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Embodied Agents for Efficient Exploration and Smart Scene Description

Roberto Bigazzi, Marcella Cornia, Silvia Cascianelli, Lorenzo Baraldi, Rita Cucchiara

Abstract— The development of embodied agents that can
communicate with humans in natural language has gained in-
creasing interest over the last years, as it facilitates the diffusion
of robotic platforms in human-populated environments. As a
step towards this objective, in this work, we tackle a setting for
visual navigation in which an autonomous agent needs to ex-
plore and map an unseen indoor environment while portraying
interesting scenes with natural language descriptions. To this
end, we propose and evaluate an approach that combines recent
advances in visual robotic exploration and image captioning on
images generated through agent-environment interaction. Our
approach can generate smart scene descriptions that maximize
semantic knowledge of the environment and avoid repetitions.
Further, such descriptions offer user-understandable insights
into the robot’s representation of the environment by high-
lighting the prominent objects and the correlation between
them as encountered during the exploration. To quantitatively
assess the performance of the proposed approach, we also
devise a specific score that takes into account both exploration
and description skills. The experiments carried out on both
photorealistic simulated environments and real-world ones
demonstrate that our approach can effectively describe the
robot’s point of view during exploration, improving the human-
friendly interpretability of its observations.

I. INTRODUCTION

Over the past few years, advances on visual navigation
and machine learning have shown that training navigation
policies with reinforcement learning in simulated photore-
alistic environments [1]-[3] for millions or even billions of
frames [4] allows agents to generalize their navigation skills
to unseen environments without the need of acquiring any
previous knowledge. A plethora of exploration rewards and
strategies has been presented in the representation learning
community and, generally, those strategies can be adapted
to work on board of smart autonomous agents and improve
their perception of the surrounding, and consequently, the
desired behavior. A popular approach for such agents follows
a modular, hierarchical navigation policy design such as the
one proposed by Chaplot et al. [5], which optimizes a re-
ward function that encourages exploration [6]-[8]. Embodied
agents trained on sufficiently photorealistic simulators are
then deployable onto real-world robotic platforms [9]-[11],
thus contributing to the widespread of service robots.

At the same time, research connecting robotics, vision,
and natural language processing has attracted interest and
has led to the emergence of robotic vision and language
tasks, such as vision-and-language navigation [12]-[15] and
embodied question answering [16]-[19]. However, using lan-
guage to facilitate the human understanding of the behavior
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and perception of a robotic agent is still an under-explored
path [20]-[23], in which further research steps are needed
to reach a seamless interaction between humans and robots.
In this respect, image captioning approaches, whose goal is
to generate a natural language description of a given image,
have seldom been employed in navigation and exploration
settings. In such approaches, images can be represented
by using convolutional neural networks to extract global
features [24], grids of features [25], or features for image
regions containing visual entities [26]. In most cases, atten-
tion mechanisms are applied to enhance the visual input rep-
resentation. More recent approaches employ fully-attentive
Transformer-like architectures [27] as visual encoders, which
can also be applied directly to image patches [28], [29]. The
image representation is then used to condition a recurrent
neural network [24], [30], [31] or a Transformer-based [32],
[33] language model that generates the caption.

The capability of image captioning approaches to pro-
duce natural descriptions of everyday images is, however,
insufficient when working in an embodied setting in which
the agent continuously moves inside of an environment and
needs to portray interesting scenes. In such a scenario,
indeed, not all the images observed by the agent are seman-
tically relevant as they might contain uninteresting objects or
scenes (e.g. when facing a wall) or there might be low variety
between temporally consecutive observations. Hence, a naive
captioning of such images would result in uninteresting
descriptions and avoidable repetitions. To overcome this, the
captions should be generated only when the scene observed
is worth being described to a human.

