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Abstract— With the emergence of collaborative robots
(cobots), human-robot collaboration in industrial manufactur-
ing is coming into focus. For a cobot to act autonomously
and as an assistant, it must understand human actions during
assembly. To effectively train models for this task, a dataset
containing suitable assembly actions in a realistic setting is cru-
cial. For this purpose, we present the ATTACH dataset, which
contains 51.6 hours of assembly with 95.2k annotated fine-
grained actions monitored by three cameras, which represent
potential viewpoints of a cobot. Since in an assembly context
workers tend to perform different actions simultaneously with
their two hands, we annotated the performed actions for each
hand separately. Therefore, in the ATTACH dataset, more than
68% of annotations overlap with other annotations, which is
many times more than in related datasets, typically featuring
more simplistic assembly tasks. For better generalization with
respect to the background of the working area, we did not
only record color and depth images, but also used the Azure
Kinect body tracking SDK for estimating 3D skeletons of the
worker. To create a first baseline, we report the performance
of state-of-the-art methods for action recognition as well as
action detection on video and skeleton-sequence inputs. The
dataset is available at https://www.tu-ilmenau.de/neurob/data-
sets-code/attach-dataset.

I. INTRODUCTION

Versatile assembly in small quantities is of high relevance
for small and medium-sized enterprises (SMEs). For these,
situation-aware cobots are currently a highly relevant re-
search topic [1], [2]. As described in [3], one goal is to
achieve situational awareness through general classification
and detection algorithms for assembly, since it is not prof-
itable to train new methods for each new manufacturing
object. In order to support the situation awareness of cobots,
action recognition and action detection of the worker is a
suitable tool. However, most of the typical action recognition
datasets published so far deal with daily activities [4], [5],
[6]. Action datasets that focus on manual activities usually
deal with cooking actions [7], [8], [9], [10] and only very
recently with assembly actions [11], [12], which are mostly
single-label and, thus, only a single action is labeled at any
given time for any small-grained action (e.g. pick up, hold,
screw).

However, to study situational awareness of assembly
actions for cobots, we need a dataset where actions are
performed in a natural way and thus can potentially occur
simultaneously as the worker can perform an action with
each hand. Therefore, we present the novel ATTACH dataset

This work has received funding from the Carl-Zeiss-Stiftung as part of
the project engineering for smart manufacturing (E4SM)

All authors are with Neuroinformatics and Cognitive Robotics Lab, TU
Ilmenau, 98693 Ilmenau, Germany dustin.aganian@tu-ilmenau.de

CamRight CamLeft

CamFront

CamLeft

CamFront

CamRightCamFrontCamRight CamLeft

01:40 02:05 02:30 02:55 03:20

object attach w/ wrench both

object hold left

object plug left

object plug right

object attach w/ wrench right

tool hold right

Cobot with
camera at
∼ 1.5m

Fig. 1. Setup of the ATTACH dataset (top left), exemplary recorded
data, and annotations (bottom). The views of the ATTACH dataset are
representative of possible monitoring perspectives of our exemplary cobot.
The red line in the annotation diagram (bottom) marks the timestamp at
which the above images where recorded. The annotations show which
actions were performed before (e.g., plugging in a leg) and after (e.g.,
holding a wrench) with each of both hands. It can be seen that several
actions temporally overlap, which is the focus of the proposed ATTACH
dataset.

(Annotated Two-Handed Assembly Actions for Human Ac-
tion Understanding) for video- and skeleton-based action
recognition and action detection during assembly. For the
ATTACH dataset, we asked 42 participants to assemble
cabinets consisting of 26 parts, following three different sets
of instructions. An overview of the assembly is given in
Fig. 1, which illustrates the three viewpoints we recorded.
Thus, we have 17.2 hours of recording time per view (51.6
hours in total) and an average duration of 8.2 minutes per
recording (with 378 recordings in total). Each fine-grained
action (e.g., picking up a board with the left hand, attach an
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object with a screwdriver in the right hand) was annotated,
resulting in a total of 95.2k annotations for 51 distinct action
classes (with an average of 252 annotations per video).
During the recording of the ATTACH dataset, we focused
on the following features:

