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(a) Demo interactions and their NIFT (b) Interaction imitations generated using NIFT on two new objects (in red)

Fig. 1: We introduce NIFT, Neural Interaction Field and Template, to represent object interactions for imitation learning.
Given a few demo interactions (a) for an object manipulation task, NIFT guides the generation of interaction imitations to
manipulate new object instances (in red) provided in arbitrary poses (b).

Abstract— We introduce NIFT, Neural Interaction Field and
Template, a descriptive and robust interaction representation of
object manipulations to facilitate imitation learning. Given a
few object manipulation demos, NIFT guides the generation of
the interaction imitation for a new object instance by matching
the Neural Interaction Template (NIT) extracted from the demos
in the target Neural Interaction Field (NIF) defined for the
new object. Specifically, the NIF is a neural field that encodes
the relationship between each spatial point and a given object,
where the relative position is defined by a spherical distance
function rather than occupancies or signed distances, which
are commonly adopted by conventional neural fields but less
informative. For a given demo interaction, the corresponding
NIT is defined by a set of spatial points sampled in the demo
NIF with associated neural features. To better capture the
interaction, the points are sampled on the Interaction Bisector
Surface (IBS), which consists of points that are equidistant
to the two interacting objects and has been used extensively
for interaction representation. With both point selection and
pointwise features defined for better interaction encoding, NIT
effectively guides the feature matching in the NIFs of the new
object instances such that the relative poses are optimized to
realize the manipulation while imitating the demo interactions.
Experiments show that our NIFT solution outperforms state-
of-the-art imitation learning methods for object manipulation
and generalizes better to objects from new categories.

I. INTRODUCTION
Teaching a robot with few-shot demonstrations has been a

long-standing goal in robotics [1, 2, 7, 16, 19, 20, 33]. Ide-
ally, robots should be able to learn from a few demonstrations
of a manipulation task and then generalize to new instances
of target objects. Especially for object manipulation tasks
such as using a robot gripper to pick up a mug or hanging
it on a rack (see Figure 1), the gripper and the rack are
always fixed, which can be considered as the anchor objects,
and the goal is usually to perform similar manipulation or
interaction to new object instances to imitate the interactions
shown in the demonstrations. If we refer to the source
object in the demonstrations as a demo object and the new

object instance as the target, our goal then is to generate the
interaction between the anchor object and the target so that
it is analogous to the interaction between the demo object
and the anchor object as shown in the demonstrations.

To optimize the pose of the anchor object with respect
to a new target object to mimic the demo interaction, we
need to address fundamental questions on how to represent
and optimize 3D interactions, and how to measure similarity
between the target and the source, or demo, interactions. The
most important task is to find the right representation, which
should encode rich information of object-object interactions,
rather than the individual 3D objects as well as robust against
variation in shapes of the interacted objects.

Recent work on neural descriptor fields (NDF) [31] aims
to solve this problem with a neural interaction representation
and optimization via feature matching in the neural fields.
NDF characterizes object interactions by sampling a fixed
set of query points, called a Basis Point Set (BPS) [26],
around the anchor object. However, BPS has been shown to
provide an efficient and compact means to encode features of
the anchor object alone, and not the interaction between the
anchor and other objects. Moreover, their point-wise features
are learned with a network that predicts the occupancy of
each point relative to the given object; no spatial relationship
between the point and the object is encoded.

Our key contribution is the introduction of neural inter-
action field and template (NIFT) to provide an informative
interaction representation and similarity measure that fulfills
the criteria mentioned above. Our representation is designed
to effectively guide the feature matching for interaction
imitation adaptive to the new geometry of a target object.

To encode the open space around the object, we first build
the neural interaction field (NIF). For each spatial point, rays
are cast from this point in all directions, and the distances
to the object in all directions form a normalized spherical
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(a) Demo interaction (b) NIT extracted in the demo NIF (d) NIT matched in the target NIF (e) Interaction imitation(c) Target object

Fig. 2: Overview of our interaction imitation method. (a) Given a demo interaction with a robot gripper picking a blue mug,
(b) we first represent the interaction with the NIT, which consists of points sampled on the IBS associated with features
defined in the NIF of the blue mug. (c) To generate an analogical interaction for a target red mug in a random pose, (d) we
perform the interaction imitation by optimizing the global transformation of the NIT to find its best match in the NIF of
the red mug. (d) Finally, the gripper is transformed based on the optimized pose of NIT to form the imitated interaction.

