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Abstract

Underwater robots typically rely on acoustic sensors like sonar to perceive their

surroundings. However, these sensors are often inundated with multiple sources and

types of noise, which makes using raw data for any meaningful inference with features,

objects, or boundary returns very difficult. While several conventional methods of

dealing with noise exist, their success rates are unsatisfactory. This paper presents a

novel application of conditional Generative Adversarial Networks (cGANs) to train

a model to produce noise-free sonar images, outperforming several conventional fil-

tering methods. Estimating free space is crucial for autonomous robots performing

active exploration and mapping. Thus, we apply our approach to the task of under-

water occupancy mapping and show superior free and occupied space inference when

compared to conventional methods.
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Introduction

Autonomous Underwater Vehicles (AUVs) are useful in a broad range of applica-

tions that are otherwise tedious or potentially dangerous for humans to perform. A

major aspect of AUVs is to perform underwater mapping which assists in tasks like

subsea infrastructure inspection, ship hull inspection [15], seafloor surveying, and

bathymetry[6].

In most conditions, AUVs cannot rely on optical sensors like cameras and laser

range scanners due to limitations arising from turbidity and light absorption. Visi-

bility in deep water is often constrained to a few meters (1-2 meters) at best. Thus,

acoustic sensors like sonar are better suited for tasks involving mapping and free

space estimation, often providing range information from several meters (10 meters

and up) depending on the type and frequency of the sonar.

Different tasks need different sonar types. For seafloor mapping, side scan sonar

(SSS) is commonly used as in [3, 6], whereas in more structured and complex 3D

environments, imaging sonars are found to be more prevalent as shown in [9, 4, 21,

10]. Teixeira et al. [28] also used an imaging sonar with a concentrator lens in

profiling mode, utilizing submaps to obtain occupancy and subsequently perform
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simultaneous localization and mapping (SLAM).

Figure 1.1: Real-world experiments performed in a test tank.

While sonar is the preferred sensing modality for underwater environments, it is

far from ideal due to noise from random and systematic errors. The sources for these

errors can be due to the environment, temperature, an imperfection in calibration,

cross-talk between transducers and receivers, multipath reflections, as well as delayed

signal returns during vehicle motion [30]. The most common noise pattern observed is

speckle noise. It mainly originates from coherent and random patterns of constructive

and destructive interference of backscattered signals creating pixels with low and high

intensity in the image. This is generally due to wave propagation characteristics and

the material properties of the objects in the frustum of the sonar. It is also a primary
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Figure 1.2: Real world sonar image filtering by our method.

source of visual noise for many wave propagation-based sensors [14, 16, 8].

Reduced noise in sonar images is important for AUVs. It enables the robot to

infer its environment better, through observing features or objects and performing

SLAM. It is also important in the estimation of free space, as noise in the image

can be incorrectly defined as an occupied space. Conventional speckle noise filters

operate on the premise that the actual signal and noise are statistically independent

and can be differentiated on this basis. While most conventional filters are capable

of performing some degree of noise reduction, often it is at the cost of degradation

of important image features such as corners and high contrast boundaries and their

accuracy is limited.

The remainder of the paper is organized as follows. After discussing related

work in the next Chapter, Chapter 3 introduces imaging sonar geometry in both

Cartesian and polar space. Chapter 4 subsequently describes our filtering method,
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followed by an evaluation of the filter performance in Chapter 5. In Chapter 6 we

apply our method toward underwater occupancy mapping and show that our method

outperforms conventional methods used for sonar denoising for both simulated and

real-world sonar image data. Finally, Chapter 7 closes with our concluding remarks

and future directions for this work.
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2

Related Work

There have been several attempts at filtering sonar images through a multitude of

methods. Some of the earliest attempts have been the Lee, Kuan, and Frost fil-

ters for synthetic aperture sonar images as described by [22]. The filters’ measure

of image homogeneity are based on the multiplicative speckle model, which is not

always accurate causing failures for small details in images like corners. Lopes et

al. [19] improved upon these methods by adding two thresholds on the coefficient of

variation, allowing better homogeneous averaging and heterogeneous feature preser-

vation. Variations of wavelet transforms have also performed well in denoising sonar

images as seen in [12, 26]. The transforms work by concentrating the original signal

and image features in a few large-magnitude wavelet coefficients, where the smaller

magnitude coefficients represent the noise. Negahdripour et al. [23] proposed us-

ing multiple images taken from a single viewpoint and averaging to obtain refined

intensity returns. Anisotropic diffusion has shown success for feature-based meth-

ods [27, 31] as well as for dense 3D reconstruction using sonar [32]. Teixeira et al. [28]

utilize a two-dimensional Wiener filter [11] to deconvolve a custom point spread func-

tion for their sonar. Despite the variety of filtering algorithms, there is no consensus
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on what method is best since performance varies with the application of interest.