a) Simultaneous fine-grained labels: During assembly
most workers often perform different actions simultaneously
with their left and right hands, e.g., picking something up
with one hand and holding something with the other hand
(see Fig. 1). In contrast to previous single-label assembly
action datasets, which do not represent such behavior, we
did not restrict the participants to perform different actions
with both hands and also labeled all available actions per
hand for each time frame, as visualized in the lower part of
Fig. 1. Thus, more than 54% of all frames have more than
one label describing the actions that occur and more than
68% of annotations overlap with another annotation.

b) Diverse and dynamic assembly actions: In creating
the dataset, we took special care to ensure that participants
received as few instructions as possible, i.e., they were not
given a script to follow, as is often the case [5], [13]. Instead,
they received only various written superficial instructions,
such as those typically included with furniture for self-
assembly. Due to the variety of the parts to be assembled,
actions also varied significantly in time. They ranged from a
fifth of a second for actions like lifting an object or rotating
a workpiece to a minute or two for actions such as attaching
an object with a wrench. Furthermore, each participant has
a different level of craftsmanship, resulting in a very large
variance in length and execution of the various actions.

We benchmark competitive methods on the ATTACH dataset
on various tasks. We evaluate action recognition of video
clips and 3D-skeleton sequences, and focus on action detec-
tion on video and 3D-skeleton input. We also evaluate the
action detection task as a real-world robotic application.

Furthermore, evaluating on skeleton input is necessary to
evaluate the problem independently of the background. This
is important, since it is often not possible to directly record
training data for the targeted environment and skeleton-based
methods are mostly independent in this regard. Therefore, we
also apply an action detection method on skeleton sequences
that previously has been applied on video data only.

Summarized, the main contributions of this paper are:

• The publication of the ATTACH dataset, which is the
first dataset to independently label each hand and thus
include simultaneous fine-grained labels for the assem-
bly action understanding problem.

• The application and evaluation of different baseline
methods for the action recognition and action detection
tasks for video-based and skeleton-based methods on
the ATTACH dataset, to set a first baseline.

• Evaluation of an action detection method for an online
robotic application on the ATTACH dataset.

II. RELATED WORK

In the following, we present other related datasets for
human action understanding.

A. General and daily actions datasets

Action recognition has become increasingly important in
recent years, which is reflected in the large number of
different datasets on various problems. For instance, typical
representatives for general actions as in NTU RGB+D are
60 [15] and 120 [5], which consist of video clips only a
few seconds long, or the popular Kinetics dataset [6], which
is generated from YouTube videos and also deals with the
classification of very short video clips. On the other hand,
many datasets are published in the field of household actions,
such as DAHLIA [16], Charades [13], Charades-Ego [17],
Toyota Smarthome [18] and TSU [4]. Here, the datasets
differ strongly in their recorded perspectives (shooting, ego-
centric, monitoring) and the length variability of their actions
(a few seconds in Charades versus a few seconds to several
minutes in TSU).

B. Cooking and instruction actions datasets

In contrast to the assembly datasets, which have only
recently been published, the datasets for instructions and
for cooking [7], [8], [19], [9], [20], [21], [10] have been of
research interest for an extended period of time. However,
these datasets are very strongly domain-related, and such
domain-specific knowledge is not readily transferable.

C. Assembly actions datasets

So far, only very few papers have been published on
assembly action datasets. To the best of our knowledge,
the only relevant ones are the toy assembly datasets Mec-
cano [14] and Assembly101 [12] and the furniture assembly
dataset IKEA ASM [11], which is most related to our
dataset. Meccano as well as Assembly101 focus on the fine-
motor assembly of toys. Thus, the camera perspectives are
focused on the hands and the assembly object. In the case of
Meccano, the assembly process was only recorded with an
egocentric view. Likewise, action understanding tasks using
hand skeletons were a focus of Assembly101. Their camera
perspectives make these two datasets partially to not usable
at all for cobot applications.

