
Ground then Navigate: Language-guided Navigation in Dynamic Scenes

Kanishk Jain∗, Varun Chhangani∗, Amogh Tiwari, K. Madhava Krishna and Vineet Gandhi

Abstract— We investigate the Vision-and-Language Naviga-
tion (VLN) problem in the context of autonomous driving in
outdoor settings. We solve the problem by explicitly grounding
the navigable regions corresponding to the textual command.
At each timestamp, the model predicts a segmentation mask
corresponding to the intermediate or the final navigable region.
Our work contrasts with existing efforts in VLN, which pose
this task as a node selection problem, given a discrete connected
graph corresponding to the environment. We do not assume the
availability of such a discretised map. Our work moves towards
continuity in action space, provides interpretability through
visual feedback and allows VLN on commands requiring finer
manoeuvres like "park between the two cars". Furthermore, we
propose a novel meta-dataset CARLA-NAV to allow efficient
training and validation. The dataset comprises pre-recorded
training sequences and a live environment for validation and
testing. We provide extensive qualitative and quantitive empir-
ical results to validate the efficacy of the proposed approach.

I. INTRODUCTION

Humans have exceptional navigational abilities, which,
combined with their visual and linguistic prowess, allow them
to perform navigation based on the linguistic description of
the objects of interest in the environment. This is in direct
consequence of the human capability to associate visual ele-
ments with their linguistic descriptions. Referring Expression
Comprehension (REC) [1] and Referring Image Segmentation
(RIS) [2] are two tasks for associating the visual objects based
on their linguistic descriptions using bounding-box-based and
pixel-based localizations, respectively. However, it is non-
trivial to utilize these localizations directly for a navigation
task [3]. For example, consider the linguistic command "take a
right turn from the intersection," an object-based localization
is not usable for navigation as it does not answer the question
"which region" on the road to navigate to. To solve the
aforementioned issue, the task of Referring Navigable Regions
(RNR) was proposed in [4] to localize the navigable regions
in a static front camera image on the road corresponding to
the linguistic command.

Although these single image-based visual grounding meth-
ods [4], [2], [3] showcase excellent ability of neural models to
correlate visual and linguistic data, they are limited in many
ways. These methods are trained on carefully paired data,
assuming that the region to be grounded is always visible in
the frame. They give an erroneous output when the region to
be grounded is not currently visible, is occluded, or goes out
of frame (as the carrier moves). Such scenarios are part of
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Fig. 1. A major limitation of single image based grounding methods is
that they fail if the language command is not immediately visible, which
restricts these methods to be used for VLN. Here, we show an example
result using the RNR model and on an image from their dataset [4]. The
model accurately localizes the black car (middle), however, it completely
confuses when asked to predict the left turn, which does not exist in the
current view.

everyday language-guided navigation; for instance, consider
a command “Take a right once you see the traffic signal" the
traffic signal here may not be immediately visible. Figure 1
illustrates an example, where the single image-based RNR
method gives incorrect output, uncorrelated with the linguistic
command. As a second major limitation, single image-based
predictions [4] are devoid of any temporal context (short
term or long term), which is crucial in successful navigation,
especially in a dynamically changing environment. Finally,
since single image methods are evaluated on frames from
pre-recorded videos, they cannot be validated appropriately
on their ability to complete the entire episode (from start
to desired finish). Our work addresses these limitations
and re-formulates the RNR approach to perform language-
guided navigation in a dynamically changing environment by
grounding intermediate navigable regions when the referred
navigable region is not visible.

Our work also contrasts with the prior art for language-
guided navigation in both indoor and outdoor environments.
Most existing works on indoor navigation [5], [6], [7]
assume that the navigational environment is fully known.
This allows them to discretize the known map into a
graphical representation, where the nodes are the set of
navigable regions (landmarks) that the agent can navigate
given the linguistic command. However, such an approach
is not practical for outdoor settings (as studied in our work)
where the environment is unknown. Moreover, even if the
environment is known, discretization of the maps is not
feasible when more refined localization and manoeuvres are
required (e.g. “stop beside the person with a red cap").

Finer control remains a challenge in indoor and outdoor
VLN methods, which model navigation as a selection from a
set of discrete actions [8], [9], [10] or as a reinforcement learn-
ing problem [5], [11]. For instance, one of the commonly used
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Touchdown dataset [12] consists of pre-recorded google street
view images and allows navigation across street views by
choosing from a set of four discrete actions, i.e. FORWARD,
RIGHT, LEFT and STOP. Discretizing the action space (and
the environment) limits the type of navigational manoeuvres
that can be performed. For instance, these methods [8], [9],
[10] cannot be used for commands like "park between the
two cars on the right", requiring fine-grained control.

