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Abstract— In autonomous driving, the novel objects and lack
of annotations challenge the traditional 3D LiDAR semantic
segmentation based on deep learning. Few-shot learning is a
feasible way to solve these issues. However, currently few-shot
semantic segmentation methods focus on camera data, and most
of them only predict the novel classes without considering
the base classes. This setting cannot be directly applied to
autonomous driving due to safety concerns. Thus, we propose
a few-shot 3D LiDAR semantic segmentation method that pre-
dicts both novel and base classes simultaneously. Our method
tries to solve the background ambiguity problem in generalized
few-shot semantic segmentation. We first review the original
cross-entropy and knowledge distillation losses, then propose a
new loss function that incorporates the background information
to achieve 3D LiDAR few-shot semantic segmentation. Extensive
experiments on SemanticKITTI demonstrate the effectiveness
of our method.

I. INTRODUCTION
3D LiDAR can provide accurate depth information, mak-

ing it an important sensor for autonomous driving systems
[1]. Recently, researchers have focused on semantic segmen-
tation of LiDAR point clouds [2], [3], [4], which primarily
involves deep learning with large-scale annotation data [5].
As autonomous driving scenarios are dynamic and complex,
deep semantic segmentation faces the following challenges:
1) emergence of novel objects; traditional methods require
training before testing; as a result, only classes defined in the
training stage can be processed, and it is difficult to identify
novel objects. 2) lack of annotations; pixel-level annotation
requires a lot of resources, and it is difficult to collect large-
scale annotation samples. To meet these challenges, few-
shot semantic segmentation plays a significant role in the
perception of autonomous driving.

Currently, most research on few-shot semantic segmenta-
tion [6], [7], [8] focuses on image datasets, such as PASCAL
VOC [9] and MS COCO [10]. As part of this task, the data
is divided into base and novel classes. During training, the
base classes have many samples, while the novel class has
few (e.g., 1-10) samples. During testing, the classical few-
shot semantic segmentation only recognizes novel classes
and ignores the base classes; obviously, this setting can not
be applied directly to autonomous driving. For example,
if the novel class is cyclists, recognizing only this class
cannot ensure driving safety. As a result, generalized few-
shot semantic segmentation methods are proposed, that is,
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to recognize both the base and novel classes simultaneously
during the testing stage. Generalized methods [11], [12],
including meta-learning and transfer learning, are discussed
gradually for image data.

In generalized few-shot semantic segmentation, one prob-
lem is the background ambiguity: the background data of
the current training step may contain the foreground objects
of the other steps and vice versa, which decreases the
model’s accuracy and generalization. Point cloud datasets
collected from LiDAR, like SemanticKITTI [13], usually
have contains a variety of objects in a single frame, and
the background ambiguity needs to be considered. Therefore,
the key to solving few-shot LiDAR semantic segmentation
is how to model background information. According to our
literature review, it is found that few works have addressed
this specific issue, especially those based on LiDAR data.

This paper assumes that semantic information about the
background changes continuously with the training process,
that is, a pixel/point may belongs to the background in
the current training step, but belongs to the foreground in
the next. The paper first reviews the original cross-entropy
and knowledge distillation losses, then proposes a new loss
function that takes into account the background information
to achieve LiDAR few-shot semantic segmentation. We have
carried out extensive experiments on SemanticKITTI [13]
dataset, and the proposed method significantly outperforms
the ordinary transfer learning based method. In summary, the
contributions of this paper include:
• To the best of our knowledge, we are the first to discuss

the background ambiguity for few-shot 3D LiDAR
semantic segmentation.

• We introduce the unbiased cross-entropy loss and
knowledge distillation loss to explicitly tackle the back-
ground ambiguity, which improves the model’s accuracy
and generalization.

• Experiments show that our method outperforms base-
line methods and is effective for few-shot 3D LiDAR
semantic segmentation, with a noticeable improvement
for novel classes.

II. RELATED WORK
A. Few-shot Semantic Segmentation for Image Data

Semantic segmantation for image data is a widely re-
searched problem, while deep neural network is the dominant
solution for semantic segmentation [14] , there are still a few
works based on traditional machine learning algorithms [15],
[16], [17].

