving the human direct perception of the scene. Our
multiple teleoperators have different dominant hands, leading
to more diverse data. Most teleoperation trials are successful.

b) Behavior cloning rollouts: After teleoperation tra-
jectories are collected, we train simple, state-based behavior
cloning (BC) policies on each target location, so no visual
perception is required. We roll out BC trajectories with some
noise added to actions at each timestep. The amount of noise
varies across trajectories for additional diversity.

c) Trajectory replay: Finally, we also replay individual
teleoperated trajectories with added noise. While these might
seem overly similar to the original teleoperated trajectories,
keep in mind that conditions like lighting also vary with time
of day, so this replay still expands the dataset in other ways.

D. Evaluation Protocol

To evaluate each task, we use two unseen objects (bowls
and cups) and one unseen material (mixed nuts for scooping
and Starburst candies for pouring). We evaluate three object
locations seen during training (front left, front center, front
right) and three unseen locations. We evaluate three train-
ing seeds of each method. We initialize the robot with a
randomly sampled pose at the beginning of each trajectory.
However, the robot’s initial poses are kept the same across
seeds to ensure minimal variance. Combining 2 objects, 1
material, 3 locations, and 3 seeds means that each method
is evaluated across 18 trials each for train and test locations.
We report mean and variance of these trials.

IV. BENCHMARK USE

Here we introduce the framework for our benchmark.
TOTO is designed to make the user workflow (Section
IV-A) easy for newcomers with well-documented software
infrastructure (Section IV-B) including examples and tests.

A. User Workflow

We provide a real-world dataset (Section III-C) collected
using our hardware setup (Section III-A). Participants option-
ally use our software starter kit (Section IV-B) and locally
train policies of their choosing using this data. Users submit
policies through Google Forms for evaluation on our real-
world setup. They do not receive the low-level data from
these evaluation trials; they simply receive a video showing
the policy behavior as well as the reward and success rate.

An engineer supervises the real-world evaluations; thus
the evaluation turnaround time is currently around 12 hours



(depending on time of day submitted). Our goal is to em-
phasize offline learning and prevent overfitting, removing the
need for real-time results or large quantities of evaluation.

As new users evaluate methods after the paper release, we
will post (anonymous) evaluation scores for each attempt on
a website leaderboard. We will also periodically add data
collected by the users’ policies to the original dataset.

B. Software Infrastructure

Our software starter kit includes documented code and
instructions for policy formatting and dataset usage. We have
open-sourced baseline code, trajectory data, and pretrained
models (see our website). These components ensure that
TOTO is easily accessible to a broad portion of the robotics,
ML, and even computer vision communities.

We adapt the agent format from [27], which requires a
predict function taking in the observation and returning
the action. We use a standard config format and require an
init agent from config function to create the agent.

We provide users with code for training an example image-
based BC agent and a docker environment which wraps
the minimum required dependencies to run this code. Users
can optionally extend the docker containers with additional
dependencies. We also provide a stub environment for users
to locally verify whether their agent’s predictions are com-
patible with our robot environment. This setup allows users
to resolve all agent format and library dependency issues
before submitting agents for evaluation.

V. BASELINES

We highlight the importance of establishing a benchmark
by running two sets of experiments: (a) what is a good visual
representation for manipulation? and (b) what is a good
offline algorithm for policy learning? To test the benchmark
infrastructure, we have solicited baseline implementations for
both experiments from several labs.

A. Visual Representation Baselines

A core unanswered question, due to the lack of bench-
marking, is what is a good visual representation for manip-
ulation? Is ResNet trained on ImageNet great or do self-
supervised approaches outperform supervised models? We
evaluate five visual representations provided by TOTO users
from multiple labs. Two are trained on our data (in-domain)
and three are generically pretrained.
BYOL (Bootstrap Your Own Latent) [28] is a self-

supervised representation learning method trained on our
dataset. The BYOL representation embedding size is 512.
MoCo (Generic) refers to the Momentum Contrast

(MoCo) model trained on ImageNet [29], while MoCo
(In-Domain) is trained on our data with crop-only aug-
mentations [30].
Resnet50 refers to the model trained with supervised

learning on ImageNet [31].
R3M (Reusable Representations for Robot Manipulation)

[32] is trained on Ego4D [33] with time-contrastive learn-
ing and video-language alignment. For R3M, MoCo, and

Resnet50, we use the 2048-dimensional embedding vector
following the fifth convolutional layer.

