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Abstract— Reinforcement learning (RL) is an agent-based
approach for teaching robots to navigate within the physical
world. Gathering data for RL is known to be a laborious task,
and real-world experiments can be risky. Simulators facilitate
the collection of training data in a quicker and more cost-
effective manner. However, RL frequently requires a significant
number of simulation steps for an agent to become skilful at
simple tasks. This is a prevalent issue within the field of RL-
based visual quadrotor navigation where state dimensions are
typically very large and dynamic models are complex. Fur-
thermore, rendering images and obtaining physical properties
of the agent can be computationally expensive. To solve this,
we present a simulation framework, built on AirSim, which
provides efficient parallel training. Building on this framework,
Ape-X is modified to incorporate decentralised training of
AirSim environments to make use of numerous networked
computers. Through experiments we were able to achieve a
reduction in training time from 3.9 hours to 11 minutes using
the aforementioned framework and a total of 74 agents and two
networked computers. Further details including a github repo
and videos about our project, PRL4AirSim, can be found at
https://sites.google.com/view/prl4airsim/home

I. INTRODUCTION

Visual Quadrotor navigation is the method of utilising
vision sensors to navigate in an environment. Very recently,
researchers have utilised RL to perform various tasks such
as: aerial filming [1], mapless exploration [2], autonomous
landing [3], counter drone operations [4], and collision avoid-
ance [5]. However, RL can be very data inefficient, requiring
a significant number of simulation steps for an agent to
display favorable behaviours. This is especially prevalent
for flight simulators, where high fidelity environments and
complex dynamic models lead to high computational costs.
The current issue within the field of visual quadrotor nav-
igation is the time to train agents. Currently training times
can take tens for hours and sometimes even days. Typically
researchers will create toy problems for debugging purposes.
However, these are not always representative of the problem
and there is no guaranty of an agent converging to a high
episode reward. Furthermore, RL fails silently which further
emphasises the need for quicker training times. Therefore,
we present a simulation framework, built on AirSim, which
provides efficient parallel training. Furthermore, we incor-
porate a modified Ape-X networking architecture which
can be used with AirSim’s remote server to make use of
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decentralised training and numerous networked computers.
We show through experimentation the dramatic increase in
efficiency of using 74 total agents with two computers and
a speed up of training time from 3.9 hours to 11 minutes.

II. LITERATURE REVIEW

A. Techniques to improve data inefficiency

Improving the data efficiency of RL is a popular research
area. For roboticists, adding demonstration runs from an
expert user or alternative controller can aid with better
initialization. Pienroj use a PID ground-truth controller at the
start of the training run for powerline tracking [6]. Using an
exploration training policy, the RL agent was able to refine
the policy. This approach presents difficulties; an expert
might not be available, and it might be impractical to create
an alternative controller for a given problem.

For off-policy based methods, a buffer is used to store
transitions, which are sampled from, to train the neural
network (NN). Prioritising what samples are chosen can
replay important transitions more frequently and hence learn
more efficiently [7].

Multiple training environments and/or agents can be used
to obtain observations in parallel. Ape-X decouples acting
from learning, where actors interact with separate instances
of the environment and select actions according to a shared
policy [8]. This framework can be used with any off-policy
algorithm such as Deep Q-Networks. Additionally, off-policy
agents can also be parallelised like such as Actor-Critic-
based algorithms [9]. Actor-Critic uses workers which send
gradients, with respect to the parameters of the policy, to
a central parameter server. Similar to Ape-X, IMPALA is
an alternative algorithm which communicates trajectories
of experiences to a centralised learner [10]. Based on the
IMPALA architecture, asynchronous Proximal Policy Opti-
mization (PPO) [11] is a policy gradient algorithm which
uses a surrogate policy loss function with clipping. More
recently, Decentralised Distributed PPO provides further
improvements by allowing each worker’s GPU to be used
for both sampling and training [12].

