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Data-driven optimal control under safety constraints using sparse Koopman

approximation

Hongzhe Yu, Joseph Moyalan, Umesh Vaidya, and Yongxin Chen

Abstract— In this work we approach the dual optimal reach-
safe control problem using sparse approximations of Koopman
operator. Matrix approximation of Koopman operator needs to
solve a least-squares (LS) problem in the lifted function space,
which is computationally intractable for fine discretizations and
high dimensions. The state transitional physical meaning of the
Koopman operator leads to a sparse LS problem in this space.
Leveraging this sparsity, we propose an efficient method to solve
the sparse LS problem where we reduce the problem dimension
dramatically by formulating the problem using only the non-
zero elements in the approximation matrix with known sparsity
pattern. The obtained matrix approximation of the operators
is then used in a dual optimal reach-safe problem formulation
where a linear program with sparse linear constraints naturally
appears. We validate our proposed method on various dynam-
ical systems and show that the computation time for operator
approximation is greatly reduced with high precision in the
solutions.

I. INTRODUCTION

In the era of machine learning and data-driven technology,

we often face problems where models for complex systems

are difficult to obtain while abundant data collected from the

system are available, such as biology science [1], finance,

social networks, and fluid dynamics [2]. Data-driven system

identification [2]–[4] of complex dynamical systems has thus

seen huge advancements in the recent years. For nonlinear

dynamics the most commonly used method to identify a

system is by solving a least-squares regression in the span

of nonlinear basis functions. Linear operator theory revolv-

ing around Koopman and Perron-Frobenius (PF) operators

[5] is a powerful tool for analyzing nonlinear system in

the ‘lifted’ nonlinear function spaces, where the operator

‘lifted’ dynamics becomes linear and describes individual

or collective movement. The operators can be approximated

using finite dimensional linear mappings (matrices) in a

least-square sense using data. The state-of-the-art method for

approximating Koopman and PF operators in this manner are

the Dynamic Mode Decomposition (DMD) and its extensions

[6]–[10].

However, the above mentioned data-driven approximations

and identifications for nonlinear dynamics involves a linear

regression under the hood, which means the computation

complexity is intractable with increasingly higher dimen-

sions. Many methods in the literature seek to compute the
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linear finite dimension operator approximation efficiently.

In [11] the authors proposed a method based on Cholesky

decomposition to reduce the dimension of the matrix being

inverted. Other methods include nonlinear model reduction

[12] and exploring dynamics sparsity structures to decouple

the system into different interconnected subsystems [13].

In this work we start from the physical interpretation

of the Koopman operator to approach the scalability issue.

Koopman operator describes the linear system evolution

in the lifted space, which corresponds to a sparse linear

state transition matrix approximation with a known sparsity

pattern for pre-defined discretization grids. Starting from this

observation, we formulate the sparse least-squares problem

using only the known nonzero elements in the sparse matrix,

which reduced the problem dimension by a large factor.

The problem then becomes an equivalent linear system of

equations of much lower dimension than the original one.

The sparse approximations are then used in a dual optimal

control formulation [14], [15], serving as a sparse linear

constraint in a linear program for optimal control synthesis.

Different from existing sparse system identification method

such as SINDy [2], the proposed method starts directly from

a known sparse pattern arising from the operators’ physical

meaning instead of using L1 norm to promote sparsity, and is

not restricted to polynomial dynamics. The proposed method

does not need system reduction or matrix manipulations

when solving the least-squares problem.

The rest of the paper is structured as follows. Section II

provides a brief introduction to our framework’s necessary

preliminaries. Section III talks about sparse approximations

of the linear operators. The construction and solving of

sparse least squre problem is explained in Section IV. In

Section V, we present some simulation results followed by

the conclusion in Section VI.

II. BACKGROUND AND NOTATIONS

In this section we briefly introduce Koopman and PF

operators and their finite dimensional approximations.

A. Koopman and Perron-Frobenius Operator

Consider the dynamical system

ẋ(t) = f(x(t)), x(t) ∈ X, x(0) = x0. (1)

We use st(x0) and x(t) interchangeably to denote the

mapping from initial state x0 to the solution of system (1) at

time t. s−t(x) represents the set s−t(x) = {y : st(y) = x}.