More recently, machine learning-based methods have gained popularity for gen-

eral image denoising. Lu et al. [20] use a deep convolutional network to reduce speckle

noise. Their results show a great improvement for SSS images. Imaging sonars, es-

pecially forward-looking sonars would typically only have partial occupation from

the viewed object with the rest of the image being empty with noise. Whether this

network could handle this phenomenon is unknown.

The work of Isola et al. [13], pix2pix, showed how a conditional adversarial net-

work can be used for image-to-image translation, performing tasks like generating

photos from edge maps, style transfer, and background removal to name a few ex-

amples. For applications to underwater imaging sonar, Lee et al. [17] have recently

used pix2pix to produce imitation sonar images to augment their training data for a

fully convolutional object segmentation network.

Our proposed method utilizes pix2pix in a different way. We train the conditional

Generative Adversarial Network (cGAN) to generate binary masks of the actual

returns. These masks when used to segment the original raw image help preserve

the high-intensity objects detected in our sonar image, while eliminating most of

the noise in the process as seen in Figure 1.2. The effectiveness of our method is

showcased by using the filtered images to construct an occupancy map.
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3

Background: Imaging Sonar Geometry

Figure 3.1: Geometry of a single sonar image. Point P is represented by range r,
elevation ϕ, and bearing θ. rmax, rmin, ϕmax, ϕmin, θmax, and θmin are respectively the
maximum and minimum ranges, elevation angles, and azimuth angles of the imaging
sonar.

Consider a point P pθ, r, ϕq in the field of view of the imaging sonar, parameterized

in the local spherical sonar coordinate system as seen in Figure 3.1. Here, θ, r, and

ϕ represent the bearing, range, and elevation angle of the point respectively. The
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conversion of P to the Cartesian frame to point Cpx, y, zq and vice versa is

C “

»

–

x
y
z

fi

fl “

»

–

r cos θ cosϕ
r cos θ sinϕ

r sin θ

fi

fl (3.1)

P “

»

–

θ
r
ϕ

fi

fl “

»

–

arctan 2py, xq
a

x2 ` y2 ` z2

arctan 2pz, x2 ` y2q

fi

fl (3.2)

Figure 3.2: Elevation ambiguity and shadow zone of imaging sonar. Green points,
B and C, intercepted by sonar lie in the shadow zone and are thus not visible in the
generated range image. Blue points (D and E) and red points (F and G), lying on
the same elevation arc, cannot be distinguished in the image.

Imaging sonars generate partial spherical measurements by sending out acoustic

signals into a frustum. Time of flight measured from the reflected signals observed by

the transceivers provide the range r and bearing θ, of the reflecting surface. However,

these measurements are unable to disambiguate the elevation ϕ of the reflected signal.

Due to this, all detected returns from a single elevation arc project onto the same

pixel of a range image Ipθ, rq. For a pixel corresponding to a certain bearing and

range in I, the pixel’s intensity corresponds to the intensity of the reflected signal

from all returns along the elevation.
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Along with elevation ambiguity, shadow zones also appear when objects closer

to the sonar obstruct the view of obstacles behind them. Hence, low pixel intensity

values in the sonar images do not necessarily mean the absence of obstacles. A

pictorial representation of shadow zones and elevation ambiguity can be seen in

Figure 3.2
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4

Sonar Image Filtering with cGANs

We present an approach which uses cGANs to filter imaging sonar images. GANs

consist of two networks, a generator G and a discriminator D. The generator’s task is

to produce data that closely matches the training distribution and the discriminator

has the task of distinguishing real images from those produced by the generator. The

generator in GANs tries to learn the underlying training image distribution with no

additional constraints. Hence, the generators are free to learn any mapping from the

noise distribution ppzq to pdata, which are the sonar images and corresponding mask

pairs.