The aforementioned issues become apparent in a dynam-
ically changing environment, where fine-grained control of
the car’s navigation and a fully navigable environment is
required to adapt to the dynamic surroundings and perform
navigational manoeuvres based on the linguistic command.
In this paper, we present a novel meta-dataset in the CARLA
environment [13] for outdoor navigation, which addresses the
limitations associated with the existing navigation datasets.
Additionally, the visual grounding-based approach combined
with a planner allows us to have a fine-grained control over
the vehicle as it enables navigation to any drivable region on
the road.

Another concern with the previous methods [8], [9], [5] is
that their predictions are not human interpretable. It is non-
trivial to understand their predictions as there is no feedback.
Instead, in the visual-grounding-based approach, there is
visual feedback associated with each prediction in terms of
the segmentation mask corresponding to the navigable region
on the road. We take a step forward and also predict the
short term intermediate trajectories, using a novel multi-task
network. Moreover, we perform live inference on the proposed
meta-dataset in a dynamic environment. To the best of our
knowledge, this is the first attempt towards live language-
based navigation in outdoor environments. Overall, our paper
makes following contributions:

• We present a vision language navigation tool, CARLA-
NAV, on the CARLA simulator which provides fine-
tuned control of the vehicle to execute various language-
based navigational manoeuvres.

• We propose a novel multi-task network for trajectory
prediction and per-frame RNR tasks in dynamic outdoor
environments. The prediction for each task is explainable
and interpretable in the form of segmentation masks.

• We perform real-time navigation in the CARLA envi-
ronment with a diverse set of linguistic commands.

• Finally, extensive qualitative and quantitative ablations
are performed to validate the practicality of our approach.

II. RELATED WORK

A. Visual Grounding

Visual grounding aims to help associate the linguistic
description of entities with their visual counterparts by
localizing them visually. There are two prevalent approaches
for visual grounding: (a) proposal based and (b) segmentation
based. Proposal-based grounding is formally referred to as
Referring Expression Comprehension (REC). Most methods
in REC follow a propose-then-rank strategy, where the
ranking is done using similarity scores [1], [14], [15], [16]

or through attention-based methods [17], [18], [19], [20].
The other approach is to localize the objects by their pixel-
level segmentation mask, formally known as Referring Image
Segmentation (RIS). In RIS, methods use different strategies
to fuse the spatial information of the image with the word-
level information of the language query [21], [22], [23], [24].
Recently, [4] proposed the Referring Navigable Region (RNR)
task to directly localize the navigable regions on the road
corresponding to the language commands. However, their
work limits to predictions on static images in pre-recorded
video sequences [25]. We propose reformulating the RNR
task for dynamic outdoor settings and performing real-time
navigation based on language commands.

B. Language-based Navigation

Majority of efforts on Vision Language Navigation (VLN)
have focused on the indoor scenario. Availability of interactive
synthetic environments has played a key role in indoor
navigation research. The environments are either designed
manually by 3D artists [26], [27] or are constructed using
RGB-D scans of actual buildings [28]. Existing methods
have approached language guided navigation in variety of
ways, including imitation learning [29], [30], behavior cloning
[31], sequence-to-sequence translation [5] and cross-modal
attention [32]. In these methods, the navigation is modelled as
traversing an undirected graph, presuming known environment
topologies. In recent work, [33] suggest that the performance
in prior ‘navigation-graph’ settings may be inflated by strong
implicit assumptions. Hu et al. [34] questions the role of
visual grounding itself by highlighting that models which
only use route structure outperform their visual counterparts
in unseen new environments. Most indoor VLN methods are
also hindered by limiting the output to a discretized action
space [35].

For outdoor VLN, Sriram et al. [36] use CARLA environ-
ment to perform navigation as waypoint selection problem,
however, their work limits to only turning actions. The
Talk2Car dataset limits to localizing the referred object [3].
Another line of work focuses on interactive navigation
environment of Google Street View [37]. The Touchdown
dataset [12] proposes a task of following instructions to
reach a goal (identifying a hidden teddy bear). Map2Seq
dataset [38] learns to generate navigation instructions that
contain visible and salient landmarks from human natural
language instructions. The navigation on both datasets is
modelled as node selection in a discrete connectivity graph.
Most methods [8], [9], [10] using these datasets, solve outdoor
VLN as sequence to sequence translation in a discrete action
space. The role of vision modality remains illusive when
tested in unseen areas [8]. In this work, we propose a
paradigm shift towards utilizing RNR-based approaches for
VLN. The explicit visual grounding forces the network to
utilize visual information. Integrating with a local planner,
the navigation is performed in a continuous space, without
any reliance on the map information.