These representations performed the best among a larger
set of vision models on which we ran an initial brief analysis
(including offline visualizations and BC rollouts). Additional
representations that performed less well (and therefore are
not included as baselines) included CLIP [34] and a lower-
level MoCo model (from the third layer instead of the fifth).

B. Policy Learning Baselines

Remote users have contributed the below policy learning
baselines, which span the spectrum from nearest neighbor
querying to BC to offline RL. They were selected according
to each TOTO contributor’s expertise with approach coverage
in mind. All methods use RGB image observations, and some
run these images through a frozen, pretrained vision model
before passing the resulting embedding to a policy.
BC is trained on top of each vision representation baseline.

Closed-loop BC predicts a new action every timestep, while
open-loop BC predicts a sequence of actions to execute
without re-planning. Our BC baseline is quasi open-loop:
training trajectories are split into 50-step action sequences,
and the policy is trained to predict such a sequence given
the current observation. During evaluation, these 50 actions
are executed between each prediction step. We find that this
performs better than closed-loop or open-loop alone: closed-
loop struggles without history, and open-loop is challenging
with our variable-length tasks. We filter the training data to
only include trajectories with nonzero reward [35].
VINN (Visual Imitation through Nearest Neighbors) [36]

is a nearest neighbor policy using an image encoder trained
with BYOL [28]. While using nearest neighbors as a policy
has been previously explored [37], this approach alone does
not scale well to high-dimensional observations like images.
BYOL maps the high-dimensional observation space to a
low dimension to obtain a robust policy. VINN was origi-
nally closed-loop (query and execute a new action at each
timestep), but in this work we mirror the 50-step quasi open-
loop approach used in the BC baseline (described above).
IQL (Implicit Q-learning) [38] uses the open-source im-

plementation from the d3rlpy package [39]. We use MoCo
(In-Domain) as a frozen visual representation since it
performed the best in our comparison of representations with
BC. We concatenate the frozen image embeddings with the
robot’s joint angles as the input state to the model.
DT (Decision Transformers) [35] recasts offline RL as

a conditional sequence modeling task using transformers.
Similar to BC, it is trained to predict the action in the dataset,
but conditions on the trajectory history as well as target
return (desired level of performance). We use the Hugging
Face DT implementation. The model receives an RGB image
and the robot’s joint angles: the former is embedded using
MoCo (In-Domain) and concatenated with the latter at
each step. DT uses a sub-sampling period of 8 and a history
window of 10 frames. For inference and evaluation, the target
return prompt is approximately chosen as the mean return
from the top 10% of trajectories in the dataset for each task.



Fig. 3: Vision representation comparison with BC. Models trained on our data (left of dashed line) perform better than
generic ones (right of dashed line), and results tend to be better for training object locations than unseen test locations.

VI. EXPERIMENTAL RESULTS

A. Visual Representation Comparison Using BC

Our first set of experiments compares BC agents using the
vision representations detailed in Section V-A and evaluated
with the protocol described in Section III-D. The success
rates across all representations and tasks are visualized in
Fig. 3, and the numerical rewards are presented in Table II.

These results show that finetuning the MoCo model on
our data outperforms the generic version, as expected. MoCo
(In-Domain) achieves the highest success rate and aver-
age reward on both tasks, followed by BYOL, the other in-
domain model. In general, the relative performance between
models is mostly consistent across tasks. Resnet50 and MoCo
(Generic) perform slightly better on pouring than on
scooping.

Fig. 3 also visualizes performance differences due to ob-
ject locations. Locations seen during training perform better,
but performance does not degrade significantly, suggesting
that the representations have a generalizable notion of where
the target object is. Surprisingly, the two representations
trained on our data (MoCo (In-Domain) and BYOL)
perform equally good or even slightly better on unseen
locations for scooping.

TABLE II: Performance of vision representations with BC
across train and test locations.