1A(x) denotes the indicator function on a set A. Koopman

and PF operators are tools to study (1) in lifted spaces [16].
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Koopman operator Kt for system (1) is defined as

[Ktϕ](x) = ϕ(st(x)), (2)

where ϕ is a test function. The infinitesimal generator for

Koopman operator Kt is defined as

lim
t→0

[Ktϕ](x) − ϕ(x)

t
= f(x) · ∇ϕ(x) =: Kfϕ. (3)

PF operator Pt for (1) is defined as∫
s
−t(A)

ψ(x)dx =

∫
A

Pt[ψ](x)dx, ∀A ⊂ X, (4)

and its infinitesimal generator is given by

lim
t→0

[Ptψ](x)− ψ(x)

t
= −∇ · (f(x)ψ(x)) =: Pfψ. (5)

The duality between the two operators reads∫
X

[Ktϕ]ψdx =

∫
X

[Ptψ]ϕdx, ∀ψ, ϕ. (6)

B. Extended Dynamic Mode Decomposition (EDMD)

Numerical methods were proposed to approximate Koop-

man operator Kt in a finite dimensional setting. Extendede

Dynamic Mode Decomposition (EDMD) [8] approximates

Kt within a linearly-spanned space D of nonlinear basis

Ψ(x) , [ψ1(x), . . . , ψN (x)]T . (7)

It seeks a matrix representation K of Kt with respect to Ψ
by minimizing

‖Ψy −KΨx‖
2
F
, (8)

where Ψx = [Ψ(x1) . . .Ψ(xM )],Ψy = [Ψ(y1) . . .Ψ(yM )]
are the lifted data in dimension N×M , M being the number

of data points. Commonly used basis include polynomial [17]

and Gaussian radial basis function (RBF). The minimizer to

problem (8) is

K⋆=(
1

M

M∑
k=1

Ψ(yk)Ψ(xk)
T )(

1

M

M∑
k=1

Ψ(xk)Ψ(xk)
T )†. (9)

Computing the pseudo inverse in (9) becomes intractable for

large size matrices. In this work we explore the structure of

the problem to reduce the computation complexity.

C. Dual optimal reach-safe control formulation

The operator approximations lead to a dual formulation to

optimal control. We consider control-affine dynamics

ẋ = f + gu, (10)

where u(x) ∈ R
m is the feedback policy. For a fixed u(x),

denote st(x0) or x(t) the solution to (10) at time t. We seek

an optimal policy u(x) to drive the system from set X0 to

set Xr while avoiding (unsafe) set Xu, formulated as

inf
u(·)

∫
X

∫ ∞

0

l(st(x0), u(st(x0)))dth0(x0)dx0 (11a)

s.t.

∫ ∞

0

1Xu
(st(x0))dt = 0, ∀x0 ∈ X0. (11b)

Here l is the running cost, h0 denotes the initial distribution

of x0. It is showed in [14] that, for system (10), (11) can be

reformulated into

inf
ρ,u

∫
X

(q(x) + ‖u(x)‖1)ρ(x)dx

s.t. ∇ · [(f + gu)ρ](x) = h0(x)∫
X

1Xu
(x)ρ(x)dx = 0,

(12)

where q(x) is the state cost and ‖·‖1 denotes the 1−norm.

Here a new variable termed ‘occupation measure’ is intro-

duced and represented by ρ(x). It is defined as ρ(x) ,∫∞

0
[Pth0](x)dt. Problem (12) is bi-linear in u and ρ. By

introducing a new variable ρ̄ , ρu, (12) is turned into a

convex problem

inf
ρ,ρ̄

∫
X

q(x)ρ(x) + ‖ρ̄(x)‖1dx

s.t. ∇ · (fρ+ gρ̄)(x) = h0(x)∫
X

1Xu
(x)ρ(x)dx = 0

(13)

in variables (ρ, ρ̄). After solving (13), u can be recovered

using u(x) = ρ̄(x)
ρ(x) . We will show that (13) will become a

linear program using operator approximations.