Fig. 2. Ground truth annotations of three sampled frames from an episode of the CARLA-NAV dataset. The textual command for the episode is shown on
the top. The green rectangle illustrates the navigable region, and the red curve corresponds to the short future trajectory. (a) At the start, the left turn or the
final navigable region is not visible, so a straight path is chosen as the intermediate mask; (b) the intermediate mask corresponding to the left turn; (c) the
final navigable region (stop next to bus stop).

III. DATASET

The proposed CARLA-NAV dataset was curated using
the open-source CARLA Simulator for autonomous driving
research. It contains episodic level data, where each episode
consists of a language command and the corresponding video
from CARLA Simulator of navigation towards the final
goal region described by the command. Example ground
truth annotations from an episode from the CARLA-NAV
dataset are shown in Figure 2. The ground truth segmentation
mask for each frame either corresponds to the final or an
intermediate navigable region. Each frame is additionally
annotated with a plausible future trajectory of the vehicle in
the next few frames.

The dataset includes video sequences captured in 8 different
maps, 14 distinct weather conditions, and a diverse range
of dynamically moving vehicles and passengers in the
environment. The language commands in our dataset contain
detailed visual descriptions of the environment and describe
a wide range of manoeuvres. Commands can either have
a single manoeuvre (e.g. park behind the black car on the
left) or multiple manoeuvres (e.g. take a right turn and park
near the bus stand). A maximum of three manoeuvres are
included in the dataset. The dataset statistics for the CARLA-
NAV dataset are illustrated in Table I. Since, each episode
contains multiple frames, the overall dataset size is 83,297
frames for all the splits. During data collection, in each
episode, the vehicle is spawned in a randomly selected map
at a random position. During the training phase, we use the
pre-recorded sequence for the network training. However,
during the inference phase on validation and test splits, for
each episode, we spawn the vehicle at the corresponding
starting location, and the navigation is performed live based
on network prediction and not on the pre-recorded sequences.

A. Dataset Creation

We created a data-collection toolkit on top of Carla’s
API and plan to open-source it upon acceptance. The data
collection process involves an observer, a navigator and
a verifier. The annotation happens in a three step manual
process: (a) observer: providing a language command, (b)
navigator: navigating the Carla environment through mouse
clicks corresponding to navigable regions and (c) verifier:
verifying the recorded episode for inclusion in dataset, if it
correctly maneuvers corresponding to the given command.

split # episodes # frames command length
(words) clicks

train 500 75,010 6.92 1.94
val 25 3,300 6.76 2.00
test 34 4,987 7.44 1.97

TABLE I
DATASET STATISTICS FOR THE CARLA-NAV DATASET. EXCEPT "#
EPISODES" AND "# FRAMES", AVERAGE VALUES PER EPISODE ARE

REPORTED FOR THE OTHER COLUMNS.

The navigator is provided with a "restart" option to restart
the navigation in case of erroneous clicks.

The 2D point corresponding to the mouse click in the front
view of the car is transformed into the 3D world coordinates
using Inverse Projective transform; and this 3D position is
passed as input to the local planner to navigate the CARLA
environment. We use CARLA’s default planner for our case;
however owing to the modular design, in future it can be
replaced by any state-of-the-art planner.

An episode comprise of multiple mouse clicks, until the
final navigable region is not visible in the front view. These
intermediate mouse clicks signify the intermediate navigable
regions, and the last mouse click depicts the final goal
region corresponding to the command. The mouse clicks
are converted into segmentation masks by drawing a 3m ×
4m rectangle (approx size of a car) in the top view, centered at
the mouse click. The rectangle is then projected in the front-
camera. Overall, only the language commands and mouse
clicks require manual effort, the rest of the annotation process
is fully automated.

Furthermore, for allowing actionable intervention we
predict and visualize the future short term trajectory of
the vehicle. For the trajectory prediction task, we take the
3D position of the vehicle in the successive frames and
project the 3D positions to the front-camera image using the
projective transformation. We treat trajectory prediction as
a dense prediction task. The task is meant for added human
interpretability and is not quantitatively evaluated.