function. Then the spherical harmonics expansion of this
spherical function is computed to get the rotation-invariant
space coverage feature (SCF) [39] of this point relative to
the object. However, the computation of the SCF is time-
consuming and non-differentiable, so instead of using SCF
directly, we train a neural network to predict the pointwise
SCF and then use the vector of concatenated activations as
the neural feature per point, which constitutes the NIF of
a given object. For the given demo interaction, we sample
a set of Interaction Bisector Surface (IBS) [37] points that
are equidistant to two interacting objects. IBS has been
shown to be an informative spatial descriptor of object-object
interactions, while robust against shape variations, and thus
we denote this set of IBS points associated with the NIF
feature as our neural interaction template (NIT). Then given
a new target object, our goal is to find the optimal pose of
the anchor object together with the NIT in the target NIF
with matched features.

We conduct experiments on three pick-and-place tasks to
show that NIFT-guided interaction imitation outperforms the
state-of-the-art methods by at least a 10% overall success
rate boost. With the more descriptive and robust interaction
representation, our method can also generalize well to out-
of-distribution objects. Ablation studies are also presented
to show the importance of both our point selection and
neural feature design. Apart from experiments in a simulated
environment, we also validate our method on a real robot.

II. RELATED WORK

Our work is related to geometric representations of in-
teractions and imitation learning for manipulation. In this
section, we cover prior works most relevant to our method.

Interaction representation. Interaction representations
have been extensively studied to encode spatial relations
between two or more objects. Relative vector used in most
of works for scene generation [9] is relatively simple and
thus usually need to be incorporated with other properties
together to be able to characterize the spatial relationship
between two objects accurately. On the contrary, the IBS [37]
provides more detailed and informative interaction represen-
tation with the geometric and topological features extracted
from the spatial boundary between two objects, which have

been used for scene completion and synthesis [38, 39]. The
corresponding regions on the interacting objects, denoted as
Interaction Region (IR), are further explored for functionality
analysis of 3D shapes [14, 15]. Pirk et al. [25] further
introduce interaction landscapes to build a spatial and tem-
poral representation of interactions that considers dynamic
changes of the interaction between two objects. However, all
of these previous works only focus on the interaction analysis
between two objects without considering the possibility of
the transition from one representation to the other to make
it applicable for interaction imitation.

Imitation learning for manipulation. Imitation learning
for manipulation has been extensively studied in robotics.
Based on different assumptions on the difference between
the demo and target objects, the design of the method
focuses on different aspects and thus have different levels
of generality. For example, pose estimation [29, 36, 40] is
the key for known objects, while primitive-based template-
matching [13, 28, 35] can be more robust to shape and pose
changes. To learn the manipulation policy directly, usually
a large number of demonstrations are required [3, 12, 30,
32]. There are also many recent works that use category-
level keypoints as an object representation for transferable
robotic manipulation [10, 11, 34]. The most related work
in this direction is NDF [31], following the idea of using
neural shape representation [5, 22–24, 27]. NDF divides the
whole object manipulation task into two stages: interaction
synthesis and motion planning, and in the few-shot imitation
setting, the interaction synthesis task here is essentially to
perform interaction imitation. In this work, we focus on solv-
ing the interaction imitation problem with the same pipeline
as in NDF [31] but using the proposed NIFT to represent the
demo interactions to guide and improve the performance of
few-shot imitation learning of 3D interaction.

III. METHOD

Given a demo interaction (Oa, Os), where Oa is the
anchor object and Os is the source object that is to be
replaced with a target object Ot given in a random pose,
our goal is to optimize the global pose T of the anchor
object Oa w.r.t Ot such that their interaction imitates the
demo interaction.
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Fig. 3: NIF computation. For each spatial point around
the object, we predict its SCF using a neural network and
concatenate the activation of the network decoder as its
feature in the neural interaction field.

An overview of our method is illustrated in Figure 2. Given
the demo interaction shown on the left, we first represent the
interaction by sampling the IBS points Xsa on the transparent
surface in the NIF of the demo object to form the NIT.
The global pose of Xsa is then optimized relative to the
target object Ot to form an interaction imitation, based on
the feature matching in the target NIF. So the key idea of our
method is to use the NIT to represent the interaction between
Oa and Os, and further guide the global transformation of
the Oa towards Ot based on the feature matching in the
target NIF to achieve the interaction imitation.

