
Towards Predicting Fine Finger Motions from Ultrasound Images via
Kinematic Representation

Dean Zadok1, Oren Salzman1, Alon Wolf2 and Alex M. Bronstein1

Abstract— A central challenge in building robotic prostheses
is the creation of a sensor-based system able to read physio-
logical signals from the lower limb and instruct a robotic hand
to perform various tasks. Existing systems typically perform
discrete gestures such as pointing or grasping, by employing
electromyography (EMG) or ultrasound (US) technologies to
analyze muscle states. While estimating finger gestures has
been done in the past by detecting prominent gestures, we are
interested in detection, or inference, done in the context of
fine motions that evolve over time. Examples include motions
occurring when performing fine and dexterous tasks such as
keyboard typing or piano playing. We consider this task as
an important step towards higher adoption rates of robotic
prostheses among arm amputees, as it has the potential to
dramatically increase functionality in performing daily tasks.
To this end, we present an end-to-end robotic system, which
can successfully infer fine finger motions. This is achieved by
modeling the hand as a robotic manipulator and using it as
an intermediate representation to encode muscles’ dynamics
from a sequence of US images. We evaluated our method by
collecting data from a group of subjects and demonstrating
how it can be used to replay music played or text typed. To
the best of our knowledge, this is the first study demonstrating
these downstream tasks within an end-to-end system.

I. INTRODUCTION

Bionic hands or robotic prostheses were sought after for
decades yet the first commercially-available robotic prosthe-
ses only became available in 2007 [1] and a fully-functioning
prosthesis enabling all range of daily tasks is still out of
reach. Existing robotic prostheses are typically connected
to the limb of an amputee (or to a subject with severe
phalanx or palm deformations) when the subject’s muscles
still respond to electric potentials generated by the brain [2].
These electric potentials allow inferring different finger
motions by placing a non-invasive sensor on the residual
limb, having subjects attempt these motions or gestures, and
then discriminating between the different types of recorded
electrical signals [3], [4]. This sensing technology, called
electromyography (EMG), allows the reproduction of grasp
flexion and extension yet is unable to reproduce finer motions
typically involved in daily tasks.

Recently, it was shown that replacing EMG with ultra-
sound (US) imaging that captures the muscles’ morpholog-
ical state allows for better differentiation between discrete
gestures or to classify full-finger flexion [5]. These images
are obtained by placing an US probe on the residual limb
and its efficacy is based on the fact that the muscles generate

1Department of Computer Science, Technion, Haifa, Israel
{deanzadok,osalzman,bron}@cs.technion.ac.il

2Department of Mechanical Engineering, Technion, Haifa, Israel
alonw@me.technion.ac.il

different deformation patterns for different actions, and this
behavior can be generalized among different subjects [5],
[6], [7], [8]. Arguably, the most popular approach to infer
motions from (high-dimensional) US images is via data-
driven methods [6], [8], [9]. However, to the best of our
knowledge, these methods still fall short of fully predicting
dexterous hand motions or fine finger motions that a subject
intended to perform. Predicting such motions, which is the
focus of our work, is instrumental to the fine control of
robotic hands and, consequently, to increase adoption rates
of robotic prostheses.

Specifically, the key question this research aims to an-
swer is “To what extent can we predict and differentiate
between fine finger motions by only having access to the
lower-arm muscles?” As challenging exemplary use cases,
we consider piano playing and keyboard typing. In these
tasks, finger gestures required to press or type are usually
finer than those required to grasp objects or fully flex the
fingers, generating smaller lower-arm muscle movements. To
the best of our knowledge, predicting finger motions for these
tasks has not been evaluated as part of an end-to-end system
and we hope that our method and dataset will be used as a
baseline for understanding these motions.

To this end, we present an end-to-end robotic system
that allows to successfully solve our research question. This
success stems from the design choices we took to construct
our system which we view as a major contribution of this
work. These include: (i) choosing an US sensor to capture
the muscle’s morphological state, (ii) using a sequence of
multiple US images at each step, and (iii) a learning frame-
work designed to exploit the temporal nature of the input
US images. The proposed neural network (NN) architecture
allows to inject domain knowledge accounting for the fact
that pressing can be inferred by both the muscles’ dynamics
and an intermediate lower-dimensional representation of the
palm of the hand inspired by robotic manipulators.

As we demonstrate in our empirical evaluation our frame-
work can be used to accurately reproduce music played
or text typed, applications that were previously considered
unattainable. This was done by collecting data from a group
of subjects and successfully predicting finger motions in our
two motivating applications.1 Finally, we demonstrate our
system by connecting it to a robotic arm that replayed piano
notes played by a subject in real-time.

1Note that we do not showcase our results on deformed muscles. We
performed tests on healthy subjects with fully-functioning hands in order to
provide an accurate benchmark for the task we concentrate on. Our code
and dataset are available on https://github.com/deanzadok/finemotions.

ar
X

iv
:2

20
2.

05
20

4v
2

 [
cs

.R
O

]
 2

8
Se

p
20

22

https://github.com/deanzadok/finemotions

heθ hdφ

s̄k p̄kx̄k

Sensor

Fig. 1: A schematic flow of the proposed model-based method (Sec. V-C). An ultrasound sensor is placed on the lower
arm while the subject is playing the piano. A continuous stream of ultrasound images s̄` from the sensor is fed into the
neural-network encoder heθ which creates a latent representation of hand skeleton configurations x̄`. The decoder hdφ receives
the latent representation and outputs the vector of probabilities p̄` indicating the pressed keys. The entire system is trained
to produce a common representation for both the skeleton tracking and key prediction tasks.

II. RELATED WORK

Object grasping is one of many actions human hands
perform daily. One reason for the low adoption rates of pros-
thetic arms among arm amputees is the lack of functionality
in performing daily tasks [10]. To enrich the variance of
gestures, advanced wearable surface-EMG (sEMG) sensors
have been used (e.g., Myo armband [4], [11]). The array
of features provided by sEMG enabled inferring more than
grasp intention, and classifying a varied set of hand gestures
via machine learning (ML) and deep learning (DL) [11], [12].
Additionally, sEMG demonstrated promising performance
for arm amputees [4]. Noteworthy, in this domain, subjects
differ in their gestures, which puts forth the requirement of
operating across a variety of muscular structures [13].