In this work, we take a step forward with respect to
the above-mentioned limitations and propose a complete
pipeline for efficient exploration and mapping which can, at
the same time, provide user-understandable representations
of the perceived environment in the form of natural lan-
guage descriptions. We jointly integrate and propose visual
exploration strategies, a state-of-the-art approach for image
captioning and smart description policies in an embodied
setting, with the final aim of improving human understanding
of robotic perception. Also, we devise a novel metric, called
episode description score (ED-S), that evaluates the explo-
ration and the ability of covering objects in the environment
avoiding repetitions. We extensively test the performance of
the proposed approach in comparison with different baselines
on both Gibson [1] and Matterport3D [2] datasets. Finally,
while our approach is trained and evaluated in simulation,
the proposed architecture is designed for the final deploy-
ment on a real robotic platform, as we show in the video
accompanying the submission.
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Fig. 1: Overview of the proposed approach for smart scene description, comprising a navigator, a speaker policy, and a

captioner module.

II. PROPOSED APPROACH

Our proposed architecture is composed of three main
components: a navigator, in charge of the exploration, a
captioner, that describes interesting scenes, and the speaker
policy that decides when the captioner should be activated.
An overview of our complete architecture is shown in Fig. [T}

A. Navigator

The exploration capabilities of the agent are strictly depen-
dant on the performance of the navigation module, therefore
relying on a proper navigation approach is of fundamental
importance. Following recent literature on embodied visual
navigation [5], [6], [34], we devise a hierarchical policy
coupled with a learned neural occupancy mapper and a
pose estimator. The hierarchical policy sets long and short-
term navigation goals, while the neural mapper builds an
occupancy grid map representation of the environment and
the pose estimator locates the agent on such map.

Mapper. In order to track explored and unexplored regions
of the environment over time, the mapper is a fundamental
component. Moreover, a neural-based mapper allows to infer
regions occupancy beyond the observable area in front of the
agent, facilitating the planning phase [6]. The output of the
mapper is a M X M x 2 global map of the environment m;, that
keeps track of the non-traversable space in its first channel
and the area explored by the agent in the second one. At
each time step, the mapper processes the RGB-D observation
st = (s%”.s¢) coming from the agent and predicts a L x L x 2
egocentric local map [; representing the state in front of
the agent. RGB images are encoded using a ResNet-18 [35]
followed by a UNet encoder [36], while depth observations
are encoded using only a UNet encoder. RGB and depth
features are concatenated and fed to a CNN to merge the two
modalities. Finally, a UNet decoder processes the merged
features to predict the local map /. At every timestep f,
the local map I; is transformed using the estimated pose
of the agent @ and registered to the global map m, with
a moving average. The global map is initially empty and is
built incrementally with the exploration of the environment.

Pose Estimator. Relying on a global map requires a robust
pose estimator in order to build geometrically coherent and
precise maps. Indeed, an inaccurate pose estimate would
rapidly diverge from the ground-truth pose, and loop closure
is inapplicable if previous knowledge of the environment is
not available. Furthermore, directly using the pose sensor of
the robot is not sufficient since sensor noise, slipping wheels,
and collisions with obstacles would not be accounted for. The
adopted approach uses the difference between consecutive
pose sensor readings Aw/ = o — @/, as a first estimate of
the motion of the agent, where @ = (x],y,,6/), with (x},y/)
being the coordinates on the map, and 9,’ the orientation of
the agent. In order to correct eventual inaccuracies, we use
local maps I;, I;_; extracted from the respective observations
as feedback. The local map /;_ is rototranslated with respect
to the current position of the agent using A@/. Transformed
l;—1 and [; are concatenated and fed to a CNN to output a
corrected displacement Aw;. At every timestep, Aw; is used
to compute the pose of the agent with respect to the pose at
the previous step:

o =1 +Aw, where @ = (x,y:,6;). (1)

Without loss of generality, we consider the agent starting
from @y = (0,0,0), i.e. the center of the global map m;.

Navigation Policy. The navigation policy adopts a hierar-
chical structure as used in [5], [6], [34]. Specifically, the
navigation policy comprehends three modules: a high-level
global policy, a deterministic planner, and an atomic local
policy. The hierarchical policy is adopted to decouple high-
level and low-level concepts like moving across rooms and
avoiding obstacles. It samples a goal coordinate on the
map, while the deterministic planner uses the global goal
to compute a local goal in close proximity of the agent. The
local policy then predicts actions to reach the local goal.
The global policy takes as input an enriched version of
the current global map m,. A map encoding of the current
position of the agent and a map with already visited locations
are concatenated to m, to form a M x M x 4 map m;". The
enriched map m; is both max-pooled and cropped with
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Fig. 2: Qualitative exploration trajectories of different navigation agents on the same episode.

respect to the position of the agent to a dimension G X G x 4.
Then, the resulting two versions of m," are stacked together
to form the final 8-channel input of the global policy which
is processed to sample a point on a G x G grid. The output of
the global policy is converted to a coordinate on the global
map my, that is the global goal g;. The global policy is trained
with reinforcement learning using the global reward r5'?°".