A. Neural Interaction Field (NIF)

The definition of NIF around a given object is inspired
by NDF [31]. As shown in Figure 3, we train a network to
predict the spatial feature of a point x relative to the object
O. However, instead of predicting occupancy of each query
point as in NDF [31], we use more informative SCF [39]
to effectively quantify the relationship between the point
and the object. The concatenated activations of the network
decoder Φ is then used as the point descriptor in the NIF:

f(x|O) =

L⊕
i=1

Φi(x, ε(O)), (1)

where ε is a point cloud encoder, Φi is the activation of the
i-th layer of the decoder, L is the total number of layers of
the decoder, and

⊕
denotes concatenation. Note that SCF is

SO(3)-invariant, and we use the SO(3)-equivariant network
architecture proposed in [8] as in NDF [31] to achieve SO(3)-
equivariance such that the descriptor of a point x remains
constant when its relative position to the object O is fixed,
regardless of the change of their global configuration.

In more details, SCF encodes the geometry of the open
space around objects in the frequency domain using spherical
harmonics. For each spatial point x, rays are cast from x in
all directions to compute a normalized spherical function Fx:

Fx(θ, φ) =
dmin + davg
dx(θ, φ) + davg

(2)

where dx(θ, φ) is the hit distance of the ray along the
direction (θ, φ), and dmin and davg are the minimum and

Demo & Point Target SCF NDF NIF

Fig. 4: Comparison of different pointwise features. In each
row, for a spatial point located around the source object, we
compute the feature differences of this point to all the points
around the target object and show the difference map.

mean value of all non-infinity distance of dx. Then Fx

is decomposed into weighted sum of a group of spherical
function basis via spherical harmonics expansion [17]:

Fx(θ, φ) =

∞∑
l=0

∑
|m|≤l

cml Y
m
l (θ, φ) (3)

where cml are the spherical harmonics coefficient and Y m
l

are the orthonormalized spherical harmonics at frequency l.
The SCF of point x is finally defined as:

SCFx = {c0, c1, ..., cn} (4)

where cl = ‖
∑
|m|≤l c

m
l Y

m
l ‖2 =

√∑
|m|≤l(c

m
l )2 is the

power of the function at frequency l.
Figure 4 shows some comparisons of different pointwise

features, including SCF [39] predicted by the network,
NDF [31] based on occupancy, and our NIF based on SCF.
For a spatial point around the demo object, we compute the
L1 feature differences of this point to all the points around
the target object and show a slice of the difference map,
where blue indicates smaller difference and red indicates
larger difference. We can see that compared to NDF and the
predicted SCF, NIF is more distinctive in corresponding to
the similar spatial regions of the different objects. Note that
as SCF encodes relative distance information in a normalized
scale according to Equation 2, our NIF is also robust to the
scale differences between the demo and target objects.

B. Neural Interaction Template (NIT)

As the goal is to transfer the anchor object Oa to the
target object Ot to imitate the interaction between Oa and
Os, we would like the interaction representation to capture
the features of the most important regions related to the
interaction. Thus, we opt to sample a set of IBS points Xsa

in the demo NIF of Os to form the NIT representing the
demo interaction between Oa and Os.

Given a demo interaction with a pair of objects (Oa, Os),
IBS [37] is defined as a set of points that are equidistant to
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Fig. 5: Comparison of the optimization process using either
IBS points or BPS points, both associated with NIF features.

both the objects. To compute IBS, we first sample a set of
points on the surfaces or point clouds of the two interacting
objects uniformly and compute the Voronoi diagram for all
those samples. The IBS is a subset of the Voronoi diagram
which lies in between the two objects. Since IBS extends
infinitely, we truncate it where it intersects with the bounding
sphere of the two objects, and then use an importance-based
sampling scheme to sample a set of points on the IBS to
be the query point cloud Xsa as in [37]. Intuitively, regions
which are closer to the interacting objects are more important
for characterizing the interaction and thus more points are
sampled from there to give a better abstraction of the IBS.