III. SPARSE APPROXIMATIONS OF OPERATORS

We investigate the finite dimensional approximation of the

Koopman operator and explore the sparsity pattern in this

approximation arising from its physical meaning.

A. EDMD for controlled dynamical systems

To clarify the notations, in (10) we denote g =
[g1, . . . , gm] ∈ R

n×m and u = [u1, . . . , um]T ∈ R
m. Data

(Ψx,Ψy) are collected from simulated system trajectories.

For simplicity, we collect a set of m+1 data, {(Ψk
x,Ψ

k
y)}

m
k=0

which contains 1 data from autonomous system (u = 0),

and m data from system with different inputs, the kth data

corresponding to the one-hot input ek system. We solve (8)

for each k to get K0, . . . ,Km. Note that these can also be

approximated jointly [14]. For PF operator approximations,

for a function φ with coefficients Cφ defined as φ , ΨTCφ,

we approximate [18]

[Ktφ] ≈ ΨT (KTCφ), [Ptφ] ≈ ΨT (PTCφ), (14)

and by definition (5),

Pf ≈
PT − I

∆t
. (15)

Define the integral Λ ,
∫
Ψ(x)Ψ(x)T dx, and in view of the

duality (6), ∀y1 , ΨTCy1
, y2 , ΨTCy2

, we have

〈[Kty1], y2〉 = CT
y1
KΛCy2

= 〈y1, [Pty2]〉

= CT
y1
ΛPTCy2

.

The above is true for all y1, y2, so we have

PT = Λ−1KΛ. (16)
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(b) Sparse construction of K.

Fig. 1: Grid layout and sparsity. Fig.1a shows the basis

functions layout, and Fig.1b shows the sparsity pattern of

the resulting Koopman matrix.

Note that this is true for all Ki and Pi. When the basis

functions Ψ are orthogonal, we assume that Λ is diagonal

dominant and PT = Λ−1KΛ ≈ K.

Now we approximate the constraints in (13). we pa-

rameterize the variables ρ(x) , Ψ(x)T v, and ρ̄(x) ,

[w1, . . . , wm]TΨ(x) within D and approximate

∇ · (fρ+ gρ̄) = ∇ · (fρ) +
m∑
i=1

∇ · (giρui)

= −Pfρ−

m∑
i=1

Pgi ρ̄i

≈ ΨT (
I − PT

0

∆t
v) + ΨT (

I − (Pi − P0)
T

∆t
wi).

(17)

B. Sparse least-squares problem

Both Koopman and PF operators describe the system evo-

lution. Specifically, K captures the evolution of a point in the

state space, and P captures the evolution of the distribution of

a collection of states. The matrix approximation K in (8) has

a sparse structure due to this physical meaning, since within a

small sampling time the range of system evolution is limited.

We discretize the state space as shown in Fig. 1a and use

Gaussian RBF basis, then K will have a banded-diagonal

sparsity structure representing neighbouring-grid activations

as shown in Fig. 1b. Fig. 2 is a typical truncated K obtained

from the pseudo-inverse solution (9).

With known banded-diagonal sparsity pattern, we now

formulate a sparse LS problem from (8) using only the non-

zero elements in K . Assuming that K has z non-zero entries

which are collected in a vector v ∈ R
z . For notation brevity,

we write the operator which constructs K from v as K (·)
or K·. Its adjoint operator is denoted as K +(·) or K +

· and

is defined by

〈Kv, L〉 = 〈v,K +
L 〉, ∀L (18)

for any matrix L which has the same dimension as Kv. Since

〈Kv, L〉 =
∑

i,j,Ki,j 6=0

Ki,jLi,j

=

z∑
i=1

(vK)i(vL)i = 〈v, vL〉,

(19)
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Fig. 2: A typical sparsity pattern (after truncating elements

below 1e−6) of K by solving (8) using (9). It has 7592 non-

zero entries in a 625×625 matrix. Sampling time ∆t = 10−3.

we know immediately that K
+
L = vL, ∀L, where vL ∈ R

z

is constructed from L using the same rule for v from K .