The deterministic planner adopts the A* algorithm to
compute a feasible trajectory from the current position of
the agent to the global goal using the current state of the
map m,. A point on the trajectory within 1.25m from the
agent is extracted to form the local goal p;.

The local policy takes as input the current RGB observa-
tion s,’gb as well as the relative displacement of the local goal
p; from agent’s position @y, and predicts the atomic action
needed to reach the local goal. The output of the local policy
corresponds to one of the following atomic actions: move
forward 0.25m, turn left 10°, and turn right 10°. This policy
is trained with a reward r/°““ that encourages the decrease

in the geodesic distance between agent and local goal:

d(mt 1y Pr—1, Wy— 1) d(mtaptva)t)7 (2)

where d(-) returns the geodesic distance using the position
of the agent, the local goal, and the global map to account
for possible obstacles on the way.
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B. Exploration Rewards

We compare various global exploration rewards such as
curiosity [37], coverage [38], anticipation [6], and impact [8].
All the considered methods obtain the reward by exploiting
visual input sensors only. Exemplar exploration trajectories
resulting from the different rewards are reported in Fig. 2]

Curiosity. The curiosity reward adopts two additional neural
networks that learn the environment dynamics. A forward
model is trained to predict the encoding of the future RGB
observation given the encoding of the current observation
and action, and an inverse model is trained to infer the action
. . rgb rgb
a, performed between consecutive observations (s;°",s,7 ).
These models are trained minimizing the following losses:

2
rb rgh ~
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where ¢ (s"¢?) and ¢ (s'¢") denote predicted and ground-truth
encodings of the observation 5780 y is the one-hot encoding
of the ground-truth action a, and & is the predicted action
probability distribution. The global reward for the curiosity-
driven model is given by the error of the forward dynamics
model prediction during the navigation:

A = TG~ o I @

where 7 is a normalizing term set to 0.01.

Coverage. The coverage-based reward maximizes the infor-
mation gathered at each timestep, being it the number of
objects or landmarks reached or area seen. In this work, we
consider the area seen definition, as proposed in [5]:

PSP = AS, — AS,_1, 5)
where AS indicates the number of pixels explored in the

ground-truth map.

Anticipation. The occupancy anticipation reward [6] aims
to maximize accuracy in the prediction of the map including
occluded unseen areas, i.e.,

r‘tglobal — ACC(mtam*) —ACC(mt—hm*)a (6)
M?> 2
Acc(m,m*) ZZ]lm,J—m,j (7)
i=1j=

where m is the predicted global map, m* is the ground-truth
global map, and 1[-] is the indicator function.

Impact. The impact reward encourages actions that mod-
ify agent’s internal representation of the environment, with
impact at timestep ¢ that is measured as the /,-norm of the
encodings of the two consecutive states @ (s;) and ¢ (s;41).
However, using the formulation of impact as it is, could lead
to trajectory cycles with high impact but low exploration.
To overcome this issue, Raileanu et al. [39] uses the state
visitation count N(s;) to scale the reward. Unfortunately in
our setting, the concept of the visitation count is not directly
applicable, due to the continuous space of the photo-realistic
environment. Hence, we adopt and evaluate the impact-based
methods proposed in [8]. Such methods formalize a pseudo-
visitation count N(s;) in continuous environments with two
different approaches: grid and density model estimation. The
final global reward for the impact-driven model becomes:

pslobal _ H¢ tribl (s’rgb)Hz/\/%, (8)

where ¢(s"?) and N(s,) are the encoding and the estimated
pseudo-visitation count at timestep 7.