In contrast, we focus on the assembly task with a worker
and a cobot who observes the worker and the workspace.
Therefore, an egocentric (worker-centric) perspective would
not be suitable. Additionally, the process of assembling a
cabinet also requires finer movements, e.g., when screwing
in the legs, making it necessary to perceive both large
body movements and smaller hand movements, when solving
general action perception on our dataset. When using cobots
in such an assembly process, our camera setup also resembles
the actual perspective of the robot more closely rather then
the egocentric view of the worker.

The IKEA ASM dataset has a similar recording setup
to ours. The important difference, however, is that in the
IKEA ASM dataset the natural behavior of the workers



TABLE I: Comparison of typical action recognition datasets and related action assembly datasets.

Dataset Publ.
Year Activity Frames Videos Labelled

Instances Classes Labelled
Frames

Overlapping
Labels

Partici-
pants Views Modalities

NTU RGB+D 120 [5] 2019 General - 114k 114k 120 - 7 106 3 RGB, D, IR, 3DPose
Kinetics 700-2020 [6] 2020 General YouTube - 455k 455k 700 - 7 - 1 RGB
Charades [13] 2016 Daily - 10k 67k 157 - 3 267 1 RGB
TSU [4] 2022 Daily 13.8M 536 41k 51 - 3 18 7 RGB, D, 3DPose
EPIC-KITCHENS-100 [8] 2022 Kitchen 18M 700 90k 4053 71.6% 28.1% 37 1 RGB
Meccano [14] 2021 Toy Assembly 300K 20 9k 61 84.9% 15.8% 20 1 RGB
Assembly101 [12] 2022 Toy Assembly 111M 4.3k 1,014k 1380 81.4% 7.0% 53 12 RGB, 3DHandP
IKEA ASM [11] 2021 Furniture Assembly 3M 371 17k 33 83.8% 7 48 3 RGB, D, 3DPose
ATTACH 2023 Furniture Assembly 5.6M 378 95k 51 91.3% 68.3% 42 3 RGB, D, IR, 3DPose

and thus simultaneously executed small-grained actions were
not taken into account. In contrast, we explicitly labeled
with which hand which fine-grained action was performed
resulting in simultaneous action labels. Tab. I summarizes the
key points of our dataset compared to typical and relevant
action datasets, clearly showing how we focused on the
issue of simultaneous labels shown as the percentage of
overlapping labels.

III. DATASET

In this section, we describe our overall setup for recording
our dataset and give a basic overview of the statistics, such
as length of annotated actions and dataset size.

A. Setup

The setup for data recording is shown in Fig. 1. A
worktable is monitored by three Azure Kinect cameras1,
which capture the frontal, left, and right views of the
worker assembling a piece of furniture, resembling typical
observation positions of an assistive robot. Each camera is
connected to a separate PC and records RGB images with a
resolution of 2560×1440 pixels and depth/IR images with a
resolution of 320×288 pixels at 30FPS. Based on the known
camera parameters, registered depth images with the same
resolution as the RGB images can be calculated. Extrinsic
calibration is realized by a cube with ArUco markers [22]
placed in the center of the worktable before a recording took
place. This position marks the center of the global coordinate
system. For all images captured, we recorded their globally
synced timestamps, enabling to match corresponding images
across views if necessary. For each camera, the Azure Kinect
body tracking SDK is employed, which uses the depth and
IR images to extract a 3D skeleton of the worker.