In recent years, US sensing technologies emerged as a
promising alternative to EMG. McIntosh et al. proposed
to extract the optical flow of an US stream prior to the
classification [9]. Others used ML algorithms demonstrating
gesture classification from downsampled US images of the
same area [5], [14]. Gesture recognition was achieved with
wearable single-transducer sensors [6], [15]. In addition,
researchers demonstrated that similar techniques allow de-
coupling of different degrees of freedom (DOFs) and use
them to classify gestures [8], [16]. Unsupervised techniques
were also studied, showing discrimination of unlabeled ges-
tures [7], which might imply the possibility to understand
muscle behavior of arm amputees without explicit labeling.
Nevertheless, the feasibility of instructing a robotic hand to
execute fine finger motions remains an open question.

For the analysis of US imagery DL techniques have
become increasingly dominant in tasks ranging from tis-
sue segmentation and pathology detection [17], and image
enhancement [18], replacing traditional beamforming tech-
niques with learned beamformers for faster and better image
acquisition [19], [20]. In the context of learning dynamics
of human organs, US imaging with transducers placed under
the jaw demonstrated reliable speech and pronunciation
recreation from imaged tongue movements [21], [22]. Vogt
et al. utilized the tongue’s morphological behavior to extrap-
olate sung pitch and phonemes [23]. Lulich et al. studied
the correlation between tongue motion and the frequencies
generated by clarinet playing [24]. These works suggest that
US provides a rich signal source describing minute muscular
motion.

III. ANATOMICAL BACKGROUND

In this section, we provide the anatomical background
required to understand the approach we take to solve our
inference problem. Specifically, we explain (in general terms)
the relation between lower-arm muscles and the state of the
wrist’s and fingers’ joints. The lower arm contains two main
bones, the Ulna and the Radius. Surrounding these bones
are different muscles that are responsible for the flexion,
extension, and rotation of different joints in our palms
(including all the fingers). Two annotated US images of this
region are presented in Fig. 2a and Fig. 2b, highlighting the
muscles relevant to our problem as well as different muscle
states corresponding to different finger motions.

We start by concentrating on the four fingers (Index
through Little finger). There are three types of joints as-
sociated with these four fingers: the metacarpophalangeal
(MP) joints, the proximal interphalangeal (PIP) joints, and
the distal interphalangeal (DIP) joints (Fig. 2c). Close to the
skin shell, we can find the flexor carpi radialis (FCR) and
the flexor carpi ulnaris (FCU) that are (together with smaller,
less prominent muscles) in charge of flexion of the wrist.
Between the FCU and the FCR muscles, we can identify
the flexor digitorum superficialis (FDS) that flexes the four
fingers, and, in full flexion, also contributes to the flexion of
the wrist. The FDS connects to tendons that go through the
PIP and MP joints of the four fingers. Deeper into the arm,
the flexor digitorum profundus (FDP), similar to the FDS, is
in charge of finger flexion and wrist-control assistance using
tendons connected to the DIP joints. Lastly, close to the FDP,
is the flexor pollicis longus (FPL), which controls the thumb
joints. To summarize, observing the state of the FDS and
FDP muscles allows (in theory) to estimate the whereabouts
of all four fingers, while the FPL provides the knowledge
required to understand thumb movement.

IV. SYSTEM DESIGN

Following the anatomical background presented, we argue
that one can infer key-pressing actions by considering only
lower-arm muscles. To design such a system, we require
choosing (i) the type of sensor, (ii) the input it provides
to the inference algorithm, and (iii) the inference algorithm
itself. For our system, we chose to use an US sensor capable
of recording images at a high frequency, to capture muscle
structure. Choosing an US relies on previous work [12] in

FDP

Ulna
Radius

FPL

FCR
FDS

FCU

(a)

FDP

Ulna
Radius

FPL

FCR
FDS

FCU

(b)

J4
1J4

2J4
3
J3

2J3
3

J5
2

J2
1J2

2J2
3 J1

1J1
2

Jwr
Jwp
Jwy

J5
1

J3
1

J5
3

(c)
Fig. 2: (a,b) Visual segmentation of two US images (top of
each image is the skin shell). The Ulna and Radius (the two
main bones), are marked in blue, and the flexion muscles are
marked with different colors. All fingers are at rest in the left
image while in the right image the Ring finger is fully flexed.
Notice that the region capturing the FDS in the right image
is larger than on the left image as the FDS becomes more
dominant in this area during movement. (c) Visual illustration
of a hand’s configuration. The Thumb (F 1) is associated with
two joints [J1

1 , J
1
2], the other four fingers F i (i ∈ {2, . . . , 5})

are each associated with three joints [J i1, J
i
2, J

i
3] and three

additional DOFs are associated with the wrist [Jwr , J
w
p , J

w
y].

The set of joints {J i1|1 ≤ i ≤ 5}, {J i2|2 ≤ i ≤ 5} and
{J i3|2 ≤ i ≤ 5} correspond to the MP, PIP and DIP joints,
respectively (see Sec. III). Figures are best viewed in color.

which US completely outperformed EMG in classifying ges-
tures. Moreover, when compared to the single-dimensional
signal provided by an EMG sensor, spatial features that are
found in an US image have more information about fingers’
whereabouts, and are less noisy. This will be key in the way
we address the latter two design choices.

Recall that an US provides us with an image. However,
in contrast to existing approaches [5], [16], we chose to use
a sequence of the latest-acquired US images as the input to
our inference algorithm. As we will demonstrate empirically
(Sec. VI), considering a sequence of US images allows to
exploit the dynamics which in turn, leads to significantly
better results in downstream tasks.

Given a stream of US images we chose to solve the
inference problem via a NN architecture that is tailored
for processing images, exploits temporal coherence, and
allows a domain expert to inject domain knowledge via an
intermediate representation. In our setting, this intermediate
representation is an encoding of the hand modeled as a
robotic manipulator. We detail the exact architecture and
specific design considerations in Sec. VI.

V. INFERENCE LEARNING FRAMEWORK
In this section, we describe our inference learning frame-

work. We start (Sec. V-A) by formally defining and modeling
the inference problem and then continue (Sec. V-B) to
describe an approach where we only make use of US images
without the aforementioned intermediate representation. As
we will see (Sec. VI), utilizing an intermediate representation
during training can lead to better inference capabilities. Thus,
in Sec. V-C we extend our first method to account for said
representation. Notice that in this section we concentrate on
the high-level learning framework and the exact training and
inference procedures are detailed in Sec. VI-B.

A. Notation and Model
In this section, we introduce the necessary notation and

formally define our inference problem. We assume to be
given a sequence of k US images corresponding to k
timestamps and wish to use them to predict which finger
was pressed for each timestamp k.