C. Captioner

The goal of the captioning module is that of modeling an
autoregressive distribution probability p(w;|w<;, V), where
V is an image captured from the agent and {w,}, is the
sequence of words comprising the generated caption. This is
usually achieved by training a language model conditioned
on visual features to mimic ground-truth descriptions. For
multimodal fusion, we employ an encoder-decoder Trans-
former [27] architecture. Each layer of the encoder employs
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Fig. 3: A sample of agent observation and corresponding
images used by the speaker policy to trigger the captioner.

multi-head self-attention (MSA) and feed-forward layers,
while each layer of the decoder employs multi-head self-
and cross-attention (MSCA) and feed-forward layers. For en-
abling text generation, sequence-to-sequence attention masks
are employed in each self-attention layer of the decoder.

To obtain the set of visual features V for an image, our
model employs a visual encoder that is pre-trained to match
vision and language (i.e. CLIP [40]). Compared to using fea-
tures extracted from object detectors [26], [41], our strategy
is beneficial in terms of both computational efficiency and
feature quality. The visual descriptors V = [v,vs,...,vy] are
encoded via bi-directional attention in the encoder, while the
token embeddings of the caption W = [wy,ws,...,w;] are
inputs of the decoder, where N and L indicate the number
of visual embeddings and caption tokens, respectively. The
overall network operates according to the following schema:

encoder 0; = MSA(v;, V),

decoder Oy, = MSCA (w;, V, [wy,ws, ...,w;]), (9)

where O is the network output, MSA(2,Y) is a self-attention
with  mapped to query and Y mapped to key-values,
MSCA(z,Y,Z) indicates a self-attention with & as query
and Z as key-values, followed by cross-attention with x as
query and Y as key-values, and V = [}, 9, ..., By]. We omit
feed-forward layers and the dependency between consecutive
layers for ease of notation.

D. Speaker Policy

While exploring the environment, the agent sees various
RGB observations. Even if the agent was navigating effi-
ciently, the majority of the observations would be overlapped
with each other, and the same objects would be observed at
multiple consecutive timesteps. Since the agent should de-
scribe only relevant scenes during exploration and avoid un-
informative captions or unnecessary repetitions, a component
that controls caption generation becomes necessary. We thus
introduce a speaker policy which is responsible for triggering
the captioner depending on the current view. We compare
three approaches that exploit different modalities: a depth-
based policy, an object-based policy, and a visual activation-
based policy. An example of the considered modalities for
the same observation is reported in Fig. [3]

Depth-based Policy. High mean depth values indicate a
larger area observed by the agent, and potentially, a richer
scene to be described. Instead, when the field of view of the
agent is occluded by an obstacle, the mean depth value of the
observation sf is typically low. Therefore, the depth-driven

policy uses the current depth observation s¢ and computes
its mean value. The captioner is activated if the mean depth
value is above a predetermined threshold D.

Object-based Policy. Considering that the description of
the scene will concentrate on relevant objects, the object-
driven policy uses the number of relevant objects in the RGB
observation s,rgb to decide if the captioner should generate the
description. Specifically, the captioner is triggered only if at
least a number O of objects are being observed in the scene
since using observations with multiple objects allows a larger

variety of generated captions.

Visual Activation-based Policy. Another possible strategy to
implement the speaker policy entails exploiting the activation
maps of the same visual encoder used by the captioner
(which is a CLIP-like [40] encoder, as detailed in Sec. [[I-C).
Such a speaker policy is more closely related to the cap-
tioning module and provides a means to interpret the image
regions that are more relevant to the agent. In particular,
in this work, we consider a CNN-based visual encoder and
thus take the feature maps from the last convolutional block,
projected into a d-dimensional vector. This vector is then
averaged, and the speaker policy is activated if its average is
above a certain threshold A, thus indicating the presence of
sufficient semantic content in the image.

III. EXPERIMENTS

A. Implementation and Training Details

Navigator. All the exploration models are trained for 5M
frames on Gibson Dataset [1] environments using Habitat
simulator [3]. The evaluation is performed using the test
split of Matterport3D (MP3D) dataset [2] and the validation
split of Gibson tiny dataset, because they contain object
annotations that are used to evaluate the generated captions.