Few-shot learning for semantic segmentation was intro-
duced in 2017. Shaban et al. [18] propose few-shot semantic
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segmentation based on deep learning and design a two-
branch network. The first branch converts the support images
and ground truths into prototype vectors; the second branch
inputs the prototype vectors and the query images and
outputs the prediction of masks. This two-branch design has
been widely adopted in subsequent works and has developed
into a classic few-shot semantic segmentation method [19],
[20], [21]. Wang et al. [22] improve the model generalization
by aligning prototype vectors with alternate support sets and
query sets. Wang et al. [23] utilize the probabilistic implicit
variable model to model the probability distribution of the
prototype. Yang et al. [24] uses multiple prototype features to
correspond to different image regions, thus improving their
semantic representation ability. Zhang et al. [25] decouple
the prototype features into main feature vectors and auxiliary
feature vectors to improve the segmentation accuracy. In
terms of problem definition, a lot of methods only predict
the mask of novel classes. However, autonomous driving
systems need to effectively identify all objects in the scene.
Obviously, the classical few-shot semantic segmentation can
not directly meet this requirement.

Recently, researchers have begun paying attention to the
generalized few-shot semantic segmentation method. The
generalized method predicts the masks for both base and
novel classes simultaneously. A variety of technical routes
have been presented in relevant research. Yan et al. [26]
extend Faster/Mask R-CNN by proposing meta-learning over
RoI features instead of a full image feature. Tian et al. [11]
propose the first prototype-based learning method, which
uses context information to build prototype features. Myers-
Dean et al. [12] explore the fine-tuning method, learning the
initial weight using the support set, and then fine-tuning the
query set. In addition, some researchers [27], [28] discuss
the domain-adaption method to solve the problem of lack
of labeled samples in the target domain. Currently, most of
the research on few-shot semantic segmentation focuses on
image datasets such as Pascal VOC and MS COCO, while
little attention is paid to LiDAR point cloud data used in
autonomous driving.

B. Few-shot Semantic Segmentation for Point Cloud Data

Recently, the semantic segmentation based on LiDAR
point clouds has drawn researchers’ attention [5]. In con-
trast, few-shot semantic segmentation based on LiDAR point
clouds has not been extensively discussed. On the one hand,
the dataset supporting this task is much smaller than the
image data; on the other hand, LiDAR point clouds are sparse
and unevenly distributed, making it difficult to apply existing
image-based methods directly.

Zhao et al. [29] incorporate EdgeConv and self-attention
into the embedding network, and a k-NN graph is built to
match query features and multi-prototype vectors. Lai et al.
[30] point out that in the process of parameter learning,
background information is ambiguous, and the background
point of one episode may be the foreground of another. Thus,
using cross-entropy directly as a loss function will result in
a degradation of accuracy. Finally, [30] adopts the entropy

of predictions on query samples to the loss function as an
additional regularization. Chen et al. [31] sample multiple
two-dimensional perspectives of three-dimensional data and
establish prototype features for each perspective. The above
works are evaluated on dense and uniform point cloud
data, and only the prediction of novel classes is considered
during testing. Directly migrating these methods to sparse
LiDAR data is difficult. Corral-Soto et al. [32] tried to
realize the few-shot semantic segmentation of LiDAR data
using domain adaptation, which integrates self-supervised,
unsupervised, and semi-supervised learning. Although it
completes the domain adaptation task, it still needs hundreds
of labeled samples, which is far more than the setting of few-
shot learning.

III. PROPOSED METHODOLOGY
A. Problem Definition

For few-shot learning setting, let Cb denote the set of
base classes that contain a large number of data for each
class, and Cn be the set of novel classes which contains few
data for each class. Additionally, the background/unknown
class u is excluded from Cb and Cn. Thus, the overall
class set C = {u} ∪Cb ∪Cn and Cb ∩Cn = /0. The training
stage involves base data Db :

{
xi

b,y
i
b

}P
i=1 and novel data

Dn :
{

xi
n,y

i
n
}Q

i=1, where yi
b 7→ RM×(|Cb|+1) is the ground truth

of xi
b and yi

n 7→ RM×(|Cn|+1) is the ground truth of xi
n, M is

the number of elements of xi. In classical few-shot semantic
segmentation, only the classes in Cn are predicted during
the testing stage, and the data belonging to Cb is treated
as background or unknown. As for generalized few-shot
semantic segmentation, both Cn and Cb should be processed
simultaneously during the testing stage. Autonomous driving
system relies on LiDAR point clouds to capture the sur-
rounding environment, so identifying only novel objects is
insufficient to ensure safety. Thus, the problem is defined
as a generalized few-shot semantic segmentation of LiDAR
point clouds.