B. Data and Annotations

a) Assembly task: In each recording, the furniture to be
assembled are IKEA cabinets, each consisting of 26 parts.
We created three versions of the assembly instructions, which
differed in the order of the assembly steps and the actions to
be performed, such as performing certain actions with bare
hands or with a tool. Each of the recorded subjects had to
assemble the piece of furniture according to the construction
manual. As our manuals only consisted of goal-oriented
instructions, like in furniture assembly manuals, we did not
specify how to achieve the next step. On average, it took the

1Technical specification: https://docs.microsoft.com/en-us/azure/kinect-
dk/hardware-specification
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Fig. 2. Action classes used for annotations.

participants 8.2 minutes to assemble the piece of furniture.
Overall, we recorded three complete assemblies for all 42
participants from three different viewpoints each resulting in
378 recordings and 51.6 hours of recordings in total.

b) Participant statistics: We recorded 42 participants
with different level of experience in assembling of which 31
were male and 11 were female. The age of the participants
ranged from 21 to 67.

c) Annotations: The recorded data is annotated in
detail, as shown in Fig. 2. The type of object on which
a particular action is performed is distinguished. This is
necessary for follow-up tasks to identify specific assembly
steps. We distinguish actions performed on five types of
objects: ”Object” in Fig. 2 is a small object, such as a screw,
that can be enclosed by one hand and of which it is easy
to hold multiple instances in one hand. Actions performed
on the walls of the cabinet or the like are included in the
”board” category. Actions performed on partially assembled
furniture are grouped in the ”workpiece” category. When the
subject uses a tool, the corresponding action is placed in the
respective category, unless it is applied directly to a specific
object or workpiece. In that case, we annotated it as attaching
an object with a specific tool or pressing with a tool. The
category ”other” contains actions that are performed with the
construction manual (e.g. reading, browsing).

Using this scheme, we get 51 action classes as shown
in Fig. 2. For each category, we annotated several actions
separately for both hands. This means, that the subject can
perform one action with the left hand while simultaneously
performing another action with the right hand, e.g., as shown
in Fig. 1. This results in more than one label for 54% of
all frames and more than 68% of annotations overlapping
with another annotation. Overall, the data are annotated with
95.2k annotations, which corresponds to 252 annotations per
assembly sequence on average. A histogram of the duration
of the performed actions in our dataset can be found in Fig. 3.

https://docs.microsoft.com/en-us/azure/kinect-dk/hardware-specification
https://docs.microsoft.com/en-us/azure/kinect-dk/hardware-specification
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Fig. 3. Histogram of action duration in our dataset plotted on a logarithmic
scale. The longest action took 299 seconds (∼ 5 min).

C. Dataset splits

For evaluations on our dataset, we use a person and a view
split, similar to other datasets like TSU [4].

Person-split: We split our participants into three groups,
with recordings from two-thirds of all participants (28) used
for training and the remaining third split into validation (4
participants) and test data (10 participants). Care was taken to
ensure that all action classes appear with sufficient frequency
in both the test and training splits.

View-split: The camera views shown in Fig. 1 were split
as follows: CamRight was used as test data, while recordings
from CamFront and CamLeft were used for the training and
validation splits. As the views already have a drastically
different perception of the scene, we chose not to assign
another separate camera for validation. Instead, 10% of all
recordings from the front and left camera were assigned
for validation. As we will show in our experiments below,
splitting the view is a major challenge because the scene
looks vastly different from each point of view. Furthermore,
in at least one of the views, the person and the action
performed are always partially obscured by furniture parts.
This split represents the situation of a mobile cobot viewing
the scene from a different perspective than those available
during training.

IV. EXPERIMENTS ON ACTION RECOGNITION

In the following, we benchmark state-of-the-art methods
on our dataset on the typical action recognition task. Al-
though action detection is more suitable for online robotic
applications, this evaluation is still needed because action
detectors typically use action recognition methods as a back-
bone for feature estimation. Thus, we provide first baselines
of state-of-the-art methods chosen based on their model
architectures (e.g. 3D-CNN vs. transformer) and for our two
modalities (video vs. skeleton sequences) respectively.

A. Evaluation protocol

We report the typically used metrics mean class accuracy
(mAcc), the top1, and the top5 accuracy on trimmed video
clips and trimmed skeleton sequences. We use this evaluation
to determine which of the trained networks to use as the
backbone for the action detection task (Sec. V).