Method
Scooping Pouring

Reward Success % Reward Success %

In Domain BYOL 4.39 72.2% 20.22 66.6%
MoCo 7.42 83.3% 22.86 72.2%

Out of
Domain

MoCo 2.11 33.3% 14.89 55.5%
ResNet50 2.83 47.2% 18.86 50.0%
R3M 2.97 44.4% 6.94 33.3%

B. Policy Learning Results

Table III shows the comparison of policy learning methods
(described in V-B) evaluated on TOTO. Due to compute
constraints, we have 1 and 2 seeds for DT and IQL respec-
tively. We compensate by duplicating the evaluation of these
seeds to keep the number of trials consistent. The results are
visualized in Fig. 4. We find that VINN performs the best
in train locations. We also note that offline-RL approaches
(especially IQL) achieve some success unlike in RB2 [4].

This is likely due to a larger and more diverse dataset than
RB2, which contributes to better offline RL performance.

In experiments, we found that scooping proves challenging
due to a non-markovian aspect of the task: the spoon is above
the bowl both before and after scooping. Thus we would
expect open-loop methods (BC, VINN) and those with history
(DT) to perform better than others in this setting. While BC
and VINN achieve competitive performance on scooping, DT
only achieves moderate success on scooping and does not see
any positive rewards on pouring. Meanwhile, IQL provides
decent performance without history on a non-markovian task.

Comparing the train and test location results for policy
learning proves interesting. VINN performs the best on
train locations, but it struggles on unseen locations, since it
selects actions using the nearest neighbor trajectory from the
training data. All other methods also experience some level
of degradation when moving to unseen locations, leaving one
clear direction for method improvement using TOTO.

TABLE III: TOTO policy learning results across train and
test locations.

Method
Scooping Pouring

Reward Success % Reward Success %

BC + MoCo 7.42 83.3% 22.86 72.2%
VINN 7.89 63.9% 21.75 47.2%
IQL 6.08 47.2% 9.86 38.9%
DT 2.83 27.8% 0.00 0.0%

C. Dataset Size Ablation

To understand the impact of dataset size on policy learning
performance, we perform an ablation in which we train BC
on the scooping task with varying amounts of data. We sort
the scooping trajectories by reward and train policies with
the top 5%, 25%, 50%, 100% of the data, as well as all
successful trajectories with positive rewards (∼70%). This
sorting by reward ensures that policies trained in the small-
data regime are not overcome by unsuccessful trajectories.
We present the dataset size ablation results in Table IV.

The all success number uses the same policy as the BC
policy in Table III, but we evaluate it again with the ablations
to ensure minimal variance in conditions. As expected,
training on more data generally leads to a higher success
rate. Training on all of the data (including unsuccessful
trajectories) leads to a lower reward than training on only the
successful trajectories, also unsurprising given the use of BC



Fig. 4: Evaluating offline policy learning results. VINN sees the best performance on train locations, but its performance
degrades on unseen locations, as does the performance of other methods.

TABLE IV: Dataset size ablation with BC on scooping.

Dataset size Reward Success Rate

5% 2.89 38.9%
25% 5.94 72.2%
50% 6.22 77.8%
Successes (∼70%) 8.06 83.3%
100% 5.00 72.2%

to learn the policies in this ablation (we might expect offline
RL to improve with the inclusion of unsuccessful trials).

Overall, these ablation results suggest that the TOTO
dataset size is the right order of magnitude in terms of policy
learning. We have reached the point of diminishing returns:
training on 50% versus 70% of the data does not substantially
improve performance. However, additional data might still
improve visual representation learning.

D. Metrics for Offline Policy Evaluation

A TOTO user might wish to sanity check their policy
before submitting it for real-world evaluation or otherwise
have performance metrics to guide offline tuning. Here we
present simple example metrics for offline evaluation: action
similarity to a validation set of expert demonstrations using
both joint angle error and end effector pose error. From a
chosen validation set of 100 trajectories, we estimate the
joint angle error and end effector error by computing the
mean squared error between agent’s predicted actions and
actual actions for all samples.