Let F 1, . . . , F 5 denote the five fingers with F 1 and F 5

corresponding to the Thumb and Little finger, respectively.
For each finger F i and each timestamp tj , we associate a
binary variable pij ∈ {0, 1} such that pij = 1 if finger F i

is pressed at timestamp tj and pij = 0 otherwise. For every
timestamp tj , we denote by pj ∈ {0, 1}5 the binary vector
indicating which fingers are pressed at tj which we term a
pressing vector. Namely, pj := 〈p1

j , . . . , p
5
j 〉. We assume that

for every timestamp tj there is a corresponding US image sj
and configuration xj . Here, xj is an encoding of the fingers
and wrists as a set of joint angles (see Fig. 2c).

Our training data consists of tuples 〈s̄`, x̄`, p̄`〉. Here, s̄` :=
〈s`, . . . , sk+`〉 is a sequence of k consecutive US im-
ages, x̄` := 〈x`, . . . , xk+`〉 is a sequence of k consecutive
configurations and p̄` := 〈p`, . . . , pk+`〉 is a sequence of k
consecutive pressing vectors all of which start at times-
tamp t`. We denote by S and X the sets of all sequences
of k US images and configurations, respectively. For each
finger F i and each timestamp tj we wish to predict pij (i.e.,
if F i was pressed at tj). To this end, our system will output
the variable p̂ij ∈ [0, 1] estimating the probability that pij = 1.
Denote p̂j := 〈p̂1

j , . . . , p̂
5
j 〉 and ˆ̄p` := 〈p̂`, . . . , p̂k+`〉. As

we will see, our approach will make use of an intermediate
representation corresponding to the configuration at each
timestamp. Thus, we will also denote x̂j as the system’s
estimation of xj and ˆ̄x` := 〈x̂`, . . . , x̂k+`〉. In Sec. VI we
describe the experimental setting which allows us to obtain
labeled training data for our representative tasks. In the
meantime, we describe our approach to solving our inference
problem.

B. Learning Pressing Events Directly
To estimate pressing vectors, we use a hybrid architecture

starting with a convolutional neural network (CNN) mod-
ule [25] to extract spatial features from the US images, fol-
lowed by a recurrent neural network (RNN) [26], [27] to ag-
gregate these features and infer the pressing vectors. Such a
combination was shown to be effective in various computer-
vision tasks that require temporal coherence [28], [29], [30].
By combining these modules, we create a sequence-to-
sequence model, which receives a sequence of US images s̄`
as an input and outputs ˆ̄p` which estimate the pressing
vector p̄`. We call this the multi-frame (MF) model and
denote it as Gθ where θ is the set of model parameters
that we optimize in the training phase. This is done by
minimizing the negative log-likelihood, i.e.,

LG(θ) := −Es̄`∼S [logP (ˆ̄p`|s̄`, θ)]. (1)

C. Learning Pressing Events via Hand Configurations
To estimate pressing vectors while making use of an

intermediate representation of the finger’s configuration, we

use an auto-encoder [26], [31] framework composed of
two main blocks—an encoder mapping the sequence of US
images s̄` to a sequence of configurations ˆ̄x` and a decoder
using ˆ̄x` to estimate the pressing vector by outputting ˆ̄p`.
The encoder’s architecture follows the architecture proposed
for the MF model (i.e., a CNN followed by an RNN) while
the decoder uses an additional RNN module together with a
residual connection [32] that feeds the model with the hidden
features from the encoder (see Fig. 1 for visualization).

Auto-encoders allow a domain expert to inject domain
knowledge via an intermediate representation (hand configu-
rations in our setting) [33], [34]. The residual connection
was added to better allow the decoder to infer pressing
vectors by obtaining knowledge from both US images and
configurations. We name this model the Configuration-Based
Multi-Frame (CBMF) model, and denote it as Hθ,φ = hdφ◦heθ
where θ and φ are the encoder’s and decoder’s parameters,
respectively which we optimize in the training phase.2

While the exact details of how we train this model are
explained in the experimental section (Sec. VI-B), we note
that the training process is done in two phases. In the
first phase, we train only the encoder heθ while in the
second phase, we simultaneously train the (pre-trained) en-
coder heθ together with the (untrained) decoder hdθ . Splitting
the learning into two phases (i.e., a single and a multi-
modal supervised learning task) was shown to produce better
results in similar tasks [35], [36], [37]. Roughly speaking,
by pre-training heθ we get a “coarse” mapping between US
images s̄` and predicted hand configurations ˆ̄x`. This allows
us to “bootstrap” the network’s parameters when solving
the entire inference problem in our multi-modal task. More
formally, given s̄`, x̄`, and p̄`, the auto-encoder is trained
to predict x̄` and p̄` given s̄` by minimizing the negative
log-likelihood of the combination of both terms, i.e.,

LH(θ, φ) = −Es̄`∼S,x̄`∼X [logP (ˆ̄x`|s̄`, θ)
+ logP (ˆ̄p`|ˆ̄x`, s̄`, φ)].

(2)

VI. EXPERIMENTS

In this section, we evaluate our approach for predicting
fine finger motions. We start (Sec. VI-A) by describing
our experimental setup and data-collection methodology. We
then describe our model and training details (Sec. VI-B) and
finish with an analysis of the data collected (Sec. VI-C).

A. Experimental Setup and Data Collection

Our setup includes a Clarius L15HD (wireless B-mode US
device), a Roland FP-30 (digital piano), a standard keyboard,
and a Vicon motion-capture system. The US’s configuration
was set for the musculoskeletal task (MSK), with 10 MHz
frequency generating a 5 cm × 5 cm processed image at a
rate of 19-21 images per second, in a resolution of 480×480.
It was attached using a wearable strap (see Fig. 1) to the so-
called “transverse” location (see, e.g., [9]). The piano and
keyboard were used to record the set of pressed notes and

2Here the superscript ‘e‘ and ‘d‘ are used to refer to the encoder and
decoder modules, respectively.

keys during each US frame and the Vicon system was used
to track the palm’s joint locations. Here, each joint location
is captured and used to extract the joint angles that form the
hand’s configuration, as described in the appendix (Sec. VII).

We collected data from twelve subjects; averaging at 23
years old, seven of whom are men and five of whom are
women. All subjects were confirmed to be right-handed,
experienced in playing piano, and without any neurological
disorders or deformity in the relevant hand area. At the
beginning of both tasks, subjects were instructed to put their
hands in a stationary state in which each of their fingers
must be on the same note/key for the entire session. For
piano playing, subjects were asked to play melodies that
only require five distinguished notes and can be played using
one hand only. For keyboard typing, subjects were asked
to randomly type on each of the five keys their fingers are
stationed over, while not using more than one key at the
same time. For each task, subjects were asked to perform 2-3
sessions, with approximately ninety seconds for each session,
and rest between sessions. The process was approved by
the institution’s Ethics Committee. The final dataset includes
44, 596 samples for piano playing and 42, 143 samples
for keyboard typing, each sample representing the tuple
〈s̄`, x̄`, p̄`〉 defined in Sec. V-A.