B. Video-based approaches

a) Setup: As state-of-the-art methods for action recog-
nition on video-sequence inputs, we decided to use TPN [23],
a well performing 3D-CNN-based approach, and the novel

swin video transformer (Swin) [24]. Implementations for
both methods are publicly available2 and are based on
MMAction2 [25].

For the hyperparameter search during training, we used
the original values of the respective methods as a starting
point. Furthermore, as the actions performed in our dataset
differ in length, compared to the datasets the methods were
originally trained with a clip length of 16, we also tested the
mean action length of 95 and the median action length of 44
frames respectively. For the process of creating clips from
segments for training or evaluation, we have strictly adhered
to the original implementations and the usual state-of-the-art
practices.

b) Results: Fig. 4 shows the results of our baselines
on video input. A significant difference between the person
and view split is observable. While Swin and TPN perform
comparably on the person split, for the view split Swin
outperforms TPN which suggests Swin to be able to gen-
eralize better across different views. Generalization across
people seems to be the easier task as the performance of
both methods is around twice as high as on the view split.

For the different clip lengths tested, Swin performed
best with the mean clip length of 95 for the person split.
Otherwise, the median clip length of 44 was slightly better.

In direct comparison, Swin outperforms TPN (by a large
margin on the view split) on our dataset, making it the better
choice as a feature extractor for the action detection methods
(evaluated in Sec. V).

C. Skeleton-based approaches

a) Setup: For training skeleton-based approaches, we
use the 3D skeleton keypoints estimated by the Azure
Kinect body tracking SDK which consists of 32 joints. A
visualization of these skeletons can be found in Fig. 1.

As state-of-the-art methods for action recognition on
skeleton-sequence inputs, we decided in favor of VA-
CNN [26] as a 2D-convolution-based (2D-CNN) approach,
and ST-GCN [27] as well as AGCN [28] as graph-
convolution-based (GCN) methods. We used publicly avail-
able code for VA-CNN3 and MMaction2 [25] for ST-GCN
and AGCN.

For the hyperparameter search during training, again, we
oriented on the parameterization in the original implemen-
tations as a starting point. Likewise, the skeletons were
normalized according to each of the applied methods.

For VA-CNN, the complete trimmed skeleton sequences
were transformed into a three channel image (x, y, z) and re-
sized to a resolution of 224×224 pixels (keypoints×frames).
Thus, no fixed clip length had to be used for training.

For the GCN methods, we need to train with fixed clip
lengths, so similarly to the video-based methods, we chose
44 (median action length) and 95 (mean action length).
Furthermore, we also train with the clip length of 313,
which corresponds to the 95% quantile of action lengths.

2https://github.com/SwinTransformer/Video-Swin-Transformer
3https://github.com/microsoft/

View-Adaptive-Neural-Networks-for-Skeleton-based-Human-Action-Recognition

https://github.com/SwinTransformer/Video-Swin-Transformer
https://github.com/microsoft/View-Adaptive-Neural-Networks-for-Skeleton-based-Human-Action-Recognition
https://github.com/microsoft/View-Adaptive-Neural-Networks-for-Skeleton-based-Human-Action-Recognition
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TABLE II: Summary of results for action recognition for video- and
skeleton-sequence-based inputs. The clip length indicates the best clip length
for the respective model and split. mAcc represents mean class accuracy and
top1 and top5 represent top-k accuracy.

clip length mAcc top1 top5
model split

video Swin person 95 57.4 61.3 92.1
view 44 30.4 33.8 75.1

TPN person 44 56.6 59.3 90.7
view 44 21.2 27.0 66.5

skeleton AGCN person 313 48.2 55.7 86.9
view 313 17.7 22.0 55.5

ST-GCN person 313 44.5 51.6 84.8
view 313 17.8 22.6 58.5

VA-CNN person - 48.2 56.5 87.2
view - 33.2 43.0 76.9

In addition, 313 is close to the clip length of 300, which is
often used for GCNs.

b) Results: The results of our skeleton-based baselines
are shown in Fig. 4. Roughly speaking, an increase in clip
length results in an increase in recognition performance.