The RGB-D input to the components of the navigator
is resized to 128 x 128 pixels, and the global map size is
M =2001 for MP3D and M =961 and Gibson environments.
The size of the local map predicted by the mapper is L =
101, and each pixel in the maps describes a 5 x 5 cm?
of the environment. Regarding the global policy, the grid
size used for the prediction of the global goal is G = 240,
and the global goal is sampled every Ng = 25 timesteps.
Both the global and local policies are trained using PPO
algorithm [42] with a learning rate of 2.5 x 10~%, while the
mapper and the pose estimator use a learning rate of 1073,
Episode length is set to 500 and 1000 for the training and
evaluation phases, respectively.

Speaker Policy. Since the MP3D dataset has richer ob-
ject annotations and larger environments than the Gibson
dataset, we compare two different sets of threshold values
depending on the evaluation dataset for the depth- and object-
based policies for triggering the captioner. In particular, the
threshold values for MP3D dataset are D = (1.0,2.0,3.0) and
0 = (1,3,5) for depth- and object-based policies. Depth and
object thresholds are D = (1.0,1.5,2.0) and O = (1,2,3) for
Gibson dataset. On the other hand, for the activation-based



criterion, we use the same set of threshold values for both
the evaluation datasets, i.e. A = (4.5,5.0,5.5).

Captioner. As training and evaluation dataset, we employ
COCO [43] following the splits defined in [24]. To improve
the generalization abilities of the model, we also train a
variant on a combination of 35.7M images taken from
both human-collected datasets (i.e. COCO [43]) and web-
collected sources (i.e. SBU [44], CC3M [45], CC12M [46],
WIT [47], and a subset of YFCC100M [48)]).

We consider three configurations of the captioner, varying
the number of decoding layers /, model dimensionality d, and
the number of attention heads A: Tiny (I =3, d =384, h=06),
Small (I =6, d =512, h =38), and Base (I =12, d = 768,
h = 12). For all models, we employ CLIP-ViT-L/14 [40] as
visual feature extractor and three layers in the visual encoder.
To assess the effectiveness of CLIP-based features, we also
consider a variant of the Tiny model that employs region-
based visual features, extracted from Faster R-CNN [26],
[49]. We train all captioning variants with cross-entropy loss
using LAMB [50] as optimizer. We employ the learning rate
scheduling strategy proposed in [27], with a warmup of 6,000
iterations and a batch size equal to 1,080. We additionally
fine-tune the models with the SCST strategy [30], by using
the Adam optimizer [51], a fixed learning rate equal to 5 x
1070, and a batch size of 80.

B. Evaluation Protocol

As the task of smart scene description requires both
exploration and description capabilities, for evaluation we
use exploration and captioning metrics, as well as a novel
score specifically devised for the task.

Navigator. As for the performance of the navigation module,
we express them in terms of metrics that are commonly used
for evaluating embodied exploration agents. In particular, we
consider the intersection over union between the ground-truth
map of the environment and the map reconstructed by the
agent (loU), the extent of correctly mapped area (i.e. the map
accuracy Acc), and the extent of environment area visited by

the agent (i.e. the area seen AS), both expressed in m?.

Captioner. For evaluating the performance of the captioning
module on the COCO dataset, we consider the standard
image captioning metrics BLEU-4 [52], METEOR [53],
ROUGE [54], CIDEr [55], and SPICE [56].

Episode Description Score. Different from standard cap-
tioning settings, where ground-truth captions are available for
the images, in our setting such information is not available.
However, the considered 3D environments datasets come
with annotations of the objects in the scene, which can be
exploited for performance evaluation. In particular, based on
the objects in the scene, we define the soft-coverage score
(Cov) and the diversity score (Div), to evaluate the ability of
the agent to mention all the relevant objects in the scene and
to produce interesting, non-repetitive descriptions, respec-
tively. The first is computed by considering the intersection
score between the set of nouns in the produced caption and
the set of categories of the relevant objects in the scene.

Gibson Val MP3D Test

Model loU Acc AS loU  Acc AS

Curiosity [7] 0.528 66.19 102.59 0.368 130.34 186.67
Coverage [5] 0.608 73.69 102.66 0.417 146.16 195.03
Anticipation [6] 0.706 81.13 102.22 0.494 157.02 177.14
Impact (Grid) [8] 0.738 8291 104.16 0.519 164.26 185.13

Impact (DME) [8] 0.694 79.47 105.03 0.496 167.58 205.02

TABLE I: Navigation results on Gibson Val and MP3D Test.