B. Model Training

Before training, both images si and configurations xi were
normalized to the range of [0, 1]. On feedforward, our MF
model Gθ receives a sequence of k = 8 US images s̄`,
such that each image si is downsampled to a resolution
of 224 × 224 and fed to the CNN block to extract feature
maps, which are then flattened, concatenated and fed into
the RNN module to output k pressing vectors. Our CBMF
model Hθ,φ works such that the encoder heθ is being fed
with the images similar to the MF model, and outputs k
configurations, that are then fed to the decoder hdφ (an
additional RNN block), along with the features from the
residual connection. The decoder hdφ is designed to output k
predicted configurations. The entire architecture is detailed
in the appendix (Sec. VII). On back propagation, for the
predicted configurations, the applied loss function for N =
32 samples in a batch is the Mean Squared Error (MSE)
on all configurations, i.e., LMSE = 1

N ·k
∑
i∈N ·k‖x̂i − xi‖22.

A configuration xi is a vector of 17 angles, as depicted in
Fig. 2c. For the predicted pressing vectors, the applied loss
objective for N = 32 samples in a batch, such that each
sample is k vectors of M = 5 probabilities, is the Binary
Cross Entropy (BCE) for all probabilities, i.e., LBCE =

1
N ·k·M

∑
i∈M

∑
j∈N ·k p

i
j log p̂ij + (1 − pij) log(1 − p̂ij). To

train the MF model, we apply the loss function LBCE, and to
train the CBMF model, we apply the combined loss function
λLMSE + LBCE, where λ is chosen using a trial-and-error
procedure (see the the appendix (Sec. VII)). All training
sessions were executed for 20 epochs, to avoid overfitting.
Adam [38] was used as the optimization method, with a
learning rate of 0.001.

Accuracy Recall Precision F1 Accuracy Recall Precision F1

0.25
0.50
0.75
1.00

0.829
0.839
0.94
0.958
0.962

0.321
0.441
0.823
0.849
0.865

0.173
0.333
0.76
0.847
0.861

0.223
0.372
0.79
0.848
0.863

0.952
0.949
0.953
0.971
0.974

0.123
0.461
N/A
0.74
0.772

0.001
0.322
0.0
0.656
0.702

0.003
0.371
N/A
0.694
0.734

Piano Playing Keyboard Typing
[12]+MLP
[9]+MLP
SF
MF
CBMF
Accuracy
Recall
Precision
F1

[12]+MLP
[9]+MLP
SF
MF
CBMF
Accuracy
Recall
Precision
F1

Fig. 3: Evaluation of the MF and CBMF methods (Sec. V-B and V-C) as well as the three baselines (Sec. VI-C) for piano
playing and keyboard typing tasks. Accuracy, recall, precision, and F1 were averaged over all test samples in 5 folds. The
shape in each interval presents the mean values, while the vertical segment represents the standard deviation range.

1 3 5 7 9 11 13 15 17 19
Epoch

0.1

0.2

0.3

0.4

BC

E

SF
MF
CBMF

(a)

1 3 5 7 9 11 13 15 17 19
Epoch

0.10

0.15

0.20

BC

E

SF
MF
CBMF

(b)

1 3 5 7 9 11 13 15 17 19
Epoch

0.2

0.3

0.4

BC

E

1 image (SF)
2 images (MF)
4 images (MF)
6 images (MF)
8 images (MF)

(c)

1 2 3 4 5 6 7 8 9 10
Enrollments

0.25

0.50

0.75

1.00

Accuracy
Recall
Precision
F1

Accuracy
Recall
Precision
F1

(d)
Fig. 4: Comparison of the optimization process using LBCE as a function of the epoch number for the piano-playing (a) and
keyboard-typing (b) tasks. (c) Training loss as a function of epoch number for different sizes of US sequences as inputs. (d)
Evaluation of the CBMF model on piano playing as a function of the number of enrollments. At each step, we randomly
add a new enrollment to the training set and evaluate an unseen enrollment. Results are averaged over 10 experiments.

C. Results

In all of the experiments, we evaluated all methods using
5-fold validation: for each task, all sessions of all subjects
were divided into five folds, and trained such that the i’th
fold was set aside for testing and not used in training. This
ensures that the test set contains unseen intervals of motions.

How good are the proposed methods? We evaluated the
inference capabilities of our two models (MF and CBMF)
on the piano-playing and keyboard-typing tasks by plotting
the accuracy, recall, precision, and F1 (Fig. 3) as well as
the test loss during training (Fig. 4a and 4b). For base-
lines, we added the single-frame (SF) model, where we
simply take our MF model and replace the RNN with a
multilayer perceptron (MLP) to predict a single pressing
vector from a single image. In addition, we implemented
state-of-the-art algorithms for gesture classification [9], [12].
To allow the detection of pressing vectors, we concatenated
an MLP to their output. Implementation details are in the
appendix (Sec. VII). We also tested common computer-vision
models, such as the VGG16 [39], [16] model (pretrained on
ImageNet [40], or not), and C3D [41], which were shown
to perform favorably in video classification. However, the
models did not converge in any of the tasks and therefore
were excluded from evaluation.

The overall performance for piano playing is significantly
higher than for keyboard typing. We associate this difference
with differences in pressing duration and body postures be-
tween the tasks: The maximum note offset on our piano and
our keyboard is 10.45 mm and 2.95 mm, respectively. This
implies longer muscle flexing when playing the piano, which
leads to more dominant motions in US images. Additionally,
playing the piano involves different body postures which
often lead to more dominant motions in US images.

Moving on to comparing the different models, the SF

model is unable to recreate the finer task of keyboard
typing, but is able to learn to play the piano. This backs
up our conjecture that a sequence of multiple frames is
required to infer fine finger motions. Notice that the MF
model outperforms the three baselines while the CBMF
model outperforms all. This is especially noticeable in the
harder keyboard-typing task (see recall and precision), which
backs up our conjecture that our intermediate representation
allows us to better infer fine finger motions, by reducing
false positive and false negative predictions. In addition,
we examined piano playing with sequences of images of
different sizes (k ∈ {1, 2, 4, 6, 8}), showing that convergence
on the test set improves gradually the more we increase k.
Larger sequences may have been beneficial, however, we
did not use more than 8 consecutive images due to GPU
memory limitations. For a representative visualization of the
difference between the MF and CBMF models, see Fig. 5.