For the person split, VA-CNN and AGCN perform sim-
ilarly well, with ST-GCN being slightly worse. In contrast,
the view split shows a different trend. Here, VA-CNN is
clearly superior to GCN methods. This is probably due to
the view-adaptive module of VA-CNN, which is supposed
to learn a normalization of the skeletal view. However, we
also trained the VA-CNN without the view adaptive module
on the view split and achieved a mAcc of 22.2%, which is
still more than four percentage points better than the best
GCN results. This shows, that the examined GCN methods
have more difficulties in generalizing a view than the applied
CNN method. Thus, VA-CNN is the better choice as a
feature extractor for action detection methods on skeletons
(evaluated in Sec. V).

When comparing the results of the video-based and the
skeleton-based methods, on the person split – as expected –
the former perform better. However, the view-split compari-
son also demonstrates that VA-CNN generalizes even better
across views than Swin. This indicates that skeleton-based
methods are capable of good generalization. This further
highlights the difficulty of the view split and the significant
visual differences between the training and test data.

V. EXPERIMENTS ON ACTION DETECTION

In action detection, for each frame every occurring class
has to be detected. In the following, we begin by presenting
our robotic application scenario for action detection. We then
briefly describe the chosen method, the evaluation protocol,

and the training setup, followed by our experiments for
offline and online action detection to get a first baseline on
the presented ATTACH dataset.

A. Robotic application scenario

As described in [3], our goal is to use autonomous cobots
to assist workers during assembly. In order to achieve this
goal, cobots must be able to recognize what is happening live
and react to it. Using the ATTACH dataset, we aim to train
and evaluate the cobots’ environmental awareness regarding
action detection. We will first present the experimental results
for the typical offline usage, where the complete recording
is available during the detection. During offline usage, the
detection for a frame is often based not only on past and
present frames but also on future frames. Since a cobot is
supposed to detect actions live and not after a few minutes,
such a detection is not practical for our use case. Therefore,
we also do an online evaluation, where only the present and
past frames are available for the detection task on each frame.

B. Action detection method

For the action detection task we decided to employ the
Pyramid Dilated Attention Network (PDAN) [29] 4 with the
chosen recognition methods from experiments in Sec. IV as
feature extractors. Unlike many other methods, PDAN is well
suited to capture the temporal relationships of both short and
long simultaneous actions. This is shown by the state-of-the-
art results on the TSU dataset [4], which has simultaneous
fine-grained labels for daily activities.

PDAN processes non-overlapping clips of frames of fixed
size. Based on these clips, an encoder is used to generate a
feature vector for every clip. PDAN then predicts for every
frame the occurring actions. In the following experiments, we
tested different clip lengths with the minimum clip length
being 8 frames. Taking the limitation of our embedded
hardware (Jetson Xavier) into account, this minimum length
gives enough time to complete the detection on the last clip,
before the next clip has to be processed.

PDAN, like many other similar action detectors, has only
been used on video-based feature extractors. As shown in
our previous experiments, skeleton-based methods tend to
generalize better over different views. This is advantageous
to our robotic scenario as a cobot can be mobile and therefore
has a non-fixed perspective. Thus, we also apply PDAN on
the skeleton-based features.

4Publicly available code: https://github.com/dairui01/PDAN

https://github.com/dairui01/PDAN


C. Evaluation protocol

Dai et al. [29] evaluated PDAN on the TSU dataset [4]
whose varying action duration and overlapping labels make it
comparable to our dataset. Therefore, we evaluate the action
detection task using the same frame-based mAP evaluation
protocol as used in [29]. This performance measure resem-
bles a frame-based accuracy averaged over all action classes,
making it suitable for our unbalanced dataset.