Train Ims BLEU-4 METEOR ROUGE CIDEr SPICE

Region-based'in 112k 37.7 283 576 1248 219
CLIP-based!"Y 112k 40.6 30.0 59.9 1394 239
CLIP-basedsmall 112k 40.9 30.4 60.1 1415 245
CLIP-basedb2s¢ 112k 414 30.2 60.2 1420 240
CLIP-based®s¢ 35.7M 42.9 314 61.5 149.6 25.0

TABLE II: Captioning results on the COCO test set.

By “relevant object” we mean those whose area covers at
least 10% of the total image area, and thus, can be more
useful to identify a scene. The latter score is defined as the
intersection over union between the sets of nouns mentioned
in two consecutively generated captions.

Additionally, we measure the agent’s overall loquacity
(Loq) as the number of times it is activated by the speaker
policy, normalized by the episode length. In other words, the
loquacity can be seen as the inverse of the average number
of navigation steps between two consecutive captions. More-
over, we resort to the recently-proposed CLIP score [57]
(CLIP-S), in its unpaired definition, to evaluate the alignment
between the agent’s view and the generated caption.

To evaluate the overall system on each episode, we define
an ad-hoc score to measure the concept coverage of the
generated descriptions, which is an important aspect of
the task. The proposed episode description score (ED-S)
reflects the ability of the robot to produce sufficient descrip-
tions in strategic moments, so that the maximum amount
of information collected in the environment is covered. The
rationale is that it should capture the ability of the agent
to mention all the relevant landmarks (objects and rooms)
when needed, without unnecessary repetitions. This makes
the description more useful and interesting. The score is
defined as:

ED-S = CLIP-S - IoU(N, 0) - %AS, (10)

where CLIP-S is mean of the CLIP scores of all the captions
produced during the episode. Moreover, N is the list of
nouns in all the captions produced during the episode and O
is the list of objects in the environment. The intersection-
over-union operator loU is implemented via the Jonker-
Volgenant linear assignment algorithm [58]. Finally, %AS
is the percentage of the total environment area visited by the
agent. At the dataset level, the ED-S is given by the average
of the scores obtained in the dataset episodes.

C. Experimental Results

Navigation Results. First, we compare the different explo-
ration approaches alone on the MP3D and Gibson datasets.
The results of this analysis are reported in Table [II The



COCO only COCO + Web-collected

Loq Cov Div CLIP-S ED-S Cov Div CLIP-S ED-S
Always 100.00 0.864 0.352 0.670 0.119 0.862 0.348 0.692 0.120
Depth
D>10 8326 0.868 0335 0.670 0.140 0.865 0.338 0.690 0.140
D>15 5524 0871 0.323 0.664 0.203 0.868 0.330 0.683 0.204
D>20 2738 0.793 0.293 0.629 0.250 0.780 0.304 0.650 0.257
Object
O>1 4173 0.793 0314 0.663 0.222 0.784 0.332 0.682 0.225
0>2 2155 0.703 0289 0.645 0.219 0.697 0.307 0.664 0.220
0>3 7.58 0416 0232 0.549 0.107 0.410 0.260 0.561 0.105
Activation
A>45 8779 0.866 0340 0.672 0.134 0.864 0.343 0.691 0.134
A>50 51.13 0.828 0349 0.674 0.223 0.827 0.348 0.691 0.220
A>55 220 0133 0.153 0455 0.038 0.140 0.153 0.464 0.040

TABLE III: Episode description results
validation set.

on Gibson tiny

COCO only COCO + Web-collected
Loq Cov Div CLIP-S ED-S Cov Div CLIP-S ED-S
Always 100.00 0.768 0.363 0.648 0.172 0.771 0.348 0.687 0.179
Depth
D>1.0 89.05 0.765 0.352 0.648 0.180 0.767 0.341 0.687 0.187
D>2.0 4506 0.751 0.317 0.637 0.155 0.750 0.311 0.668 0.160
D>3.0 1598 0317 0.161 0.338 0.030 0.317 0.151 0.360 0.031
Object
O0>1 7582 0.754 0.340 0.635 0.190 0.756 0.333 0.670 0.196
0>3 4657 0.700 0.310 0.605 0.168 0.701 0.310 0.634 0.172
0>5 1990 0.616 0.255 0.533 0.106 0.614 0.254 0.553 0.107
Activation
A>45 8205 0.765 0.348 0.641 0.106 0.767 0.337 0.676 0.107
A>50 4628 0.754 0.350 0.636 0.153 0.757 0.341 0.667 0.158
A>55 128 0325 0.118 0.347 0.015 0.328 0.116 0.362 0.016