How feasible is the method for a group of subjects?
We plot the different metrics for each subject individually to
see how the CBMF model varies across different subjects
(Fig. 6). Overall, the results for piano playing are better
than for keyboard typing, and those who performed better
on piano playing, performed better on keyboard typing, but
most importantly, the method works for all subjects, showing
us the potential for large-scale adoption of these algorithms.

How well does the system works for all fingers? We
computed the recall and precision values for each of the
fingers individually to understand how each of the fingers
affects the quality of the solution (Fig. 6). On both tasks,
the model performs better on fingers F 2, F 3 and F 4, rather
than on fingers F 1 and F 5. A possible explanation is that
operating the three middle fingers causes larger movement in
the muscles that are found in the US images when compared
to the Thumb and Little finger. As illustrated in Fig. 2, the
muscle responsible for Thumb movement is significantly less

0 1 2 3 4 5 6 7 8
F1
F2
F3
F4
F5 GT

MF
CBMF

GT
MF
CBMF

0 1 2 3 4 5 6 7 8
F1
F2
F3
F4
F5 GT

MF
CBMF

GT
MF
CBMF

Fig. 5: Samples from executing the MF and CBMF models. In each rollout, the upper row represents finger F 5 (Little
finger) and the lower row represents finger F 1 (Thumb). Ground-truth (GT) labels are marked in black. The differences
between both models are expressed in consistency and the number of false-positive predictions. Notice from the US images
how hard is it for a human eye to understand subtle morphological changes during such gentle movements.

1 2 3 4 5 6 7 8 9 10 11 12
Subject

0.25
0.50
0.75
1.00

0.884
0.826
0.839
0.623

0.815
0.817
0.717
0.654

0.883
0.882
0.762
0.659

0.921
0.922
0.857
0.809

0.836
0.842
0.826
0.737

0.786
0.78
0.854
0.769

0.872
0.839
0.748
0.686

0.821
0.85
0.809
0.736

0.897
0.915
0.8
0.707

0.893
0.859
0.632
0.619

0.829
0.836
0.73
0.637

0.882
0.915
0.751
0.729

P. Playing
K. Typing
Recall
Precision

P. Playing
K. Typing
Recall
Precision

F1 F2 F3 F4 F5

Finger

0.25
0.50
0.75
1.00

0.761
0.756
0.638
0.626

0.867
0.848
0.779
0.784

0.869
0.862
0.809
0.722

0.853
0.831
0.77
0.722

0.861
0.79
0.744
0.527

P. Playing
K. Typing
Recall
Precision

P. Playing
K. Typing
Recall
Precision

Fig. 6: (Left) Recall and precision for the CBMF model for all twelve subjects. Vertical segments denote one standard
deviation. (Right) Recall and precision separated for all five fingers, showing the expected performance of each finger.

J51 J41 J31 J21 J52 J42 J32 J22 J53 J43 J33 J23 J11 J12 Jwr Jwp Jwy
Joint

0.05

0.10

Er
ro

r [
ra

d]

0.069
0.088

0.065
0.091

0.065
0.09

0.064
0.089

0.084
0.108

0.075
0.098

0.071
0.105

0.068
0.104

0.067
0.079

0.069
0.093

0.064
0.105

0.06
0.095

0.048
0.063

0.086
0.088

0.069
0.082

0.056
0.068

0.059
0.065

K. Typing
P. Playing

Fig. 7: Error-values in radians for predicting joint angles using our CBMF model.

dominant than the rest of the muscles, which might explain
why Thumb movement is the least-understandable gesture.

How well can the model generalize on real-time data?
Our method works without any preprocessing, and can work
in an online setting. This is in contrast to existing methods for
which subjects were instructed to perform gestures according
to predefined instructions [5], or separate between gesture
categories before feature extraction [9].

A potential challenge in real-time inference is that the US
sensor is not placed in the exact location for which training
data was obtained (also known as sensor reattachment). To
this end, we define “enrollment” as a period of 2-3 recording
sessions, in which the US sensor was not removed from the
hand. We used a single subject to demonstrate the number
of enrollments needed to infer from an unseen enrollment.
Results (Fig. 4d) show that (i) as the number of enrolments
increases in the training session, our inference capabilities
increase and (ii) the number of enrolments required in
the training session is relatively moderate. We connected
our system to a robotic hand (see Fig. 8 as well as the
supplementary video) which continuously replayed in real
time notes played on the piano.

Fig. 8: Our system connected to a robotic hand.

How accurate are the estimated configurations? We
evaluated the error values (in radians) of our CBMF model
for each of the individual 17 joints in a configuration (see
Fig. 2c). Results, depicted in Fig. 7, demonstrate that the
more the task requires longer movements, the higher the
average error, especially for the more dominant joints, such
as fingers F 2 and F 3. Interestingly, the DOFs that are more
dominant near the wrist (J1

1 , J
w
r , J

w
p , J

w
y), achieve a smaller

error on average, which might relate to the large region
captured by the relative muscles in the US images.

VII. DISCUSSION AND FUTURE WORK

In this paper, we explored the task of predicting and
differentiating between fine finger motions by only having
access to a stream of lower-arm US images. We show
that incorporating temporal coherence and a kinematic hand
representation in data-driven methods is essential for solving
such tasks. We believe that the inference capabilities we
present will pave the way towards enabling fully-operational
prostheses for those in need. Importantly, generalization for
unseen subjects was not dealt with in this paper, as it requires
holding prior knowledge regarding the muscles’ structure.

Future directions that we are exploring include (i) Restor-
ing hand motions for people with muscular deformations
such as amputees. This will potentially require data-driven
solutions to learn continuous and unlabeled finger motions
for non-able-bodied subjects. (ii) Recent advancements in
feedback sensing allow amputees to sense objects they are
engaging with [42]. Sensor feedback can also be used to
endow our inference algorithm with additional input such as
surface type which can be used to improve decision making.

ACKNOWLEDGMENT

This project has received funding from the European Re-
search Council (ERC) under the European Union’s Horizon
2020 research and innovation programme (grant agreement
No. 863839), the Israeli Ministry of Science & Technology
grants No. 3-16079 and 3-17385, and the United States-Israel
Binational Science Foundation (BSF) grants no. 2019703 and
2021643. We also thank Haifa3D, a non-profit organization
providing self-made 3d-printed solutions, for their consulting
and support through the research.