IV. PROBLEM STATEMENT

Given an input of video frames V = {vt−k, vt−k+1, ...vt},
contextual historical trajectory P and a language command
L = {l1, l2, ...lN}, where t is the current timestamp, k is the



Fig. 3. Overall pipeline of the proposed approach. Given the visual frames, already executed past trajectory (context map) and the textual command, the
network predicts a segmentation map corresponding to the navigable region and a plausible future trajectory.

window size for historical frames and N is the maximum
number of words in the linguistic expression, the goal is to
predict the navigable mask yt and the future trajectory mask
zt corresponding to the frame from current timestamp, i.e.
vt. The contextual trajectory P is utilized to ensure that the
network gets the contextual information necessary to identify
which part of the linguistic command has been executed. For
example, if the linguistic command is "turn left and park
near the blue dustbin", the contextual trajectory will provide
information regarding the trajectory already taken by the
vehicle, i.e. whether the "left turn" has been taken or not.
The spatial location of the navigation mask should determine
the trajectory path’s direction; similarly, the orientation of
the trajectory path should determine the location of the
navigable regions. In the next section we describe the network
architecture and the training process.

V. METHODOLOGY

We propose a novel multi-task network for navigation
region prediction and future trajectory prediction tasks. Both
tasks are treated as dense prediction tasks to make them
interpretable for practical scenarios. We convert the dense
pixel points to 3D world coordinates using inverse projective
transformation during real-time inference. The architecture
for our model is illustrated in Figure 3. In this section, we
describe the feature extraction process and the architecture
in detail.

We utilize CLIP [39] to extract both linguistic and visual
features. For the linguistic expression L = {l1, l2, ...lN},
where li is the ith word of the expression, we tokenize the
linguistic command using CLIP tokenizer and pass it through
CLIP architecture to compute word-level feature representa-
tion F l = {f l1, f l2, ..., f lN} of shape RN×Cl . For visual frames
V = {vt−k, vt−k+1, ...vt}, the CLIP architecture encodes the
video features as F v = {fvt−k, f

v
t−k+1, ...f

v
t }. Finally, for the

trajectory context P , we project the past trajectory on an
image having same size as the input video frames vt’s and
pass it through convolution and a MLP layer to get feature
map F p with the same feature size as video frame features

fvt ’s.
The input to our network are the video frames V , his-

torical trajectory context P and the language command L.
Specifically, for video V , we get visual features F v of
shape RCv×T×HW , where H, W, T, and C represent the
height, width, time, and channel dimensions, respectively.
The trajectory context feature F p ∈ RCv×1×HW contains
information about the past trajectory taken by the vehicle.
Following feature extraction, we concatenate the trajectory
context feature F p with video features F v along the temporal
dimension resulting in joint feature F vp ∈ RCv×(T+1)×HW

capturing the video and trajectory related contextual infor-
mation. Finally, we apply multi-head self-attention over the
joint contextual feature F vp and linguistic feature F l in the
following manner,

F = F vp � F l

A = Mhead(F, F, F )

M = Conv3D(A ∗ F )

(1)

Here, � represents the length-wise concatenation of the
word-level linguistic features F l and the joint feature F vp,
Mhead is the multi-head self-attention over the multi-modal
features F and ∗ represents the matrix multiplication. Conv3D
represents 3D convolution operation and is used to collapse
the temporal dimension, M is the final multi-modal contextual
feature with information from both visual and linguistic
modalities.

Next, we describe the procedure for predicting the navi-
gation and trajectory prediction masks. We want the future
trajectory and the navigable region for the current time-step
to be correlated with each other, i.e. the future trajectory
should point in the direction of the predicted navigable region.
Consequently, we utilize the multi-modal contextual feature
M to predict the segmentation masks corresponding to the
navigation and trajectory prediction tasks. For each task, we
have a separate segmentation head, where each segmentation
head comprises of sequence of convolution layers with
upsampling operation. For training the segmentation masks,
we utilize combo loss [40] which is a combination of binary



cross-entropy loss and dice loss:

Lbce = −(yt log(ŷt) + (1− yt) log(1− ŷt))

Ldice = 2 ∗ ŷt ∩ yt
Σŷt + Σyt

Lcombo = λLbce − (1− λ)Ldice

(2)

The proposed approach is end-to-end trainable and the
predicted trajectory is highly correlated with the predicted
navigation mask, as a result the predicted trajectory is
interpretable in the sense that it suggests the future route
to be taken by the autonomous vehicle.