For instance, for a diagonal matrix K , K
+
K = diag(K)

and Kv = diag(v), where the function diag(·) takes either

matrix or vector inputs, and extracts the diagonal elements to

a vector in the former case and construct a diagonal matrix

from the input vector in the latter case. We use similar

mappings for the banded diagonal structure in Fig. 2. Writing

problem (8) in v as

JE(v) = ‖KvΨx −Ψy‖
2
F

= 〈KvΨx,KvΨx〉 − 2〈KvΨx,Ψy〉+ 〈Ψy,Ψy〉

= Tr[K T
v KvΨxΨ

T
x ]− 2Tr[KvΨxΨ

T
y ],

where from the second to the third equation we omit the

terms irrelevant to v. Now taking the first order approxima-

tion of JE(v) with respect to a perturbation δv

JE(v + δv)

= Tr[K T
v+δvKv+δvΨxΨ

T
x ]− 2Tr[Kv+δvΨxΨ

T
y ]

= Tr[(K T
v + K

T
δv )(Kv + Kδv)ΨxΨ

T
x ]−

2Tr[(Kv + Kδv)ΨxΨ
T
y ]

≈ JE(v) + 〈Kδv, 2(KvΨxΨ
T
x −ΨyΨ

T
x )〉

= JE(v) + 〈δv, 2(K +(KvΨxΨ
T
x )− K

+(ΨyΨ
T
x ))〉

= JE(v) + 〈δv,
∂JE

∂v
〉,

(20)

where we used the linearity of operator K , Taylor’s first-

order approximation, and definition (18). From the last line

we know that the minimizer v∗ solves the equation

K
+(KvΨxΨ

T
x )− K

+(ΨyΨ
T
x ) = 0. (21)

Note the matrix Kv ∈ R
N×N . Equation (21) is not explicit

in v, but the LHS is a linear function of v. We thus seek to

solve an equivalent linear equation in v

Sv = K
+(ΨyΨ

T
x ) (22)



by first constructing S , [S1, . . . , Sz]. The ith column Si is

constructed by assigning v = ei in the LHS of (21)

Si = K
+(KeiΨxΨ

T
x ). (23)

Now we transformed the least-squares problem (8) of dimen-

sion N ×N into a linear equation system (22) of dimension

z. K is then obtained by K = Kv. The PF operator and its

generator can then be approximated using (16) and (15).

IV. CONSTRUCTING AND SOLVING THE SPARSE

LEAST-SQUARES PROBLEM

Section III constructed a sparse least-squares problem

for operator approximation. In this section we propose an

algorithm to construct and solve problem (22).

A. The size of full and sparse problems

Following the grid layout shown in Fig. 1a, the sparse

matrix construction will have a banded-diagonal structure as

shown in Fig. 1b. Assume the layout of the basis functions

has nb basis along each dimension, then the exact non-zero

diagonals are fixed, assuming the system can only go to its

neighbouring grid within the sampling time. For instance,

in 2 dimensional case, K has 3 × 3 nonzero diagonals

corresponding to the 9 bold basis shown in Fig. 1a. Similarly,

for 3 dimensional system, K has 3× 32 nonzero diagonals.

The number of nonzero elements for a n dimensional system

is less than 3n×(nb)
n, compared with the size of the matrix

(nb)
2n. The ratio between the two decreases exponentially

with n. For banded-diagonal matrices, the mapping K + and

K are both known. K + is the concatenation of the nonzero

diagonals into a vector, and K is reversing operation on the

input vector to construct the bands.