Pix2pix, like other cGANs, conditions the output of the generator model on an

input image through the discriminator model. In cGANs, the training data is in the

form of a pair px, yq, where x and y represent the original image and labeled image

that x is conditioned on respectively. The training objective can be represented as

Loss “ min
G

max
D

LcpG,Dq ` λLL1pGq (4.1)

where λ is the weight applied to the L1 loss term, and the objective of cGANs Lc
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and L1 loss term LL1 are

LcpG,Dq “ Ex,y„pdatarlog Dpx, yqs ` Ex„pdata,z„ppzqrlog p1 ´ Dpx,Gpx, zqqqs (4.2)

LL1 “ Ex,y„pdata,z„ppzq∥y ´ Gpx, yq∥L1 (4.3)

The discriminator’s task in cGANs remains the same, which is to differentiate

real image pairs px, yq from fake pairs px,Gpx, zqq. The added task for the generator

is to make sure the produced images are nearer to the label y, encouraged by the

loss term LL1.

Our proposed work provides noisy sonar images (as x) and binary masks (as y) to

pix2pix to generate close-to-ground truth binary masks as an output. This approach

is in inverse to Lee et al. [17], who give binary masks (as x) and noisy sonar images

(as y) to the generator to get realistic imitations of sonar images.

Figure 4.1 describes our training procedure of how the cGAN is trained to obtain

the inferred mask to filter the raw image for real-world data. We provide a series of

noisy raw data as the input image, x, and a binary mask of the actual surfaces for

the same scenes as our target image, y. When G and D are trained together with

a sufficient number of image pairs, we get a network that produces a well-defined

binary image mask as our output for raw input data. This mask is then used to

segment out the actual return in the sonar image while eliminating a majority of the

image noise. As the generated mask typically has a buffer zone enveloping the object

in view, an unsharp filter is then applied to the trained model’s outputs to further

contrast the reflected signal from the surrounding residual noise.
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Figure 4.1: Conditional GAN for filtering sonar images. Raw and labeled mask pairs
are used to train the network. Passing raw data through the network gives a binary
mask of the segmented returns.
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5

Filtering Results

In this section, we describe our prepared dataset and training parameters before pre-

senting results for both simulation and real-world sonar images. For our simulated

data, we use the HoloOcean simulator [24, 25] and for our real-world data, we use

a Bluefin Hovering Autonomous Underwater Vehicle (HAUV) [7] equipped with a

1.2MHz Teledyne/RDI Workhorse Navigator Doppler velocity log (DVL), a Hon-

eywell HG1700 inertial measurement unit (IMU), and a BluePrint Subsea M1200d

imaging sonar [2] as seen in Fig. Figure 1.1. The DVL/IMU navigation solution has

a time-based drift, estimated to be 1.1 meters in 20 minutes. We train two models,

one for simulated data, and the other for real-world data separately.

To train our simulated data model, we generate 3000 frame pairs of noisy raw

data, and noise-free images converted to binary masks. For the real-world data,

we randomly select 100 frames from a data log, and manually prepare binary mask

images to serve as the target frames. While the HoloOcean simulator is modeled

on the M1200d, we observed different noise patterns in simulation and real data, in

part due to the small, enclosed nature of the test tank which amplified multipath

reflections. Thus attempts to fine-tune a network trained on simulated data with
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real-world data were unsuccessful. However, a separately trained model worked

exceedingly well, even with a modest amount of hand-labeled image pairs. Images

used for training were from different environments than those used for testing, for

both simulation and real-world data.

Both models were trained using pix2pix [13] with an Intel(R) Core(TM) i7-7820X

CPU running at 3.60GHz and a NVIDIA GeForce RTX 3080 Ti GPU for training.

The training time observed for 3000 simulated image frames was roughly 4.5 hours.

Figure 5.1: Filtering results on simulated sonar data with added speckle noise. The
enhanced Lee and wavelet filter perform best for conventional filters. Our method
is able to remove background noise efficiently and give well-defined borders for the
returned signal.