As shown in Fig. 1, the problem of few-shot semantic
segmentation is addressed with three steps based on transfer
learning. In the first step, we update the model parameter θb
for abundant base data:

θ̂b = argmin
θb

L1(Xb,Yb;θ
0
b ), (1)

where θ 0
b is the initial state of the model parameter, and L1

is the loss function. After obtaining optimal θb, the model
parameter is adjusted with a few novel data in the second
step:

θ̂ = argmin
θ

L2(Xn,Yn;θb,θ
0), (2)

where θ 0 is initialized with θb, and L2 is the loss function
that explicitly considers the background ambiguity. Then the
final model parameter θ is used for testing in the third step.
The prediction of each input data xi is defined as:

fθ

(
xi)→ yi, (3)

where f denotes the model and yi 7→ RM×|C|.
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Fig. 1. Overview of our proposed method. In the training step, the background of base and novel data has different semantics, for example, the road(blue
color) in the ground truth of base data is the foreground, but the road in novel data is defined as the background; the transfer learning is adopted for
parameter updating during training, where the base and novel data share the same backbone network; to address the problem of background ambiguity,
we design the loss function L1 for base data and L2 for novel data. In the testing step, the model predicts both novel and base classes simultaneously.

B. Base Model Training

Let C
′
b = {u}∪Cb be the classes in base model training,

where u is background. There are abundant data for each
class in Cb, so supervised learning is adopted to update the
network parameter θb.

Data imbalance directly affects the accuracy of the model.
In the SemanticKITTI dataset, for example, the number of
points on the road is 1000 times higher than that of person.
When the data imbalance is not taken into account, the
model’s output will be biased towards the category that
appears most frequently in training. For this reason, we use
weighted cross-entropy loss as part of the loss function. For
each LiDAR data frame, the loss item L1

ce is defined as:

L1
ce =−

1
M

M

∑
i=1

∑
k∈C′b

αk1[yi
b(k) = 1] ln(Pk

θb
(xi

b)), (4)

where M is the number of points, and the one-hot vector yi
b

is the truth of point xi
b. Pk

θb
(xi

b) is the probability of point xi
b

belonging to class k, and let Pk
θb
(xi

b) be the output of model.
αk is the weight factor for class k, calculated as the inverse
of the frequency.

During training, each pixel/point will be treated as inde-
pendent of each other if the cross-entropy loss is used to
adjust the parameters. However, the intersection over Union
(IoU) measure is used to evaluate the model performance in
testing. The inconsistency between the training and testing
measures will lead to the decline of the model performance.
Inspired by [33], we introduce the Lovász So f tmax loss term

into the loss function to maximize the IoU score. Neverthe-
less, IoU is a discrete measure that cannot be directly applied
as a loss due to its inability to be derived. The authors of
[34] use the Lovász extension for submodular functions to
adopt this measure, and the final Lovász So f tmax loss(Lls)
is defined as:

L1
ls =

1
|C′b|

∑
k∈C′b

4Jk(m(k)), (5)

mi(k) =

{
1−Pk

θb
(xi

b) i f k = yi
b(k)

Pk
θb
(xi

b) otherwise
(6)

where Jk defines the Jaccard index, and 4Jk is Lovász
extension of the Jaccard index.

The final loss function for base model training is defined
as :

L1 = L1
ce(Xb,Yb;θb)+L1

ls(Xb,Yb;θb). (7)

C. Novel Data fine-tuning

In order to incorporate novel classes, we use the transfer
learning method as shown in Fig.1. Our method uses a deep
CNN model as the backbone network, and transforms the
semantic segmentation task into a pixel-level classification
process. Therefore, each class has its own classification
header. As part of the fine-tuning process, the initial net-
work parameters are copied directly from the base model.
Additionally, |Cn| classification headers are added in order
to correspond with the novel classes. As shown in Fig.1, the
base classes are treated as background in the ground truth



of novel data. In addition to following the classical few-
shot learning model, this settings also meet the actual use
case. Firstly, some cases may make it impossible to obtain
the base data due to privacy concerns. Secondly, incremental
parameter learning can be achieved if one only needs to label
a few novel data to accurately recognize novel classes in
autonomous driving systems, which will greatly improve the
updating efficiency of the model.