B. Constructing the sparse linear equation

a) Sparse data lifting: In both the full matrix setting

(8) and the sparse setting (22), lifted data matrices (Ψx,Ψy)
are computed where we evaluate the basis functions Ψ =
[Ψ1 . . .ΨN ]T at each data point xk and yk, k = 1, . . .M . The

dimension of Ψx and Ψy grows exponentially with the state

dimension, which makes the lifting step alone a computation

bottle neck. One observation is that the activated Ψ is also

sparse. Each column of Ψx and Ψy is sparse as the basis

functions are near zero at the positions far from the data,

assuming the basis are almost orthogonal to each other as in

the case of RBF. With this, we construct a sparse Ψs
x and Ψs

y

by selecting only a fixed number of closest basis to a given

data point. The terms Ψs
yΨ

s
x
T and Ψs

xΨ
s
x
T in (22) are also

sparse after this sparse lifting. Often Ψs
yΨ

s
x
T and Ψs

xΨ
s
x
T

become singular, with which the pseudo-inverse method (8)

is not viable while the proposed method can leverage the

sparse Ψs.

b) Sparse least-squares problem: The problem of in-

terest is (22). The solving takes only a small portion of the

time and constructing (22) from (21) needs careful design

to reduce the overall time consumed compared with full

pseudo inverse method. We seek to construct S using (23).

The key to an efficient construction of S is the observation

that the matrix Kei only has 1 nonzero element, assuming

at position (l, s). The multiplication KeiΨxΨ
T
x selects the

sth row of ΨxΨ
T
x as the lth row in the resulting matrix. The

position (l, s) is efficiently found using sorting and binary

search. The operator K + then turns the one row matrix

back into the vector Si. As we have already seen, ΨxΨ
T
x

is sparse by construction, which means that the matrix S

will also be sparse, and (22) is a sparse linear system of

equations. After constructing (22), then iterative methods

such as conjugate gradient descent [19] is used to solve this

sparse linear equation.

V. EXPERIMENTS

In this section experiments and analysis are presented.

We first introduce an LP formulation for the dual optimal

control problem. We then compare the computation time for

K between the full pseudo-inverse and the proposed sparse

method. Finally we use the obtained sparse K to solve the

optimal reach-safe control problem.

A. L1 input-regularized problem and linear programming

After solving the sparse least-squares problem (22) for v

and using operator K +, we obtain sparse matrix approxi-

mations K and P of Koopman and PF operator, respectively.

We then formulate the problem (13) into a linear program

(LP) with sparse constraints. By definition (5), and with a

direct replacement of (17) into (13), we write (13) as an LP

inf
Cρ,w1,...,wm,s1,...,sm

ITq Cρ +
m∑
i=1

ITΨsi + ITmCρ

s.t.
I − PT

0

∆t
Cρ+

m∑
i=1

I − (Pi − P0)
T

∆t
wi = Ch

ITXu
Cρ = 0

si ≥ |wi|, i = 1, . . . ,m

|wi| ≤ umaxCρ, i = 1, . . . ,m

(24)

where ρ = CT
ρ Ψ, ui = wT

i Ψ, h = CT
h Ψ, and

Iq =

∫
X

q ·Ψ, IΨ =

∫
X

Ψ, IXu
=

∫
X

Ψ · 1Xu (25)

are constants, si are slack variables, and Pi are sparse matrix

approximations of PF generators (15). Notice that in (24) we

introduce an additional off-road cost term Im. When an off-

road cost map is available, such as shown in Fig. 3a, Im is

the cost on the map grids. We also add additional constraints

|wi| ≤ umaxCρ which is an enforcement of bounded control

inputs |u| ≤ umax corresponding to actuation limitations.

This constraint guarantees (24) can have non-trivial solu-

tions, because without it the minimum value is zero by

choosing Cρ = 0, wi = 0, si = 0, ∀i.

B. Sparse Koopman matrix approximation

a) Computation time: We compare the time consumed

for solving (8) for different number of basis functions on a

2D single-integrator system

ẋ = u (26)



for x = [x1, x2]
T , u = [u1, u2]

T , and for the 2D Van der Pol

ẋ1 = x2; ẋ2 = −x1 + x2(1− x21) + u. (27)

Solving time for full and sparse method and Frobenius norm

of the difference between the two are concluded in table I.