VI. EXPERIMENTS

Implementation Details: We utilize CLIP backbone [39]
for feature extraction. The frames are selected with a
stride of 10 and are resized to 224 × 224 resolution. After
feature extraction, we get per-frame visual features of spatial
resolution H = W = 7 and channel dimension Cv = 512.
For the historical contextual trajectory, we plot the trajectory
from the starting location of episode to the current timestamp
and resize it to 640 × 480 spatial resolution image, this is
passed as input through convolution + MLP layers to obtain
trajectory features with same resolution as per-frame visual
features. For linguistic features, we use the CLIP tokenizer
followed by the CLIP language encoder to compute the
word-level features corresponding to the linguistic command.
Maximum length of command is set to N = 20 and the
channel dimension is Cl = 512. We use batch size of 32 and
our network is trained using AdamW optimizer, the initial
learning rate is set to 1e−4 and polynomial learning rate
decay with power of 0.5 is used. For the combo loss, we set
λ = 0.3. All the methods and baselines were trained from
scratch using the CARLA-NAV dataset. For the single frame
methods [4], individual image and language pairs were used
for training (with and without context map).

Live-Navigation: In order to utilize the segmentation mask
corresponding to the navigable region directly for navigation,
we first need to sample a point from the predicted region.
We take the largest connected component from the predicted
mask and use its centroid as the target point for the local
planner. As we move closer to the final navigable region, the
distance between the current car location and the centroid
target location consistently decreases. Simultaneously, the
area of the predicted mask should increase as we move
closer to the target region due to the perspective viewpoint
of the front camera. Consequently, we use an area-based
threshold to determine if the predicted navigation mask
corresponds to the final navigable region or not. If the area
of the predicted navigation mask is larger than the threshold
for five consecutive times, we treat the predicted region as
the final goal region corresponding to the linguistic command
and stop the navigation.

Evaluation Metrics: Like previous approaches to VLN
[8], [10], [12], we use the gold standard Task Completion
metric to measure the success ratio for the navigation task.
In addition, we use Frechet Distance [41] and normalized
Dynamic Time Warping (nDTW) [42] metrics to compare

Method Task Completion
Val Test

RNR-S 0.44 0.29
RNR-SC 0.52 0.32
CLIP-S 0.48 0.47

CLIP-SC 0.52 0.50
CLIP-M 0.56 0.55

CLIP-MC 0.72 0.68

TABLE II
RESULTS ON THE Task Completion METRIC. THE SUPERIOR

PERFORMANCE OF PROPOSED APPROACH CLIP-MC, SHOWCASES THE

EFFECTIVENESS OF HISTORICAL CONTEXT FOR THE NAVIGATION TASK.

the predicted navigation path during live inference with the
ground truth navigation path.

A. Experimental Results

We compare our proposed approach CLIP-MC against
the RNR-based approach proposed in [4]. We use their
proposed approach with CLIP-based backbone, CLIP-S as
the baseline for our experimental results. The original RNR
approach is limited to using a static scene with linguistic
commands for navigation, which fails in a dynamically
changing environment where the scene can change drastically
when we start the navigation. Additionally, we motivate
the benefits of contextual trajectory and multiple frames by
presenting two variant baselines, (1) multiple frames without
a contextual trajectory CLIP-M and (2) single frame with
contextual trajectory CLIP-SC. Table II presents the results
on the gold standard Task Completion metric and Table III
presents the results on Frechet Distance and nDTW metrics.

We observe that our proposed approach CLIP-MC outper-
forms all the other variants. Introducing historical contextual
trajectory consistently helps improve performance as it
increases by 4% and 16% in cases of single-frame approaches
(CLIP-SC, CLIP-S) and multi-frame approaches (CLIP-MC,
CLIP-M), respectively on the validation split. Furthermore,
the multi-frame approach CLIP-M gives an improvement of
8% on both the validation and test splits, respectively, over
the single-frame approach CLIP-S. These results indicate that
a combination of multiple frames and contextual trajectory
are required to effectively tackle the VLN task.

In Table III, we present experimental results on the Frechet
Distance and nDTW metrics. Our reformulated approach
CLIP-MC outperforms all other variants by significant mar-
gins. However, we would like to stress that these metrics are
not robust indicators of the average performance on the actual
navigation task, as a single outlier can drastically affect the
final score. For example, on a single instance if "a left turn"
is taken instead of "a right turn," the predicted trajectory will
diverge from the ground truth trajectory, and will lead to
significant deviation in the average scores.