In fact, the novel objects may exist in the background
of the base data, and the base objects may also exist in
the background of the novel data. Thus, if the background
ambiguity is not considered, the model will be biased towards
the novel classes after fine-tuning, which will result in a
reduction in the overall accuracy of the model. Inspired by
[35], we explicitly model the background information by
modifying the loss function. This allows the background to
be incorporated into both cross-entropy loss and knowledge
distillation loss.

1) Modeling Background in Cross-entropy Loss: The
catastrophic forgetting problem will occur in the base classes
when the standard cross-entropy loss provided by Eq.(4) is
directly used in the fine-tuning stage due to the base objects
appearing in the background of the novel data. Therefore,
we rewrite the Eq.(4) with base model parameter θb:

L2
ce =−

1
M

M

∑
i=1

∑
k∈C′n

αk1[yi
n(k) = 1] ln(P̂k

θ (x
i
n)), (8)

P̂k
θ (x

i
n) =

{
Pk

θ
(xi

n) i f k 6= u

∑k′∈Cb
Pk
′

θb
(xi

n) i f k = u
(9)

where C
′
n = {u}∪Cn. Compared with Eq.(4), we extent the

output of model with P̂k
θ
(xi

n) in Eq.(9). The main idea is to
deal with the background and foreground separately, rather
than combining them. For the foreground points in novel
data, we directly use the prediction results of the updated
model parameter θ ; for the background points in novel data,
the base model parameter θb is used for prediction. Note
that the base model here can only output the predictions for
the base classes, then the predictions of all base classes are
added and compared with the background ground truth of
novel data.

2) Modeling Background in Distillation Loss: In tradi-
tional knowledge distillation(KD), the softened class scores
of the teacher are used as the extra supervisory signal: the
distillation loss encourages the student to mimic the scores
of the teacher[36]. Compared to the one-hot label, the output
from the teacher network contains more information about
the fine-grained structure of data. Generally, the teacher
network is larger than the student network, and both networks
have the same dimensions of output. In the setting of our
method, the teacher is the base model fθb and the student is
the fine-tuned model fθ , they share the same backbone struc-
ture but have a different number of classification heads. The
purpose of introducing KD loss is to mitigate catastrophic

forgetting during the fine-tuning stage of novel data.

Lkd =− 1
M

M

∑
i=1

∑
k∈C′b

Pk
θb
(xi

n) ln(P̃k
θ (x

i
n)) (10)

Eq.(10) shows the KD loss, the one-hot ground truth is
replaced with the output of the base model. There are two
potential issues with directly using the original KD loss: 1)
as shown in Fig. 1, the output dimensions of fθb and fθ

are inconsistent; 2) the background prediction in fθb and fθ

has different semantics, for example, fθ perceives the road
as background, while fθb perceives it as background in Fig.
1. Considering the above issues, the original KD loss can
not adequately transfer the knowledge from fθb to fθ . To
this extent we define the distillation loss of novel data by
rewriting P̃k

θ
(xi

n) in Eq.(10) as:

P̃k
θ (x

i
n) =

{
Pk

θ
(xi

n), i f k 6= u

∑k′∈Cn
Pk
′

θ
(xi

n), i f k = u.
(11)

Similarly to Eq.(9), we explicitly consider the background
in novel data. For the foreground(k 6= u) points in novel
data, we directly compare the output of fθb and fθ ; as
for the background(k = u) points, the outputs of fθ on all
novel classes are firstly accumulated, then compared with
the output of fθb .