Training distributed architectures in simulators, like the
aforementioned, can benefit from physics acceleration.
Physics and frame rendering can take place asynchronously
[13]. As a result it is possible to increase the speed of the
simulation without increasing the frame rate of the renderer.
Simulator physics engines typically run on a fixed time-
step, known as the clock speed. Modifying this can change
the speed of the simulator relative to the wall clock [14].
Faster simulators inherently lead to more observations gained
and faster RL training times. However, smaller time-steps
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can decrease the quality of the simulator. Reduced quality
simulations can lead to undetected collisions, which is not
ideal for tasks like collision avoidance. GPU-accelerated
physics simulators have been shown to concurrently simulate
hundreds of robots to train continuous-control locomotion
tasks using Deep RL [15].

B. Robotic Simulators

Advanced robotic simulators have been built on top of
modern 3D games engines. Self-driving cars benefit from
Unreal Engine’s high fidelity renderer and physics engines.
For aerial vehicle simulators, AirSim [14] also benefits
from Unreal Engine but incorporate quadrotor dynamics for
aerial vehicle navigation problems. Flightmare [16], a more
recent aerial simulator, is built on top of Unity’s platform.
They make use of parallel programming and decouple the
quadrotor’s dynamic modelling from the rendering engine for
fast dynamic simulation. Both quadrotor simulators make use
of an asynchronous messaging library, Remote Procedural
Call for AirSim and ZeroMQ for Flightmare. Both libraries
have used this architecture as it is currently not possible to
train NNs using these game engines (Except for inference
purposes using Onnx). Other aerial simulators include Ro-
torS [17] using Gazebo, and Gym-pybullet-drones [18] which
have highly accurate physics engines but lack high fidelity
rendering for visual-navigation tasks. For a more detailed
review on aerial simulators, the reader should direct their
attention to this survey [19].

C. Reinforcement Learning for Robotic and quadrotor Nav-
igation

Early work of parallel deep RL had been used for visual-
motor skill acquisition for physical robotic manipulators
[20], [21]. More recently, using Isaac Sim, Ridin trained a
quadroped to walk with thousands of quadropeds in parallel
which was validated on a real robot [22]. The authors used
PPO with an observation space consisting of: velocities,
joint position and velocities, previous actions, and distance
measurements from the robot body to the terrain. Finally,
Song [23] uses Deep RL to compute near-time-optimal
trajectories for drone racing which is tested on a physical
quadrotor. The state consists of relative gate observations
and velocity, acceleration, orientation, and body rates. They
can simulate 100 environments in parallel but don’t suffer
from the rendering overhead of visual-navigation problems.

D. Reinforcement Learning based Visual Quadrotor Naviga-
tion

RL-based Visual quadrotor navigation techniques have
been applied to a wide range of problems. Goh uses RL
for aerial filming [1]. Furthermore, RL has been explored
for mapless exploration for quadrotrs. Jang utilises hindsight
intermediate targets within the environment and validates
the approach on a ground robot [2]. Autonomous landing
is a well established field which has benefited from RL [3].
As technology on quadrotors progresses, security measures
have become more prominent. Çetin uses RL to capture

target quadrotors without crashing with obstacles within
the environment [4]. Finally, collision avoidance has been
thoroughly investigated. Shin found continuous based Actor-
Critic networks to perform best in cluttered environments
[24]. Furthermore, Bézier curves have been investigated
as motion primitives for action selection [25]. Generative
Adversarial Networks have been explored to generate depth
maps from a single image and then used as an input to an RL-
based high-level planner to overcome computational power
constraints on quadrotors [26]. As can be seen in Table I,
training times can take tens of hours and sometimes even
days to complete. More recently, researchers have utilised
parallel architectures to improve training time. Jang train 5
soft Actor-Critic networks in parallel for mapless navigation
[2]. It is unclear if 5 actors perform within the simulator
or 5 individual instances of the unreal engine. We take the
phrasing of ‘5 worker threads’ to convey the latter. Running
5 individual instances of the Unreal Engine leads to huge
overheads, instead we propose vectorising the environment
such that these 5 agents can act within the same environ-
ment instance and benefit from the memory and processing
efficiency. This includes less assets being loaded in memory,
allowing for larger replay buffers on centralised architectures
and additional total agents for distributed architectures. Sim-
ilar to us, Fang [27] and Devo [28] have used multiple agents
within a single simulator instance. Although the vectorised
environment provides less computational burden compared to
Jang’s study, the authors could benefit from a decentralised
architecture to utilise multiple environment instances.