Effect of feature extraction backbone: Additionally, we
compare our CLIP-based single frame approaches with the
original non-CLIP RNR approach proposed in [4], referred
to as RNR-S and RNR-SC (single frame without and with



Method Frechet Distance ↓ nDTW ↑
Val Test Val Test

RNR-S 28.14 42.45 0.35 0.16
RNR-SC 21.64 44.65 0.45 0.33
CLIP-S 40.30 42.53 0.23 0.24

CLIP-SC 35.58 38.49 0.36 0.39
CLIP-M 32.92 53.10 0.39 0.26

CLIP-MC 13.54 15.06 0.54 0.59

TABLE III
EXPERIMENTAL RESULTS ON THE Frechet Distance AND nDTW METRICS.
↓ INDICATES LOWER VALUE IS BETTER AND ↑ INDICATES THAT THE

HIGHER VALUE IS BETTER.

Method Split Task Completion
n=1 n=2 n=4 n=6 n=8

CLIP-MC val 0.52 0.48 0.52 0.68 0.72
test 0.50 0.53 0.56 0.62 0.68

CLIP-M val 0.48 0.44 0.48 0.52 0.56
test 0.47 0.47 0.50 0.53 0.55

TABLE IV
ABLATION ON THE NUMBER OF FRAMES FOR MULTI-FRAME MODELS FOR

THE TASK COMPLETION METRIC.

context, respectively) in Table II. Both RNR-S and RNR-
SC are trained from scratch on the proposed CARLA-NAV
dataset. The results showcase the advantage of superior
multi-modal features captured by the CLIP-based approaches
over non-CLIP approaches, as the performance consistently
increases on the challenging test split in case of both with
context (RNR-SC, CLIP-SC) and without context (RNR-S,
CLIP-S).

Effect of Number of Frames: In Table IV, we study
the impact of the number of video frames on the multi-
frame models for the Task Completion metric. As the number
of video frames increases, the visual modality’s contextual
information also increases. We hypothesize that the network
should utilize this additional contextual information and
employ it effectively for the VLN task. The results in Table IV
indeed corroborate our hypothesis, as we observe consistent
performance gains as the number of video frames increases.
The networks with n = 1 frame give the same performance
as the corresponding single-frame variants. We obtain the
best performance with n = 8 frames with CLIP-MC on both
validation and test splits.

B. Qualitative Results

In Figure 4, we qualitatively compare the proposed ap-
proach CLIP-MC with the RNR approach (RNR-S) proposed
in [4]. We juxtapose the entire navigation path taken by each
approach during live inference for a given linguistic command
and overlay it on the aerial map of the CARLA environment.
We showcase successful navigation scenarios of CLIP-MC
in (a) , (b) and (c). With additional contextual information
from multiple frames and historical trajectory, CLIP-MC
can successfully perform "turning" and "stopping" based

Fig. 4. Qualitative navigation results in the CARLA-NAV dataset. Yellow
represents the starting point for the navigation. Orange is used to depict
the navigational path taken by CLIP-MC network, green denotes RNR-S
network’s navigational path and blue represents the ground-truth path.

navigational manoeuvres. While the RNR approach, without
any contextual information and trained on static images, fails.
For the command “change to the left lane", RNR-S fails
to change the lane and continues in a straight line. While
CLIP-MC manages to change the lane with a slight delay. For
the example in the bottom-right corner, the road is curved in
left direction and both the CLIP-MC and RNR-S stop much
before the traffic light, as they mistake the curve with an
intersection.

VII. CONCLUSION

This paper proposes a language-guided navigation approach
in dynamically changing outdoor environments. We reformu-
late the RNR approach, designed for static scenes to make it
amenable for dynamic scenes. Our approach explicitly utilizes
visual grounding directly for the navigation task. Along
the same lines, we propose a novel meta-dataset CARLA-
NAV, containing realistic scenarios of language-based navi-
gation in dynamic outdoor environments. Additionally, we
propose a novel multi-task grounding network for the tasks
of navigable region and future trajectory prediction. The
predicted navigable regions are explicitly used for navigating
the vehicle in the dynamic environment. The predicted
future trajectories bring interpretability to our approach
and correlate with the predicted navigable region, i.e., they
indicate the vehicle’s navigational route. Furthermore, the
proposed approach allows us to perform live navigation in
a dynamic CARLA environment. Finally, quantitative and
qualitative results validate our approach’s effectiveness and
practicality. Future work should explore domain adaptation
techniques like [43], [44] to ensure adaptability to real-world
scenes and a learnable stopping criteria.
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