L2
ls =

1
|C′n|

∑
k∈C′n

4Jk(m(k)), (12)

mi(k) =

{
1−Pk

θ
(xi

n), i f k = yi
n(k)

Pk
θ
(xi

n), otherwise.
(13)

Besides the loss items L2
ce and Lkd , the Lovász So f tmax

loss L2
ls is also included during fine-tuning. Then the final

loss function of L2 is defined as :

L2 = L2
ce(Xn,Yn;θ)+L2

ls(Xn,Yn;θ)+Lkd(Xn,Yn;θ ,θb). (14)

D. Implement Details

The backbone network is based on SalsaNext [33], the
proposed method focuses on designing the loss function
to mitigate the problem of background ambiguity, thus our
method can easily be integrated into other backbone net-
works. The raw LiDAR point clouds are projected to range
view images to obtain a grid and dense data structure. For
each LiDAR point (x,y,z), the corresponding point (u,v) in
range image is defined as:(

u
v

)
=

( 1
2 [1− arctan(y,x)π−1]w

[1− (arcsin(z,r−1)+ fdown) f−1]h

)
(15)

where w and h denote the width and height of range image;
r =
√

x2 + y2 + z2, and f = | fdown|+ | fup| defines the vertical
view of LiDAR. The input of network is a tensor with the
dimension [w,h,5], containing the point (x,y,z), the intensity
value i and range value r.



IV. EXPERIMENTS

A. Experiment Settings

We evaluate the performance of our proposed method on
SemanticKITTI [13] dataset, which is a large-scale LiDAR
dataset providing over 43K annotated full 3D LiDAR scans.
As described in Sect. III-D, the backbone network is derived
from SalsaNext [33], but the uncertainty part is not included.
The input dimension of network is 64×2048×5.

We first divide the dataset into training and validation
splits. Sequences between 00 and 10 are used for training
and sequence 08 is used for validation. The SemanticKITTI
includes 20 classes. We set the car, person, bicyclist, and
motorcyclist as the novel classes and the other 16 classes
as base classes. This setting mainly considers that dynamic
objects usually appear in the novel class, which requires
special attention in autonomous driving applications. As
discussed above, we adopt transfer learning for parameter
updating in model training which contains two steps: base
model training and novel data fine-tuning. In the base model
training, we use the whole training split while the novel
classes (car, person, bicyclist, and motorcyclist) are defined
as background. In the novel data fine-tuning, considering the
setting of few-shot learning, we do not make use of the whole
training split, but randomly sample a certain number of scans
from the training split, where the novel classes are defined
as foreground and base classes are defined as background.

To fully demonstrate the performance of our method,
we sample different shots per novel class for evaluation.
One shot corresponds to one frame of LiDAR scan. We
sample frames in the following manner, firstly we pick all
the frames which contain a novel class in the training split,
then for each novel class, we randomly sample n frames(n =
10,20,50,100). Besides, to make sure the sampled frames
keep consistent in every training process, we manually fix
the random seed and apply it in all the training processes.

All the compared methods and ours are trained in the
same environment with the same hyperparameters. We train
all the models on NVIDIA V100 GPU, and we employ the
SGD optimizer with the initial learning rate of 0.01 which
is decayed by 0.01 after every epoch. The momentum of
the SGD optimizer and the batch size is set to 0.9 and 14,
respectively.

The performance of our proposed method is measured
by mean intersection-over-union (mIoU), which is given by
Eq.(16), where Pi is model’s prediction of class i, Gi is the
annotation set of class i. Note that we have split the classes
into a base subset and a novel subset, we need to evaluate
our method by mIoU over base classes and mIoU over novel
classes, which are denoted as mIoUb and mIoUn, respectively.

mIoU =
1
C

C

∑
i=1

|Pi∩Gi|
|Pi∪Gi|

×100 (16)

B. Baselines

We employ three methods as our baselines.