5.1 Simulation Results

We compare our method against four filters: 1. the original Frost filter, 2. the

enhanced Lee filter, 3. Anisotropic diffusion, and 4. wavelet transforms using the

VisuShrink threshold [5]. Parameters were adjusted to attain the best performance

of each filter.

We choose the peak signal-noise ratio (PSNR) as the error metric to compare

the filtration results. As speckle noise is generally formed due to the constructive

and destructive interference of reflected signals from largely uneven surfaces, it has

14



Figure 5.2: Comparison of PSNR of our and selected conventional methods on four
different scenes from the HoloOcean simulator. Our method consistently shows
higher PSNR values for all scenes.

been observed that HoloOcean’s simulated images were unable to replicate the effect

due to the smooth simulated surfaces on the environment models. To make our

comparison more realistic we add normally distributed speckle noise to all images

across four scenes from HoloOcean’s list of available environments. Fig. Figure 5.1

shows the qualitative comparative results of filtration of a sample frame. We note

that our method provides a much sharper distinction of object boundaries, while

conventional filters cannot achieve so to a satisfactory degree. In Fig. Figure 5.2 we

compare the baseline filters and our method through the average PSNR per scene.

Across all the scenes, our method produces a higher PSNR value, indicating better

performance and robustness to noise.

We also compare the time taken for obtaining a filtered image from raw data for
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Table 5.1: Average run time per frame for filtering methods.
Filters Lee Enhanced Frost Anisodiff Wavelet Ours

Time per frame (s) 8.75 22.54 0.03 0.04 0.56

different methods as seen in Table 5.1. All methods were run on the CPU. While

our method takes significantly more time for inference compared to methods such

as the wavelet transform and anisotropic diffusion, the higher filtering performance

is more desirable. When it comes to slow-moving Autonomous Underwater Vehicles

(0.5-1.5 knots [7]), the time taken per frame is not as detrimental.

5.2 Real World Results

For our real-world data, we use the Blueprint Oculus M1200d in its high frequency

(2.1MHz) mode which gives a minimum range of 0.1 meters and is configured to a

max range of 5 meters, with a 600 horizontal field of view. Figure 5.3 compares the

filtration performance of our model for a single frame versus the same aforementioned

conventional filters. We see that our method is better able to filter surrounding noise

and give a sharp contrast to the returned signal.
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Figure 5.3: Filtering results on real-world sonar images from test tank experiments.
Ground truth image is prepared by manually removing noise and sharpening the ac-
tual return from the tank wall. While contours resulting from multipath propagation
exist, our result filters out most noise compared to other conventional methods.

Figure 5.4: Underwater occupancy mapping framework. Raw images passed through
the network produce a binary mask which is used to segment the original raw image.
After passing through an unsharp filter, the image goes through a histogram equal-
ization to generate a higher contrast image for thresholding. Using vehicle poses, we
obtain our final occupancy map.
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6

Application to Occupancy Mapping and Evaluation

Before an AUV can infer its surroundings for mapping purposes, the estimation of

free space is important. For active exploration and mapping, a robot must know

the obstacle-free space surrounding itself to plan safe and efficient paths to unex-

plored regions. Thus, in this section, we apply our method to underwater occupancy

mapping. The complete framework we use for underwater occupancy mapping with

imaging sonar is shown in Figure 5.4. Raw sonar image frames are passed through

the filtering module to provide denoised images which are then passed to the mapping

module. With the filtered range images and known robot poses from the DVL/IMU,

the Cartesian coordinates of obstacles can be computed using Equation 3.1 and uti-

lized in the 3D Bresenham line drawing algorithm [18] to update the values within

the corresponding occupancy grid cells.

We begin with the inverse sensor model for our occupancy mapping framework,

and then present and evaluate the occupancy maps generated with both simulation

and real-world data.
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6.1 Inverse Sensor Model

Once we have the denoised sonar image, histogram equalization is performed [1]

which increases the contrast, giving the regions of interest a higher intensity. The

intensity of corresponding pixels within sonar range images will determine the occu-

pancy of the grid at the pixel location. We define the occupancy of a grid cell in an

occupancy grid map m in the log-odd form as:

lx,y “ log
ppmx,y|zq

1 ´ ppmx,y|zq
(6.1)

where mx,y denotes a binary status of a grid cell at position x, y, and z are the

measurements from the sensor from time 1 through time T [29].