TABLE IV: Episode description results on MP3D test set.

best agent in terms of the area seen (AS) is the impact-
based method using density model estimation. In particular,
this approach is able to efficiently explore both Gibson and
MP3D datasets, giving its best in large environments. In fact,
the small 0.87m? margin over the second best approach on
Gibson becomes 9.99m? in the larger MP3D environments.
Moreover, this method is still competitive in terms of loU,
being also the best in terms of Acc on the MP3D test split.
In light of these results, we use the impact-based navigator
with DME as the navigator of the overall approach.

Captioning Results. Then, we evaluate the performance of
the captioner alone on the COCO dataset. The results of this
analysis are reported in Table [l It can be observed that
the CLIP-based variants are the best-performing ones, with
a noticeable advantage over the region-based captioner. This
confirms the representative power of CLIP features. The Base
variant has also been trained on additional image-caption
pairs from web-collected sources, which further increases its
performance. It is worth mentioning that these results are in
line with those of state-of-the-art captioners (e.g. [41], [59]).
In light of these results, we use the CLIP-based Base variant
as the captioner of the overall approach.

Episode Description Results. Finally, we compare variants
of the overall approach using different speaking policies with
different threshold values, and use as reference a dummy
policy according to which the captioning module is always
activated. The results are reported in Tables [[TI] and [V} It

@le,

A kitchen with white A bedroom with a bed An open doorway leading
cabinets and stainless- and a Christmas tree. to a dining room with
steel refrigerator. pictures.

Fig. 4: Sample observations and corresponding captions
generated by our model.

can be noticed that the captioner trained on web-collected
sources performs better that the variant trained on COCO
only in terms of all metrics, suggesting its superior general-
ization capabilities and thus, suitability to be employed in an
embodied setting. However, to evaluate on the overall task,
the proposed ED-S score is more informative than the other
metrics, which can nonetheless be used in combination with
the ED-S to gain additional insights on the agents’ behaviour.
In fact, the values of all metrics but the ED-S are comparable
in both datasets, while the ED-S is on average higher on
Gibson: this is due to the fact that Gibson has on average
smaller and less cluttered spaces, which can be more easily
fully explored (higher values of the Cov on Gibson confirm
this intuition). This trend is further confirmed by the fact that
on the Gibson dataset the speaking policy must ensure the
Loc being in a specific range (roughly between 20 and 80)
to obtain the best ED-S scores, while on the wider spaces
of MP3D, speaking policies ensuring a higher Loc lead to
better performance. Qualitative examples of the output of our
approach on selected observations are reported in Fig. [

Real-World Deployment. Exploration agents trained on the
photorealistic environments of the Habitat simulator and
general-purpose captioners allow the deployment of our
approach to the real world, using a LoCobot platform [60].
For the deployment, the captioner is left untouched, whilst
we modify the camera parameters of the navigator, such as
camera height, the field of view, and depth sensor range
to match the real-world setting. Furthermore, the deployed
agent is trained by adding noise models fitted to mimic the
LoCobot camera noise over the observations retrieved from
the simulator. As the last step, we apply the correction pre-
sented by [10] to correct noisy real-world depth observations.
In the video accompanying the submission, we show the
agent exploring and describing a real-world apartment.

IV. CONCLUSION

In this work, we have presented an embodied exploration
agent whose internal representation of the environment can
be interpreted by non-expert users. This is achieved by
equipping the agent with the ability to produce a natural
language description of the observed scene when this is
deemed interesting according to a speaking policy. The
experimental results show that the proposed approach is
a viable solution to gain insights into the perception and
navigation capabilities of embodied agents. Moreover, the
generalization capabilities of the modules adopted allow real-
world deployment without major redesigns.
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