TABLE I
QUANTITATIVE EVALUATIONS ON VALIDATION SET OF

SEMANTICKITTI. mIoUn FOR 4 NOVEL CLASSES, mIoUb FOR 16 BASE

CLASSES AND mIoU FOR ALL CLASSES.

method mIoUb mIoUn mIoU

Base model 58.7 - -

shot=100

GFSS [12] 57.1 20.9 49.5
GFSS-dyn [12] 54.1 48.6 53.0
LwF [37] 55.4 48.3 53.9
Ours 56.6 50.9 55.5

shot=50
GFSS-dyn [12] 53.8 38.2 50.5
LwF [37] 51.6 44.0 50.0
Ours 55.3 47.5 53.7

shot=20
GFSS-dyn [12] 52.1 20.0 45.4
LwF [37] 49.2 34.1 46.1
Ours 55.0 34.4 50.7

shot=10
GFSS-dyn [12] 54.9 23.5 48.4
LwF [37] 53.3 28.4 48.0
Ours 55.9 24.2 49.2

• GFSS [12]: it is a fine-tuning based method for general-
ized few-shot semantic segmentation. After base model
training, it freezes the parameters in the backbone and
only updates the parameters in classifiers with novel
data. Our method shares the same training stage with
GFSS, the improvement of ours is the consideration of
background ambiguity in fine-tuning.

• GFSS-dyn [12]: it has the same configurations as GFSS,
except that the parameters of the backbone are dynamic
during fine-tuning.

• LwF [37]: it is a classic method in incremental learn-
ing, introducing knowledge distillation loss to prevent
catastrophic forgetting. In our method, we also introduce
knowledge distillation loss to achieve generalized few-
shot semantic segmentation and prevent the mIoU of
base classes does not largely decrease during fine-
tuning.

C. Quantitative Results

We firstly analyze the quantitative comparisons on the
validation set of SemanticKITTI and the results are reported
in Table I and Fig. 2. At first, the original GFSS is imple-
mented for LiDAR data with shot=100, but its performance
at novel classes is only 20.9 which is largely lower than other
methods; then we try to make the parameters of backbone
network dynamic during novel data fine-tuning, and this
strategy obtains a more reasonable result denoted as GFSS-
dyn; thus, we only evaluate the GFSS-dyn for the other
comparisons. The mIoUb of base model is 58.7. After novel
data fine-tuning, our method performs better than others at
mIoUb, for example, the lowest scores of GFSS-dyn, LwF,
and ours are 52.1, 49.2 and 55.0. For the measure of mIoUn,
it indicates the capability of learning new concepts when
only a few samples are available. In Table I, our method
has higher mIoUn almost in all settings. Finally, the few-
shot 3D LiDAR semantic segmentation should consider the
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Fig. 2. The comparisons on the validation set of SemanticKITTI. Left: the mIoU of base classes mIoUb for different methods. Mid: the mIoU of
novel classes mIoUn for different methods. Right: the mIoU for different methods.
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mIoUb mIoUn mIoU

100

GFSS 41.4 28.1 27.2 22.6 89.9 57.5 73.5 27.3 85.1 53.4 77.8 61.3 63.5 49.9 56.3 77.6 4.9 1.8 0.6 54.3 21.2 47.4
GFSS-dyn 41.2 27.0 28.2 15.8 88.7 56.7 70.4 14.9 86.3 52.4 76.5 59.8 59.5 49.1 54.6 81.5 43.8 40.5 23.3 52.1 47.3 50.1
LwF 36.8 28.1 23.4 16.6 88.3 55.2 68.9 19.6 86.8 53.1 77.6 60.7 58.7 48.8 54.3 80.1 42.3 41.9 19.5 51.8 46.0 50.6
Ours 34.0 30.2 33.0 16.3 89.7 56.9 71.7 17.9 86.8 55.7 78.7 60.9 63.6 52.8 54.2 86.4 40.3 45.9 17.6 53.5 47.6 52.2

50
GFSS-dyn 37.2 25.6 17.0 13.8 88.1 53.1 69.0 21.3 81.7 49.4 76.3 57.9 61.8 46.5 51.0 75.3 31.3 22.0 12.6 50.0 35.3 46.9
LwF 36.2 23.2 19.2 15.5 88.4 54.0 70.5 10.3 83.5 48.9 76.9 57.3 64.5 48.5 49.7 78.8 35.5 33.5 8.3 49.8 39.0 47.5
Ours 29.8 28.1 26.0 14.1 89.4 59.7 70.6 22.1 85.3 54.1 77.8 59.7 62.1 52.7 54.8 84.0 38.4 34.2 15.9 52.4 43.1 50.5