C. Pose optimization for interaction imitation

The goal of interaction imitation is to find an optimal pose
of Oa so that the spatial relationship between Oa and Ot

resembles the one between Oa and Os. With the interaction
between Os and Oa being represented by IBS points Xsa and
the associated demo NIF features {f(x|Os)}, the goal now
becomes to find an optimal pose of Xsa such that the point-
wise features conditioned on target NIF {f(x|Ot)} are as
close to {f(x|Os)} as possible. This is because the relative
pose between Xsa and Oa is fixed, and the global pose of Oa

is uniquely determined by that of Xsa. Thus, the optimization
is formulated as:

T̄ = arg min
T

∑
x∈Xsa

‖f(x|Os)− f(Tx|Ot)‖1. (5)

To optimize the global pose of Xsa relative to Ot, we first
move the centroid of Xsa to the centroid of Ot, and then
randomly sample a translation t near the origin and a rotation
R from the Haar distribution to compose the initial pose T =
(R, t). We then optimize the rotation R and translation t to
minimize the objective function in Eq. (5) using an iterative
optimization solver, in particular, ADAM [18].

Figure 5 shows the comparison of the optimization process
using either IBS points or BPS points but with the same
pointwise feature NIF. We color-code the points to indicate
the point-wise feature distances. We can see that in both
cases the gripper (anchor object Oa) gradually moves closer
to the mug (target object Ot), guided by the movement
of the query points Xsa, and finally forms an interaction
analogy. Note how the distances of the points are minimized
during the optimization, while IBS leads to more accurate
interaction without penetration.

D. Few-shot imitation learning
When given more than one demonstration, we incorporate

the information extracted from all demo interactions to
form the NIT. We first align the IBS points from all demo
interactions into a common frame determined by the anchor
object, and then perform density-based resampling to keep
the points most relevant to the interaction on this anchor.
In more detail, we compute a normalized weight for each
point based on the average distance to its k nearest neighbors
to resample the points. We set k equal to the number of
demonstrations in our experiments. We take the resampled
points as the query points of NIT to compute the NIF features
for each demo object, and the average NIF feature of each
point is used as the final pointwise feature of NIT. Once
we have an NIT, we can perform imitation learning by
performing the optimization explained in Sec. III-C.

IV. EXPERIMENT
A. Experiment setup

Task setup. To evaluate our method, we conduct the
same pick-and-place experiments introduced in NDF [31]:
1) Grasp the rim of a mug and hang its handle to a rack;
2) Grasp the side of a bowl and place it upright on a shelf;
and 3) Grasp the neck of a bottle and place it upright on
a shelf. Given a few demonstrations of the same task with
objects initialized in the upright pose, the robot is asked to
manipulate unseen objects in similar ways.

Environment setup. Following NDF [31], we create the
simulated environment in PyBullet [6] with a two-finger
gripper on a table and a RGB-D camera at each corner
to obtain the fused point clouds for objects. It is assumed
that the object is segmented from the background and the
environment remains fixed between demo and test time.

Experiment setup. For each task in the simulated environ-
ment, we conduct two groups of experiments with different
initial pose settings. For the easy setting, we initialize the
test objects with a random upright pose like demonstration.
For the hard setting, all objects are initialized in arbitrary
SE(3) poses upon the table. We also apply random uniform
scaling to all test objects. In each experiment, we provide 10
upright demonstrations and 100 unseen object instances.

Evaluation metrics. Quantitative evaluation is conducted
in the simulated environment, and the results are evalu-
ated by the success rates for grasping, placing, and overall
processing. A successful grasping means the test object
is stably grasped by the arm after disabling the physical
collision between the test object and the other objects in
the environment. Similarly, a success of placing needs the
object to be stably dropped on the rack or shelf after setting
the test object to an optimized pose. Note that we do not
require the arm to make a successful motion planning from
the grasped pose to the pre-place pose for the success of the
overall process. As in NDF [31], we use off-the-shelf inverse
kinematics and motion planning algorithms to execute the
final pick-and-place task based on the predicted relative
poses, and the collisions between the gripper and the object
are ignored before reaching the target pose.



TABLE I: Comparison of different methods on object manipulation task. CPD uses the demo objects as templates, and other
methods use different combinations of query points (BPS and IBS) and pointwise features (NDF, SCF and NIF). Note that
the combination of BPS and NDF refers to the method of [31], and our NIT with IBS and NIF is shown in the last row.