Our contributions are the following: (1) Our study im-
proves upon the state-of-the-art by providing a more effective
way of vectorising the environment, increasing the number
of agents within a single simulation instance. To do so, we
incorporate a non-interactive environment setup preventing
rendering and collisions of all agents. Also, we improve the
quantity of quadrotors in a given simulator by improving
AirSim’s functionality for parallel training using batched
rendering and asynchronous episode learning which was
not possible before. (2) Finally we formulate a modified
version of Ape-X, for AirSim simulations, to provide a
decentralised learning framework to get up to 74 quadrotors
in two individual environments on two networked computers,
although more computers can be used.

III. BACKGROUND

A. Algorithm Details

Reinforcement learning (RL) is an agent-based mod-
elling technique that studies the interactions between an
environment. For each time step t, an agent receives a
state st ∈ S and selects an action at ∈ A according to
the policy π : A×S → [0,1], π(at |st). The state transi-
tion probability function P captures the transition between
the current state st and the next state st+1. Due to the
Markov Property, the state captures information of past
states meaning it is entirely independent of the past. We
can therefore express the transition probability as Pr(Rt+1 =
r,St+1 = s′|S0,A0,R1, ...,St−1,At−1,Rt ,St ,At) = Pr(Rt+1 =



r,St+1 = s′|St ,At). This Markov Decision Process can be
defined as a tuple of these four components (S,A,P,R).
The objective of the RL agent is to maximise the expected
future cumulative discounted reward V (s) =E[Gt |St = s] and
Gt = ∑

T
k=t+1 γk−t−1Rk, where γ is the discount factor γ ∈

[0,1]. For deep Q-Learning, the aim is to estimate the state-
action value function Q(s,a) which can govern the agent’s
policy by calculating the expected returns for the state-
action pairs. In theory, if an agent can perform an infinite
number of steps it would converge to the optimal action-value
function Q∗(s,a) using the Bellman equation as an iterative
update. Due to the impractical nature of infinite operations,
functional approximators can be used in-place to estimate
the action-value function. For this study, we use a Deep Q-
Network to which optimises the following function Q(s,a) =
E(S,A,R,S′)∼D (Rt+1 + γ maxa′Q(st+1,a′)|st = s,at = a), where
D is the replay buffer. DQN is an off-policy training al-
gorithm, where the optimal policy is learnt independent of
the agent’s actions. DQN utilises previous experiences by
sampling from an experience replay buffer to perform the
loss function.

IV. METHOD

A. Problem Formulation

We showcase our parallel simulation platform by per-
forming collision avoidance. To do this, we utilise both an
Inertial Measurement Unit (IMU) and depth camera which
has been simulated within AirSim. The IMU provides linear
velocity measurements, while the depth camera provides a
mask of distances for each pixel within it’s field of view.
We use Deep Q-Learning as a high-level controller [29] to
learn the representation between the state and action to avoid
obstacles.

State: The state space consists of depth images and linear
velocity from IMU data, simulated within AirSim. The Depth
image has a resolution of (32×32) and the linear velocity
has a resolution of (1×3). We also apply image stacking,
first introduced in Mnih’s paper for Atari environments
[29], and now utilised for quadrotor visual navigation which
incorporates memory into the state space.

Action: We use a small action space consisting of left and
right high level commands with a magnitude of 0.25m/s,A=
{0.25,−0.25}. The physics model time step is set to 4Hz and
the action time step is 1s.