# basis
# nonzero elements solving time (s)

norm diff.
full sparse full sparse

25 390625 5329 9.86 0.91 3.03e−8

30 810000 7744 40.23 2.21 1.04e−8

40 2560000 13924 117.82 3.39 1.88e−8

60 12960000 31684 765.81 14.69 7.41e−8

(a) 2D Integrator dynamics (26)

# basis
# nonzero elements solving time (s)

norm diff.
full sparse full sparse

25 390625 43557 1.95 0.8 2.12e−8

30 810000 62500 47.14 3.4 2.09e−8

40 2560000 115600 131.3 5.67 1.09e−8

60 12960000 270400 854.7 21.65 4.78e−8

(b) Van der Pol dynamics (27)

TABLE I: Comparing for Koopman approximations for two

different systems. Solving time includes data lifting, con-

structing and solving (22). 40000 data are used. Results

are averaged from 5 experiments. ‘norm diff.’ represents the

Frobenius norm of the difference of the matrices obtained

from two methods.

b) Computation time and precision for 3D system: For

higher dimensional systems, the full pseudo-inverse ground

truth took too long to obtain the results while the proposed

sparse solution can be computed efficiently with high preci-

sion. We show results of the 3D single integrator system (26)

for x = [x1, x2, x3]
T , u = [u1, u2, u3]

T . Because the lack of

ground truth, we compute the prediction error ‖KΨx−Ψy‖
2
F

instead of the Frobenius norm of the difference from ground

truth.

After solving the LS problem (8) for a K , we compute

the error ‖KΨx −Ψy‖
2
F . Table II summarizes the results.

# basis size nnz solve time (s) ∆t (s) pred. err

20 6.4e7 195059 21.75 3.2e−7 7.27e−8

25 2.4e8 389017 51.82 2.4e−8 6.78e−10

30 7.29e8 681493 574.92 4e−10 3.13e−13

TABLE II: Computation time and prediction error for 3D

single integrator (26). Number of data is fixed at 8e4 for all

experiments. Prediction error is measured by ‖KΨx−Ψy‖
2
F .

C. Reach-safe optimal control problem

We use the sparse K and P to solve problem (24).

a) 2D off-road navigation: We consider the problem

(24) for the 2D single integrator dynamics (26) with a pre-

defined cost map Im in the following setting

• X1
0 : A box [6, 8]× [7, 9]; X2

0 : A box [7, 9]× [3, 5]
• X1

u: A circle of radius 1, centered at (3, 4)
• X2

u: A circle of radius 1, centered at (4, 1.5)
• Xr: A circle of radius 1, centered at (0, 0).

Fig. 3a shows the optimized system trajectories, and Fig. 3b

- Fig. 3c show the state plots.

(a) Cost map, initial states, target states, and optimized trajectories.

(b) x1 of sampled trajectories (c) x2 of sampled trajectories

Fig. 3: Navigation problem with pre-defined cost map in

problem (24) for a 2d system.

b) Van der Pol Oscillator: Consider the controlled Van

der Pol dynamics (27). The experiment settings are

• X0: A box [−5, 5]× [−5, 5]
• X1

u: A circle of radius 0.5 and center (−1.5, 1)
• X2

u: A circle of radius 1, centered at (1.5,−1)
• X3

u: A circle of radius 0.5, centered at (−1,−3)
• Xr: A circle of radius 0.5, centered at (0, 0).

c) 3D single integrator: Consider the simple 3D inte-

grator dynamics (26). The experiment settings are

• Initial distributed set: A box [6.5, 8.5]3

• Unsafe region: A circle of radius 1, centered at (3, 3, 3)
• Target region: A circle of radius 1, centered at (0, 0, 0).

After the trajectories enter the target region, we switch to a

local LQR controller. Fig. 6 shows the optimized trajectories.

VI. CONCLUSION

In this work we explore the sparsity in the Koopman

operator approximations which arises from the state transi-

tional physical meaning of Koopman operator. Using only the

nonzero elements in the sparse matrix with known sparsity,

we transform the least-squares problem into a sparse linear

system of equations. The obtained operator approximations

are then used in a dual optimal control formulation which

leads to a linear programming with sparse linear constraints.

Results show that our sparse method is much more efficient

than the pseudo-inverse method while preserving high pre-

cision in the solution.
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