Method Mug Bowl Bottle MEAN
Point Feature Grasp Place Overall Grasp Place Overall Grasp Place Overall Grasp Place Overall
Upright Pose
CPD 0.91 0.50 0.47 0.81 0.99 0.80 0.54 1.00 0.54 0.75 0.83 0.60

BPS
NDF 0.97 0.92 0.89 0.96 0.83 0.81 0.85 0.98 0.85 0.93 0.91 0.85
SCF 0.97 0.68 0.65 0.92 0.77 0.69 0.45 0.87 0.39 0.78 0.77 0.58
NIF 0.99 1.00 0.99 0.98 1.00 0.98 0.68 1.00 0.68 0.88 1.00 0.88

IBS
NDF 0.98 0.85 0.84 0.97 1.00 0.97 0.93 0.99 0.93 0.96 0.95 0.91
SCF 0.96 0.54 0.53 0.97 0.35 0.34 0.46 0.93 0.45 0.8 0.61 0.44
NIF 0.99 1.00 0.99 0.96 1.00 0.96 0.90 1.00 0.90 0.95 1.00 0.95

Arbitrary Pose
CPD 0.32 0.34 0.11 0.43 1.00 0.43 0.43 0.97 0.41 0.39 0.77 0.32

BPS
NDF 0.68 0.63 0.47 0.76 0.79 0.58 0.55 1.00 0.55 0.66 0.81 0.53
SCF 0.61 0.75 0.43 0.71 0.73 0.51 0.49 0.88 0.41 0.60 0.79 0.45
NIF 0.65 1.00 0.65 0.67 1.00 0.67 0.46 0.97 0.45 0.59 0.99 0.59

IBS
NDF 0.71 0.54 0.39 0.71 1.00 0.71 0.54 0.98 0.53 0.65 0.84 0.54
SCF 0.65 0.68 0.44 0.79 0.44 0.31 0.44 0.89 0.36 0.60 0.67 0.37
NIF 0.74 1.00 0.74 0.75 1.00 0.75 0.59 0.99 0.59 0.69 1.00 0.69

Training details. To train networks in our work and
baselines, we use the simulation environment to create a
dataset with 100,000 point clouds of randomly scaled and
posed objects for each object category and train the network
across all categories. We sample spatial points uniformly
in a box 1.5 times larger than the object’s bounding box
and compute the SCF and occupancy as ground truth. We
use L1 loss for the SCF network and binary cross entropy
loss for the occupancy network. The networks have the same
architecture. We train all the networks with gradient descent
using Adam optimizer [18] with a learning rate 1e-4 for 50
epochs. We use 10% of the dataset as the validation set.The
occupancy network achieves 92% in accuracy and the SCF
network achieves 86% in mean R2 score.

Optimization details. To minimize the objective function
of few-shot imitation learning, we use the Adam optimizer
with learning rate 1e-2 and optimize it for maximum 500
iterations. Following previous work [31], 10 parallel opti-
mizations with different initialization are conducted at the
same time, and the optimized pose with the lowest error is
taken as the final result. All results are converged within the
max iteration in our experiments.

Baselines. We compare our method to two types of
baselines. The first set of baselines are methods with the
same optimization pipeline as ours but using different com-
binations of query points and point-wise features. For query
points selection, we compare IBS with BPS used in [31].
For the point-wise features, we compare NIF with NDF used
in [31] and SCF directly output by the prediction network.
The second type of baseline is a more traditional object-
matching method following [28]. More specifically, we take
all demo objects as templates and register them with the
target object using coherent point drift (CPD) [21]. The best
registration result is then used to transfer the gripper from
the demo object to the target to form the final interaction.

TABLE II: Out-of-domain tests where the source object
(Bowl/Bottle) in the demonstration and the testing target
object (Mug/Vase) are from different categories.