For the given sonar range image data, we place higher confidence on the estimated

free grid cells rather than occupied cells. This is due to the elevation ambiguity ob-

served in imaging sonars, and the possibility of cells estimated as occupied might not

have a significant obstacle along the entire elevation arc. We model our occupancy

using the following inverse sensor model:

inverse sensor modelpm,x, zq “

#

lfree if z ă t,

locc otherwise,
(6.2)

where m represents the status of an occupancy grid cell, x denotes the state of

the sensor itself, z is the measurement of intensity from sonar images, and t is

the threshold used to detect the obstacles within the range image. We use the

following probability ratios for free and occupied cells, which performed the best for

simulations: pfree “ 0.55, and pocc “ 0.05 [29].

19



(a) Average False Positive Rate.

(b) Average False Negative Rate.

Figure 6.1: Average False Positive (a) and False Negative (b) rates for generated
occupancy map using different filtering algorithms and pixel intensity thresholds for
simulated data.
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6.2 Occupancy Map Evaluation for Simulation Data

For measuring the accuracy of our occupancy map, we use the assumption that a

positive cell value from our inverse model indicates that the grid cell is free. Hence,

a false positive occurs when a grid cell is indicated as free but is actually occupied.

Similarly, a false negative means that a cell is occupied while it is literally free. We

do not make assumptions about unknown grid cells. Using this model we plot the

average False Positive Rate (FPR) and False Negative Rate (FNR) for all scenes

across different pixel intensity thresholds, t from 0 to 60 for uint8 images. These

results are as seen in Figure 6.1. As anticipated, our method performs the best

across all threshold values. As the threshold increases, the enhanced Lee filter gets

closer to the performance of our method. But given its filtration run-time, it is not

good for online estimation of free space.

The qualitative results of the generated occupancy map for the wavelet transform

and our method compared to the ground truth and raw map are shown in Figure 6.2,

where we see that our method can provide better free and occupied space information

compared to the wavelet transform. We demonstrate the result from the wavelet

transform since the chosen method performs the best among conventional filtration

approaches for simulations.

6.3 Occupancy Map Evaluation for Real-world Data

Real-world data collected from our test tank, where a static obstacle board was

placed adjacent to the tank wall, as seen in Figure 1.1 was used to qualitatively

compare the free and occupied space maps generated by our method and the wavelet

transform baseline as seen in Figure 6.3. We find that our method is more accurate

for the experiment environment in determining both, free and occupied cells.

We also experiment to analyze the number of manually labeled image pairs needed

21



(a) Ground Truth (b) Raw

(c) Wavelet (d) Ours

Figure 6.2: Final occupancy maps obtained from different filtering strategies using
simulated data

for a robust estimation of free space. In Figure 6.4 we compare the free space map

generated by models using 25, 50, and 100 image pairs for training. We see that

the segmentation quality of the trained model improves quickly with the addition

of more training pairs, giving more accurate free space estimates. We note that our

algorithm is sample efficient as even a small number of hand-labeled data is enough

to generate accurate maps of real-world environments like a test tank.
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(a) Wavelet, freespace (b) Wavelet, occupied (c) Ours, freespace (d) Ours, occupied

Figure 6.3: Occupancy maps generated through wavelet filtering and our method
from real data in the test tank. Our method is able to infer available free space more
accurately

(a) 25 pairs (b) 50 pairs (c) 100 pairs

Figure 6.4: Occupancy maps by our filter using Conditional GAN. Each model is
trained by different pairs of raw data and hand-labeled masks.
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7

Conclusion and Future Work

In this paper, we presented a novel application of cGANs to filter noisy sonar images.

Compared to conventional filters, our approach can recognize and filter noise patterns

better by distinguishing between obstacles and image artifacts. These results are

attainable even with a small training set of raw data and hand-labeled mask pairs.

Using both simulated and real-world data, we showcase the applicability of our

method to the downstream task of occupancy mapping, highlighting how our denois-

ing method has a significantly better inference of free and occupied space compared

to conventional methods.

For future directions of this work, we aim to find a solution to account for multi-

path reflections, something our method cannot disambiguate presently. Apart from

autonomous planning and exploration, we aim to study the suitability of our method

for feature-based SLAM and 3D object reconstruction using imaging sonar.
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