APPENDIX

Joints Computation

The set of joint angles forming a configuration is acquired
by placing markers on the relevant joints and using a motion-
capture system to obtain the [x, y, z] location of each marker
(see Fig. 9). Then, each joint angle is computed using the
markers’ locations as we detail next. Hereafter, we compute
vectors as the point-wise subtraction of the marker locations.
For example, given two 3D points (that can be considered
as two 3D vectors w.r.t. some reference frame) f42 and f43,
we denote the vector from f42 to f43 as follows:

~vf42→f43 = ~f43 − ~f42. (3)

Next, we describe how we compute the angle between two
vectors. Consider, for example, the vector from f42 to f43

and the vector from f42 to f41, we compute the joint angle J5
2

as follows:

J5
2 = arctan2(‖~vf42→f41 × ~vf42→f43‖2,

~vf42→f41 · ~vf42→f43).
(4)

This allows us to compute joint angles. We start with
the four fingers F 2, . . . , F 5 and will use finger F 5 (Little
finger) for example. The three joints that are required are J5

1 ,
J5

2 and J5
3 . Hence, we will compute J5

1 and J5
3 as follows

(fingers F 1, F 2, and F 3 are calculated in a similar fashion):

J5
1 = arctan2(‖~vf41→t5 × ~vf41→f42‖2,

~vf41→t5 · ~vf41→f42),

J5
3 = arctan2(‖~vf42→f41 × ~vf42→f43‖2,

~vf42→f41 · ~vf42→f43).

(5)

As for the Thumb, we compute two joint angles; J1
1

and J1
2 . Similar to Eq. 5, we compute J1

2 as follows:

J1
2 = arctan2(‖~vt6→t7 × ~vt6→t5‖2,

~vt6→t7 · ~vt6→t5),
(6)

where joint J1
1 is acquired by computing the angle be-

tween ~vt5→t6 and the normal vector to the plane approxi-
mating the palm’s plane, by taking the three points f11, f41

and t4. Denoting this normal as ~̂np, joint J1
1 is computed as

follows:

f11
f21

f41

f31

f12 f22

f42

f32

f13
f23

f43

f33

f14
f24

f44

f34

t7

t6

t5
t4

t3

Fig. 9: An image showing the position of each marker on
the subject’s hand.

J1
1 = arctan2(‖~vt5→t6 × ~̂np‖2,

~vt5→t6 · ~̂np).
(7)

This is done differently in order to compute the angle that
corresponds to the pressing motion of the Thumb. As for
the three DOFs of the wrist, we have Jwr , Jwp , and Jwy for
roll, pitch and yaw respectively. As for pitch, we compute the
angle between ~̂np and ~vt4→t3 . For yaw, we compute the angle
between ~vf41→f11 and ~vt4→t3 , and for roll, we compute the
angle between ~̂np and a vector obtained from two additional
points located on the elbow.

Network Architecture

Tables I and Table II shows the network architectures
for the MF and CBMF models, respectively. The tables are
divided into blocks, such that the first block represents the
CNN module and the others represent the RNN modules.
The input shape for both models is [224×224×8], and cor-
responding to 8 consecutive grayscale US images. The shape
of the intermediate representation is [8× 17], corresponding
to a trajectory of 8 robotic configurations, each of size 17.
The output shape is [8×5], denoting 8 pressing vectors, each
containing five probabilities for the five fingers.

The CNN module is based on the encoding part of
UNet [43], due to the high success of this architecture when
used in medical imaging tasks. This block is used to extract
512 3× 3 feature maps from each of the eight images, such
that the same parameters are shared across all images. These
are flattened, concatenated, and fed into the recurrent block.
In the CBMF model, The trajectory, along with 8 × 128
features are taken from the output of the second GRU layer,
concatenated, and fed as an input to the decoder.

Baselines Implementation

As presented in Sec. VI-C, we implemented three base-
lines to asses our models in solving the two downstream
tasks. The evaluation was using the same 5-fold validation
over the same datasets. We started by evaluating the im-
portance of temporal coherence by defining the SF model.

Layer Act. Out. shape Parameters

Conv2D ReLU 224× 224× 32 320
Conv2D ReLU 224× 224× 32 9,248
MaxPooling2D (2× 2) - 112× 112× 32 -
Conv2D ReLU 112× 112× 64 18.50k
Conv2D ReLU 112× 112× 64 36.93k
MaxPooling2D (2× 2) - 56× 56× 64 -
Conv2D ReLU 56× 56× 128 73.86k
Conv2D ReLU 56× 56× 128 147.58k
MaxPooling2D (2× 2) - 28× 28× 128 -
Conv2D ReLU 28× 28× 256 295.17k
Conv2D ReLU 28× 28× 256 590.08k
Dropout (p=0.3) - 28× 28× 256 -
MaxPooling2D (2× 2) - 14× 14× 256 -
Conv2D ReLU 14× 14× 512 1.18M
Conv2D ReLU 14× 14× 512 2.36M
Dropout (p=0.3) - 14× 14× 512 -
MaxPooling2D (4× 4) - 3× 3× 512 -
Flatten - 4608 -

Concatenate (8 images) - 8× 4608 -
GRU ReLU 8× 1024 17.31M
GRU ReLU 8× 128 443.14K
GRU Linear 8× 5 2,025

Total 22.93M

TABLE I: Neural-network architecture of our MF model Gθ.

0.0004 0.0005 0.0006 0.0007 0.0008 0.0009 0.0010 0.0011
MSE

0.081

0.082

0.083

0.084

0.085

0.086

0.087

0.088

BC

E

20
21
22
23
24
25
26

Fig. 10: LBCE and LMSE for different values of λ. On average,
results are showing that using lower values of λ yields lower
values of LBCE and higher values of λ yields lower values
of LMSE and higher values of LBCE.

Here, we take our MF model and replace the RNN with a
MLP, such that the CNN module is the same as in the MF
and CBMF models, and the addition is two linear layers. On
inference, the model receives a single 224× 224 US image
and predict a single pressing vector.

In addition we compared our work to two additional papers
that succeeded in gesture classification. Importantly, these
papers were originally designed to classify full recorded
sessions in an offline setting, and since these algorithms
were evaluated on different gestures with different sensors,
we modified the input to receive the last acquired 8 images
as in our models. Second, these algorithms were designed to
discriminate between gestures and here we allow multiple
fingers pressing at the same time. Therefore, we set the
amount of available classes to 25 = 32 (i.e., a class
corresponds to a subset of fingers pressed).