20
GFSS-dyn 24.8 16.5 20.1 14.4 86.8 50.1 67.1 20.3 79.0 43.4 73.8 55.9 59.0 40.5 52.8 71.7 0.1 3.7 0.4 47.0 19.0 41.1
LwF 23.1 18.4 1.8 18.4 87.6 56.0 68.0 23.6 82.3 47.1 76.3 59.1 59.0 48.7 53.6 74.6 19.8 20.9 7.5 48.2 30.7 44.5
Ours 21.6 24.4 24.5 19.5 89.6 57.7 70.8 26.2 84.9 52.6 78.6 61.1 60.9 49.9 50.1 81.8 20.5 16.1 6.6 51.5 31.3 47.2

10
GFSS-dyn 25.3 25.9 24.5 18.4 89.1 54.2 71.2 28.3 84.0 49.7 75.6 59.4 61.9 49.0 55.6 73.6 3.2 8.7 0.0 51.5 21.4 45.1
LwF 20.6 23.3 32.8 19.6 89.4 54.6 71.0 24.9 85.6 52.4 77.2 59.8 61.9 45.6 51.2 77.8 15.2 13.2 5.2 51.3 27.9 46.4
Ours 22.1 29.2 28.5 19.5 89.4 56.2 69.9 27.0 85.5 53.6 77.5 60.6 60.5 50.4 53.5 79.4 1.7 8.1 0.8 52.2 22.5 46.0

TABLE III
ABLATION STUDY FOR DIFFERENT LOSS SETTINGS ON TESTING SET

WITH SHOT=100. L∗ce AND L∗kd DENOTE THE ORIGINAL CROSS-ENTROPY

AND KNOWLEDGE DISTILLATION LOSS. Lce AND Lkd DENOTE THE

PROPOSED LOSSES.

L∗ce L∗kd Lce Lkd mIoUb mIoUn mIoU

X 54.3 21.2 47.4

X X 51.8 46.0 50.6

X X 51.7 41.8 49.6

X X 50.6 46.3 49.7

X 52.7 46.1 51.4

X X 53.5 47.6 52.2

base and novel classes at the same time, then the mIoU
over all classes is shown in Table I. Our proposed method
considerably outperforms the others by leading to the highest
mIoU score at all settings, especially, it is +1.5 over LwF
and +2.4 over GFSS-dyn at shot=100.

Table II gives the IoU for each class on testing set. In most
cases, our method has a higher mIoU than other methods.

D. Ablation Study

Our method explicitly incorporates the background infor-
mation into the original cross-entropy loss and knowledge
distillation loss. In Table III, the ablation study shows
the effectiveness of our method. When introducing Lce, it
improves the mIoU . And combining Lce and Lkd brings the
highest mIoU on testing set.

V. CONCLUSIONS

In this work, we formulate the few-shot 3D LiDAR
semantic segmentation under the framework of transfer learn-
ing. With the help of knowledge distillation, our method
can predict novel and base classes at the same time. To
address the problem of background ambiguity, the proposed
method explicitly incorporates the background information
into the original cross-entropy loss and knowledge distilla-
tion loss. Despite its simplicity, our method achieves better
performance on few-shot 3D LiDAR semantic segmentation
settings, outperforming the previous transfer learning based
methods. We hope this work will inspire further research on
few-shot 3D LiDAR semantic segmentation.



REFERENCES

[1] Y. Li, L. Ma, Z. Zhong, F. Liu, M. A. Chapman, D. Cao, and
J. Li, “Deep learning for lidar point clouds in autonomous driving:
A review,” IEEE Transactions on Neural Networks and Learning
Systems, vol. 32, no. 8, pp. 3412–3432, 2021.

[2] T.-H. Chen and T. S. Chang, “Rangeseg: range-aware real time seg-
mentation of 3d lidar point clouds,” IEEE Transactions on Intelligent
Vehicles, vol. 7, no. 1, pp. 93–101, 2021.

[3] G. Wang, J. Wu, R. He, and B. Tian, “Speed and accuracy tradeoff
for lidar data based road boundary detection,” IEEE/CAA Journal of
Automatica Sinica, vol. 8, no. 6, pp. 1210–1220, 2020.

[4] T.-H. Chen and T. S. Chang, “Rangeseg: Range-aware real time seg-
mentation of 3d lidar point clouds,” IEEE Transactions on Intelligent
Vehicles, vol. 7, pp. 93–101, 2022.