D. Setup

As PDAN cannot be applied to video inputs directly,
but needs a feature representation generated by an encoder,
we first have to choose the models for this purpose. For
comparison to the original implementation, we report the
detection results when employing the originally used feature
extractor I3D [30] as described in [29]. This encoder is
trained on clips consisting of 16 frames from the Cha-
rades dataset. In addition, we use the best models for both
modalities described in Sec. IV, namely the video swin
transformer (Swin) and VA-CNN on the respective splits.
We like to highlight that this is the first attempt to use
PDAN with features that were not extracted from video, but
instead from skeleton sequences. Swin and VA-CNN were
not only trained on clips consisting of 16 frames and are
also directly optimized on our dataset which should enable
an improvement in detection quality.

During the hyperparameter search for training, in addition
to the typical parameters and the clip size, we also optimized
the PDAN-specific model parameters for the temporal recep-
tion field.

E. Results for offline usage

The results of our trained action detection models for
offline usage are shown in Fig. 5. As can be seen, the
difference across both splits is similar to the models trained
on the action recognition task, with the view split being more
difficult than the person split. An interesting fact is the impact
of the clip length on the detection performance. A significant
difference can be observed between the video-based and the
skeleton-based models, with the latter being more robust with
respect to the clip length. This could result from the size of
the feature vectors generated from the different encoders.
While VA-CNN produces feature vectors of size 2048 for
every clip, Swin only computes feature vectors of size 768.
As the clip length increases, more information must be
encoded in these feature vectors of constant size. For the
smaller sized feature vector of Swin, this might explain the
bad performance for large clip lengths in PDAN compared
to clips consisting of 16 or less frames.

F. Results for online usage

For our robotic-application-specific evaluation we changed
the PDAN model architecture so that the temporal receptive
field for every frame only consists of present and past frames
and no frames from the. Following this change, we repeated
our training and hyperparameter search and present our
results in Fig. 5. As can be seen, the performance for online
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Fig. 5. Results on the action detection task for offline and online usage
achieved by PDAN with different backbones. The dashed red line marks
results with the I3D encoder trained on Charades. The mAP results of the
best models are reported in Tab. III

TABLE III: Results on the action detection task for offline and online usage
using PDAN with different encoders and modalities. We report frame-based
mAP together with the clip length that achieved the best results.

offline usage online usage
encoder split clip length mAP clip length mAP

person 16 29.5 16 29.0video Swin view 95 10.7 44 10.3
person 8 20.4 16 18.5skeleton VA-CNN view 8 11.3 44 11.1

usage of PDAN is comparable to the offline usage and only
marginally worse, which is to be expected, as the receptive
field now views less relevant frames.

The clip size evaluation is important for the robotic
application scenario, because the usage of PDAN with a
higher clip size results in longer delay between updates on
the current performed actions. Fortunately, this evaluation
shows that a smaller clip size, such as 16 (ca. half a second
at 30 Hz), achieves very good results compared to the longer
clip sizes, for video- and skeleton-based feature extractors.

VI. CONCLUSION

In this paper, we presented the new ATTACH dataset
containing actions performed during assembly. In contrast
to existing datasets, we labeled fine-grained actions for each
hand individually, resulting in more than 68% of overlapping
annotations. Based on our three camera setup, we defined a
person and a view split which represent different challenges
for action understanding models.

To create a first baseline, we reported results of state-of-
the-art methods for both action recognition and detection on
our state-of-the-art multi-label assembly dataset, using video
and skeleton-sequence inputs respectively. Furthermore, we
also evaluated action detection for the cooperative robotic
application task of achieving situational awareness for assis-
tance of a worker during assembly.

Future directions: The ATTACH dataset provides a
lot of open potential regarding further action understanding
tasks. E.g., the estimation of hand poses could provide further
information for skeleton-based approaches when trying to
perceive actions focused on the fingers, which are only very
roughly represented by the Azure Kinect skeletons. For this,
our high resolution recordings serve as a good foundation.

To summarize, by providing the ATTACH dataset, we build
a foundation for better action perception in the context of
assembly tasks, which will contribute to the emerging field
of human-robot collaboration.
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