Huang et al. [12] proposed to sample five columns of
pixels from the image, imitating the feature structure of A-

Layer Act. Out. shape Parameters

Conv2D ReLU 224× 224× 32 320
Conv2D ReLU 224× 224× 32 9,248
MaxPooling2D (2× 2) - 112× 112× 32 -
Conv2D ReLU 112× 112× 64 18.50k
Conv2D ReLU 112× 112× 64 36.93k
MaxPooling2D (2× 2) - 56× 56× 64 -
Conv2D ReLU 56× 56× 128 73.86k
Conv2D ReLU 56× 56× 128 147.58k
MaxPooling2D (2× 2) - 28× 28× 128 -
Conv2D ReLU 28× 28× 256 295.17k
Conv2D ReLU 28× 28× 256 590.08k
Dropout (p=0.3) - 28× 28× 256 -
MaxPooling2D (2× 2) - 14× 14× 256 -
Conv2D ReLU 14× 14× 512 1.18M
Conv2D ReLU 14× 14× 512 2.36M
Dropout (p=0.3) - 14× 14× 512 -
MaxPooling2D (4× 4) - 3× 3× 512 -
Flatten - 4608 -

Concatenate (8 images) - 8× 4608 -
GRU ReLU 8× 1024 17.31M
GRU ReLU 8× 128 443.14K
GRU Linear 8× 17 7,497

Merge - 8× 145 -
GRU ReLU 8× 256 309.50K
GRU ReLU 8× 128 148.22K
GRU Linear 8× 5 2,025

Total 22.93M

TABLE II: Neural-network architecture of our CBMF
model Hθ,φ.

mode transducers. These columns are then separated into
segments, from which they extracted two coefficients using
linear fitting. Then, these features are concatenated across the
temporal axis and fed to the classifier. Here, the authors used
sequences of 36 images, but since we did not observe any
improvement, the results are presented for sequences of eight
images. Next, McIntosh et al. [9] proposed to extract the
optical flow from adjacent frames, perform average pooling
on patches of size 20 × 20, and accumulate them across
the temporal axis. In the same way, we calculated these
features for a sequence of eight US images and fed them to
the classifier. For both baselines, we evaluated all classifiers
that were proposed by the authors, and in both cases, MLP
outperformed all other classifiers.

Losses Weighting

We empirically chose the value of λ to minimize the
objective function λLMSE +LBCE. Here, we executed training
sessions to obtain results for λ ∈ {2i|i ∈ [0, . . . , 6]} and
chose the result yielding the lowest LBCE, without harming
the optimization of LMSE. Results, presented in Fig. 10, show
that by taking λ = 4, we benefit from using both modalities.
The same experiment with λ = 0 (i.e., only using LBCE)
resulted in LBCE = 0.093 and LMSE = 2.582, and therefore
was ruled out from the evaluation.

Real-Time Implementation

We built a setup for online real-time inference to demon-
strate piano playing on demand. The code is written in C++
and includes multi-threading to deal with interfaces to the US

sensor, the robotic hand, and model inference simultaneously.
For optimized inference, our CBMF model was divided into
two software modules - the encoder’s convolution block
and the remaining recurrent blocks including the residual
connection. On inference, the incoming images from the US
sensor are fed to the first module to extract features, while an
additional thread, simultaneously feeds the sequence of the
last eight extracted features to the second module, and stores
the predictions as instructions that are sent to the robotic
hand. The model was optimized using the ONNX Runtime
library, the entire model weighs 745 MB and the inference is
executed at 60 Hz on a powerful GPU (Nvidia RTX 2080Ti)
or 29 Hz on a low-budget GPU (Nvidia Quadro P620).

REFERENCES

[1] C. Connolly, “Prosthetic hands from touch bionics,” Ind. Rob., 2008.
[2] P. Herberts, “Myoelectric signals in control of prostheses: Studies on

arm amputees and normal individuals,” Acta. Orthop., vol. 40, no.
sup124, pp. 1–83, 1969.

[3] J. A. George, T. S. Davis, M. R. Brinton, and G. A. Clark, “Intuitive
neuromyoelectric control of a dexterous bionic arm using a modified
kalman filter,” arXiv, vol. abs/1908.10522, 2019.

[4] S. Said, M. Sheikh, F. Al-Rashidi, Y. Lakys, T. Beyrouthy, A. Nait-ali
et al., “A customizable wearable robust 3d printed bionic arm: Muscle
controlled,” in BioSMART, 2019, pp. 1–6.

[5] A. S. Dhawan, B. Mukherjee, S. Patwardhan, N. Akhlaghi, G. Levay,
R. Holley, W. M. Joiner, M. Harris-Love, and S. Sikdar, “Propriocep-
tive sonomyographic control: A novel method of intuitive proportional
control of multiple degrees of freedom for upper-extremity amputees,”
arXiv, vol. abs/1808.06543, 2018.

[6] J. Yan, X. Yang, X. Sun, Z. Chen, and H. Liu, “A lightweight
ultrasound probe for wearable human–machine interfaces,” IEEE Sens.
J., vol. 19, no. 14, pp. 5895–5903, 2019.

[7] X. Yang, D. Zhou, Y. Zhou, Y. Huang, and H. Liu, “Towards zero
re-training for long-term hand gesture recognition via ultrasound
sensing,” IEEE J. Biomed. Health Informatics, vol. 23, no. 4, pp.
1639–1646, 2019.

[8] X. Yang, J. Yan, Y. Fang, D. Zhou, and H. Liu, “Simultaneous
prediction of wrist/hand motion via wearable ultrasound sensing,”
IEEE Trans. Neural Syst. Rehabilitation Eng., vol. 28, no. 4, pp. 970–
977, 2020.

[9] J. McIntosh, A. Marzo, M. Fraser, and C. Phillips, “Echoflex: Hand
gesture recognition using ultrasound imaging,” in CHI, 2017, pp.
1923–1934.

[10] L. Resnik, M. R. Meucci, S. Lieberman-Klinger, C. Fantini, D. L.
Kelty, R. Disla, and N. Sasson, “Advanced upper limb prosthetic
devices: implications for upper limb prosthetic rehabilitation,” Arch.
Phys. Med. Rehabil., vol. 93, no. 4, pp. 710–717, 2012.

[11] U. Côté-Allard, C. L. Fall, A. Drouin, A. Campeau-Lecours, C. Gos-
selin, K. Glette, F. Laviolette, and B. Gosselin, “Deep learning for
electromyographic hand gesture signal classification by leveraging
transfer learning,” arXiv, vol. abs/1801.07756, 2018.

[12] Y. Huang and H. Liu, “Performances of surface EMG and ultrasound
signals in recognizing finger motion,” in HSI, 2016, pp. 117–122.

[13] Y. Herbst, L. Zelnik-Manor, and A. Wolf, “Analysis of subject specific
grasping patterns,” PLoS One, vol. 15, no. 7, p. e0234969, 2020.