[5] B. Gao, Y. Pan, C. Li, S. Geng, and H. Zhao, “Are we hungry for
3d lidar data for semantic segmentation? A survey of datasets and
methods,” IEEE Transactions on Intelligent Transportation Systems,
vol. 23, no. 7, pp. 6063–6081, 2022.

[6] G. Xie, H. Xiong, J. Liu, Y. Yao, L. Shao, and M. bin Zayed, “Few-
shot semantic segmentation with cyclic memory network,” IEEE/CVF
International Conference on Computer Vision, pp. 7273–7282, 2021.

[7] H. Ding, H. Zhang, and X. Jiang, “Self-regularized prototypical
network for few-shot semantic segmentation,” Pattern Recognition, p.
109018, 2022.

[8] Y. Liu, B. Jiang, and J. Xu, “Axial assembled correspondence network
for few-shot semantic segmentation,” IEEE/CAA Journal of Automat-
ica Sinica, 2022.

[9] M. Everingham, S. M. A. Eslami, L. V. Gool, C. K. I. Williams, J. M.
Winn, and A. Zisserman, “The pascal visual object classes challenge:
A retrospective,” International Journal of Computer Vision, vol. 111,
no. 1, pp. 98–136, 2015.

[10] T. Lin, M. Maire, S. J. Belongie, J. Hays, P. Perona, D. Ramanan,
P. Dollár, and C. L. Zitnick, “Microsoft COCO: common objects in
context,” in European Conference on Computer Vision, vol. 8693.
Springer, 2014, pp. 740–755.

[11] Z. Tian, X. Lai, L. Jiang, S. Liu, M. Shu, H. Zhao, and J. Jia, “Gener-
alized few-shot semantic segmentation,” in IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2022, pp. 11 563–11 572.

[12] J. Myers-Dean, Y. Zhao, B. L. Price, S. D. Cohen, and D. Gurari,
“Generalized few-shot semantic segmentation: All you need is fine-
tuning,” ArXiv, vol. abs/2112.10982, 2021.

[13] J. Behley, M. Garbade, A. Milioto, J. Quenzel, S. Behnke, C. Stach-
niss, and J. Gall, “SemanticKITTI: A dataset for semantic scene under-
standing of lidar sequences,” in IEEE/CVF International Conference
on Computer Vision. IEEE, 2019, pp. 9296–9306.

[14] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks
for semantic segmentation,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, 2015, pp. 3431–3440.

[15] C. Wang, W. Pedrycz, Z. Li, and M. Zhou, “Residual-driven fuzzy
c-means clustering for image segmentation,” IEEE/CAA Journal of
Automatica Sinica, vol. 8, no. 4, pp. 876–889, 2020.

[16] C. Wang, W. Pedrycz, Z. Li, M. Zhou, and S. S. Ge, “G-image segmen-
tation: Similarity-preserving fuzzy c-means with spatial information
constraint in wavelet space,” IEEE Transactions on Fuzzy Systems,
vol. 29, no. 12, pp. 3887–3898, 2020.

[17] C. Wang, W. Pedrycz, J. Yang, M. Zhou, and Z. Li, “Wavelet frame-
based fuzzy c-means clustering for segmenting images on graphs,”
IEEE transactions on cybernetics, vol. 50, no. 9, pp. 3938–3949, 2019.

[18] A. Shaban, S. Bansal, Z. Liu, I. Essa, and B. Boots, “One-shot learning
for semantic segmentation,” in British Machine Vision Conference.
BMVA Press, 2017.

[19] K. Rakelly, E. Shelhamer, T. Darrell, A. A. Efros, and S. Levine,
“Conditional networks for few-shot semantic segmentation,” in Inter-
national Conference on Learning Representations(workshop). Open-
Review.net, 2018.

[20] C. Zhang, G. Lin, F. Liu, R. Yao, and C. Shen, “CANet: class-agnostic
segmentation networks with iterative refinement and attentive few-shot
learning,” in IEEE/CVF Conference on Computer Vision and Pattern
Recognition. IEEE, 2019, pp. 5217–5226.

[21] M. Siam, B. N. Oreshkin, and M. Jägersand, “AMP: adaptive masked
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