Fig. 5 shows these validation metrics on BC checkpoints
throughout training and the real-world reward evaluated on
four representative checkpoints. The reward increases as
the validation error metrics decrease, matching expectations.
These metrics capture overfitting: the overtrained policy from
2,000 epochs shows a significant decrease in real-world
reward and likewise has higher validation error. While offline
metrics alone should not fully guide the development of an
algorithm, it provides a signal as to whether the policy might
achieve any success in the real world.

VII. DISCUSSION

The main goal of this work is to introduce TOTO, our
robotics benchmark. We presented a broad initial set of
baselines containing both vision representations and policy
learning approaches, which can be built off of by future
TOTO users. Notably, these baselines were contributed in

Fig. 5: Comparing offline evaluation to online perfor-
mance. While offline evaluation is imperfect, it provides a
sanity check to the user, guiding development at a higher
frequency than real-world evaluation.

the same way that TOTO will be used in the future: by
collaborators who locally train policies and submit them
for remote evaluation on shared hardware. This shows the
feasibility of our user workflow. The initial baseline results
show the challenging nature of our tasks, especially with
respect to generalization. By using TOTO as a community,
we can more quickly iterate on ideas and make progress on
the real-world bottlenecks to robot learning.

A. Limitations and Future Work

The evaluation protocol currently has manual steps: we
measure the material transferred during pouring and scooping
to compute rewards and reset by returning the material to the
original object. We do see future potential to automate reward
measurements and resets, such as by adding a scale beneath
the target object and using an additional robot to reset
the transferred materials. Spills of the transferred material,
however, might still require manual intervention.

We plan to expand the evaluation setup to include addi-
tional robots. This would help us meet the increasing demand
in evaluations as more users adopt the benchmark. One
challenge will be visual differences across robots, but we
plan to collect additional demonstrations on new robots, and
this would be an opportunity to expand the set of tasks as
well (we could designate one robot per task).

As user demand further grows, we will implement an
evaluation job queue which prioritizes evaluation requests
from different users and schedules the jobs based on the
number of robots currently available.
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VIII. APPENDIX

A. Task Specifications

Our benchmark contains two manipulation tasks: scooping
and pouring. Fig. 6 shows the train and test objects for each
task. The containers have varied sizes, shapes, materials, and
colors. The materials being scooped or poured have diverse
appearances, granularities, and densities. This variation en-
ables us to evaluate the generalization capabilities of both
visual representations and learned policies.

Fig. 6: Benchmark Suite. Our benchmark includes two
tasks: scooping (left) and pouring (right). The bottom images
display the train and test objects for each task, respectively.

Fig. 7 shows the train and test locations for the center of
the container in both tasks. These locations are distributed
across a workspace measuring 60cm x 110cm. To ensure
evaluation consistency, we have marked each location for
future reference.

Fig. 7: Train and Test Locations. The green locations are
used in the training data. The red locations are only used at
test time.

B. Dataset

We compute the reward distribution of our dataset for both
tasks (Fig. 8). In the pouring task, the presence of multiple
peaks in the distribution is attributed to the weight differences
of the materials poured during training.

We note that the reward values depicted in Fig. 8 are not
normalized. Instead, they represent the weight in grams of the
material successfully scooped or poured. This unnormalized
representation provides a direct measure of the task perfor-
mance in terms of the weight of the manipulated material.

Fig. 8: Reward Distribution. Each histogram depicts the
task rewards in the training dataset.

C. Get Started with TOTO

We are committed to maintaining the TOTO setup in the
long term and continuously seeking additional baselines.
We warmly invite the academic and research community
to participate in the TOTO benchmark challenges, which
include:

• Visual Representation Model Challenge: In this chal-
lenge, participants are encouraged to train and submit
Behavior Cloning (BC) agents that utilize a pre-trained
visual representation model.

• Agent Policy Challenge: Participants can choose to
either develop a custom visual representation model or
utilize the visual representations provided by TOTO.
The challenge focuses on designing and submitting
agent policies that demonstrate effective manipulation
skills.

For comprehensive instructions on how to get started, as well
as to access our code and dataset, we encourage you to visit
our website at https://toto-benchmark.org/.

https://toto-benchmark.org/
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