[14] K. Bimbraw, E. Fox, G. Weinberg, and F. L. Hammond, “Towards
sonomyography-based real-time control of powered prosthesis grasp
synergies,” in EMBC, 2020, pp. 4753–4757.

[15] X. Yang, Z. Chen, N. Hettiarachchi, J. Yan, and H. Liu, “A wearable
ultrasound system for sensing muscular morphological deformations,”
IEEE Trans. Syst. Man Cybern. Syst., vol. 51, no. 6, pp. 3370–3379,
2021.

[16] K. Bimbraw, C. J. Nycz, M. Schueler, Z. Zhang, and H. K. Zhang,
“Prediction of metacarpophalangeal joint angles and classification of
hand configurations based on ultrasound imaging of the forearm,”
arXiv, vol. abs/2109.11093, 2021.

[17] Y. Wang, X. Ge, H. Ma, S. Qi, G. Zhang, and Y. Yao, “Deep learning
in medical ultrasound image analysis: A review,” IEEE Access, vol. 9,
pp. 54 310–54 324, 2021.

[18] S. Vedula, O. Senouf, A. M. Bronstein, O. V. Michailovich, and
M. Zibulevsky, “Towards ct-quality ultrasound imaging using deep
learning,” arXiv, vol. abs/1710.06304, 2017.

[19] R. J. G. van Sloun, R. Cohen, and Y. C. Eldar, “Deep learning in
ultrasound imaging,” arXiv, vol. abs/1907.02994, 2019.

[20] S. Vedula, O. Senouf, G. Zurakhov, A. M. Bronstein, O. V.
Michailovich, and M. Zibulevsky, “Learning beamforming in ultra-
sound imaging,” in MIDL, vol. 102, 2019, pp. 493–511.

[21] H. Bliss, S. Bird, A. P. Cooper, S. Burton, and B. Gick, “Seeing speech:
Ultrasound-based multimedia resources for pronunciation learning in
indigenous languages,” 2018.

[22] N. Kimura, M. Kono, and J. Rekimoto, “Sottovoce: An ultrasound
imaging-based silent speech interaction using deep neural networks,”
in CHI, 2019, p. 146.

[23] F. Vogt, G. McCaig, M. A. Ali, and S. S. Fels, “Tongue ’n’ groove:
An ultrasound based music controller,” in NIME, 2002, pp. 60–64.

[24] S. M. Lulich, S. Charles, and B. Lulich, “The relation between tongue
shape and pitch in clarinet playing using ultrasound measurements,”
J. Acoust. Soc. Am., vol. 141, no. 3, pp. 1759–1768, 2017.

[25] J. Gu, Z. Wang, J. Kuen, L. Ma, A. Shahroudy, B. Shuai, T. Liu,
X. Wang, and G. Wang, “Recent advances in convolutional neural
networks,” arXiv, vol. abs/1512.07108, 2015.

[26] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning internal
representations by error propagation,” Tech. Rep., 1985.

[27] A. Sherstinsky, “Fundamentals of recurrent neural network (RNN)
and long short-term memory (LSTM) network,” arXiv, vol.
abs/1808.03314, 2018.

[28] J. Guo, Y. Liu, Q. Yang, Y. Wang, and S. Fang, “Gps-based citywide
traffic congestion forecasting using cnn-rnn and c3d hybrid model,”
Transportmetrica A, vol. 17, no. 2, pp. 190–211, 2021.

[29] W. Lu, J. Li, Y. Li, A. Sun, and J. Wang, “A cnn-lstm-based
model to forecast stock prices,” Complex., vol. 2020, pp. 6 622 927:1–
6 622 927:10, 2020.

[30] Q. Zou, H. Jiang, Q. Dai, Y. Yue, L. Chen, and Q. Wang, “Robust lane
detection from continuous driving scenes using deep neural networks,”
IEEE Trans. Veh. Technol., vol. 69, no. 1, pp. 41–54, 2020.

[31] P. Baldi, “Autoencoders, unsupervised learning, and deep architec-
tures,” in ICML, vol. 27, 2012, pp. 37–50.

[32] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in CVPR, 2016, pp. 770–778.

[33] J. Hu, X. Guo, J. Chen, G. Liang, F. Deng, and T. L. Lam, “A two-
stage unsupervised approach for low light image enhancement,” IEEE
Robotics Autom. Lett., vol. 6, no. 4, pp. 8363–8370, 2021.

[34] Y. Yang, B. Li, P. Li, and Q. Liu, “A two-stage clustering based 3d
visual saliency model for dynamic scenarios,” IEEE Trans. Multim.,
vol. 21, no. 4, pp. 809–820, 2019.

[35] A. Singh, H. Liu, G. Zhou, A. Yu, N. Rhinehart, and S. Levine, “Parrot:
Data-driven behavioral priors for reinforcement learning,” in ICLR,
2021.

[36] C. Tan, F. Sun, B. Fang, T. Kong, and W. Zhang, “Autoencoder-based
transfer learning in brain–computer interface for rehabilitation robot,”
Int. J. Adv. Robot. Syst., vol. 16, no. 2, 2019.

[37] D. Zadok, D. McDuff, and A. Kapoor, “Modeling affect-based intrinsic
rewards for exploration and learning,” in ICRA, 2021, pp. 13 078–
13 084.

[38] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” in ICLR, 2015.

[39] K. Simonyan and A. Zisserman, “Very deep convolutional networks
for large-scale image recognition,” in ICLR, 2015.

[40] J. Deng, W. Dong, R. Socher, L. Li, K. Li, and L. Fei-Fei, “Imagenet:
A large-scale hierarchical image database,” in CVPR, 2009, pp. 248–
255.

[41] D. Tran, L. D. Bourdev, R. Fergus, L. Torresani, and M. Paluri,
“Learning spatiotemporal features with 3d convolutional networks,”
in ICCV, 2015, pp. 4489–4497.

[42] A. M. Hari and L. Rajan, “Advanced materials and technologies for
touch sensing in prosthetic limbs,” IEEE Trans. Nanobiosci., 2021.

[43] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional
networks for biomedical image segmentation,” in MICCAI, vol. 9351,
2015, pp. 234–241.

	I INTRODUCTION
	II RELATED WORK
	III ANATOMICAL BACKGROUND
	IV SYSTEM DESIGN
	V INFERENCE LEARNING FRAMEWORK
	V-A Notation and Model
	V-B Learning Pressing Events Directly
	V-C Learning Pressing Events via Hand Configurations

	VI EXPERIMENTS
	VI-A Experimental Setup and Data Collection
	VI-B Model Training
	VI-C Results

	VII DISCUSSION AND FUTURE WORK
	References