Method Bowl:Mug Bottle:Vase
Grasp Place Overall Grasp Place Overall

Upright Pose
CPD 0.89 0.89 0.78 0.52 1.00 0.50
NDF 1.00 0.62 0.62 0.72 0.86 0.66
Ours 1.00 0.99 0.99 0.92 0.99 0.92
Arbitrary Pose
CPD 0.56 0.94 0.53 0.32 0.89 0.30
NDF 0.66 0.76 0.51 0.37 0.95 0.35
Ours 0.73 1.00 0.73 0.56 0.99 0.56

B. Experiment results

Table I shows the comparison of success rates of our
method to different baselines. We can see that methods
utilizing neural fields consistently outperform the traditional
object-matching method, denoted as CPD. CPD requires
an initial coarse alignment to avoid local minima, which
leads to apparent performance degradation in the arbitrary
pose setting. When checking different combinations of query
points (BPS and IBS) and pointwise features (NDF, SCF and
NIF), we can see that the combination of IBS and NIF yields
the best results, especially for the overall success, confirming
the superiority of NIT on interaction representation.

When comparing the baselines with the same pointwise
feature but different sets of query points, we see that in most
cases IBS produces better results than BPS. When comparing
the baselines with the same set of query points but with
different pointwise features, we see that the advantage of NIF
over NDF is less dominant. We believe the more informative
features provided by NIF should be used with points located
in important regions rather than points all over the space to
provide clearer guidance.
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Fig. 6: Example executions of NIFT for manipulation tasks on real objects. (a) The setup of our experiment with only
single RGB-D camera facing the robot. (b) Example demonstrations for the pick-and-place tasks on objects from different
categories. (c) Example imitation results on new object instances.

Out-of-domain test. Table II shows the out-of-domain test
of our method comparing to NDF [31]. In one experiment,
the source and target objects are from different categories
but can be applied by the same type of grasp or place
action. For example, mugs can be grasped by the rim and
placed on the shelf as the bowls, so we can use the bowl
demonstration but test on a mug. In the other experiment,
the target objects are sampled from an unseen category. We
use vases in ShapeNet [4] to imitate the grasping and placing
interaction of bottle in the demonstration. We can see that our
method generalizes better than the object-matching baseline
CPD and the work of [31] in both cases, and we think it
is because our NIT can better represent the characteristics
of interaction in the demonstrations instead of the specific
object. Occupancy is sensitive to the definition of inside and
outside of the global shape, while SCF is a local geometric
feature of a spatial point which makes it more suitable to
represent interactions between objects.

Hyperparameter for SCF computation. Since SCF is the
power of spherical harmonic coefficients, its first few orders
are related to the spatial structure around the point, while
the latter orders represent more details. Table III shows the
results when using different SCF orders, n. We can see that
the performance is relatively stable but too few orders (n =
3) limits the representation power of the SCF. On the other
hand, SCF with more orders may introduce confusion by its
redundant information. We set n = 5 in all our experiments.

Real world execution. Apart from experiments in the
simulated environment, we also validate our method on a
real robot as shown in Figure 6. We use a UR5 arm with a
two-finger gripper to execute object manipulation tasks. To
test the robustness of our method, we use only one KinectV2
RGB-D camera in front of the robot to capture a single-view
point cloud of the demonstration and test objects in the local
coordinate frame of the robot. We also retrain the network
with only one viewpoint of the generated dataset in the
simulation environment. We record all demonstrations with
objects in upright poses and test with unseen objects in the
same category. For each test, three demonstrations are used.
With only single-view information and a few demonstrations,
NIFT is able to guide the interaction imitation on shapes with

TABLE III: Test with different SCF orders, n.

SCF Order 1 3 5 7 10
Upright Pose 0.92 0.95 0.95 0.94 0.93

Arbitrary Pose 0.54 0.65 0.69 0.66 0.62

various geometries. Please check the supplementary video for
real-world task execution.

V. CONCLUSIONS

We introduce neural interaction field and template (NIFT)
to provide a descriptive and robust representation of demo
interactions as well as guide the imitation learning for object
manipulation. Experiments show that both point selection
and pointwise feature design are essential for the final
performance and suggest using the combination of IBS and
NIF, leading to our NIT, highly boosts the performance,
compared to state-of-the-art methods.

For further investigation, as the NIF we used to compute
pointwise features for interaction representation is data-
driven, although it’s already more informative than NDF as
shown in our experiments, it may still not generalize well to
objects from unseen categories, so it would be interesting
to explore other SE(3)-invariant and differentiable feature
designs that are more robust to geometric variations. More-
over, currently we assume that the anchor objects are fixed,
e.g., the two-finger gripper and the hanger, we would also
like to further explore ways to perform few-shot imitation
learning for object manipulation tasks using anchor objects
with higher DoF.
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