Network Architecture: The network architecture can be
seen in Figure 2. The depth image is fed into a set of
convolutional layers which incorporate the ReLu activation
function and maxpooling. The first convolutional layer has
a kernel size of (6×6) and a stride of (2×2). The second
convolutional layer has a kernel size of (3×3) and a stride
of (1×1). The latent space from the convolutional layers are
flattened into size 1152. The velocity of the quadrotor is fed
into a fully connected layer and then concatenated with the
flattened latent space. Finally another two fully connected
layers are used and the output vector size is the number of
actions |A| which represents the quality values Q(s,a). These
fully connected layers also use the ReLu activation function.

a1 a2

vt

vxIt
It−1

Fig. 1: 2D visual navigation problem. In each time step, an
observation is collected from the environment, consisting of the
current depth image It and the depth image collected at the previous
time step It−1 with the current linear velocity Vt . An action is chosen
based on ε-greedy action selection. Each action is a high level
command of either go left a1 or go right a2 which increments the
current desired horizontal velocity for the lower level controller. A
constant forward velocity of 1m/s is also sent to the flight controller.

For the reinforcement learning agent, we use an experience
replay size |D| of 15000 and mini-batches of 32. The target
network is updated every 150 steps and a discount factor γ

of 0.99 is used. Before any training occurs, the experience
replay is filled with 15000 episodes. Once filled, the Adam
optimiser is used to update the parameter weights of the NN.
We linearly decrement ε using the number of experiences in
the buffer ε = max(0,1− aT

|D| ). Where aT is the total number
of actions performed by all agents.
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Fig. 2: Deep Q-learning network architecture, consisting of 2
inputs. The depth image at time step t and t−1 is fed into two layers
of a convolutional layers. The resultant latent space is flattened and
concatenated with the output of the velocity terms which are fed
through another fully connected network. Finally, the concatenated
layer is fed into two fully connected networks resulting in an output
of 2 neurons representing the quality, Q value, of each action.

Reward Function: We use a simple reward function to
train the agent. A negative reward of −100 is given to the
agent when it collides with the walls of the arena. Then, for
each step it survives without colliding, the agent receives a
positive reward of +3.

B. Simulation Setup

We modify AirSim [14] to provide improved capabilities
for parallel reinforcement learning. We make use of the
quadrotor physics model, sensor models and flight controller.
AirSim is a plugin for the Unreal Engine which provides a



high fidelity rendering engine. Using the Blueprint system
we create an event graph which ignores overlapping events
caused by other quadrotors, thus disabling agent collisions.
Furthermore we make all quadrotors hidden in the scene
capture to prevent the depth map rendering other agents.
The benefit of these modifications is it allows us to vectorise
the simulation and control multiple agents within the same
Unreal Engine instance in a non-interactive way. This leads
to less complex environment setups with fewer required
meshes to create individual areas for a quadrotor to navigate
in.

The training and validation environments created within
the Unreal Engine is depicted in Figure 3. Both environments
have a variety of obstacles which have been inspired from
previous works of Camci [25] and Shin [5]. We understand
recently, research has been done to apply RL collision
avoidance controllers for very complex tasks. Our aim here is
illustrate a comparably competent controller through a more
efficient training method.

(a)

(b)

Fig. 3: Environments to Train (b) and Test (a) the visual-based
collision avoidance RL agent. The aim is to navigate through the
environment, starting on the left and traversing to the right without
flying into a wall.

C. Synchronising Game and Render Thread

The original command to request images from Air-
Sim took the form simGetImages([ImageRequests],

vehicle name, external). The underlying issue with
this command in the context of parallel reinforcement learn-
ing is the repetitive requests of individual images for each
quadrotor. An image request is an object which contains
metadata on the image that is requested to be rendered.
This includes, for example, the type of image such as depth
or RGB, resolution, and also FOV. For this purpose, we
require the same image metadata but for all vehicles within
the simulator. On-top of convenience, requesting multiple
images this way can cause latency issues within the sim-
ulator. AirSim requires a connection between the Unreal
Engine and a python client using a Remote Procedure Call
(RPC) server. This is due to incompatibility issues of using
NN libraries within Unreal Engine. The simGetImages

command is sent asynchronously and therefore, getting both
physical properties of the camera and rendering the image at
a specific timestep require synchronisation. Hence, every call
from simGetImages causes a delay in order to process the
request, which can scale with more agents in the simulator.

Therefore, we add the functionality to request multi-
ple images from all vehicles within the simulator with

one command in the same thread tick. We call this
new command simGetBatchImages([ImageRequests],

[vehicle names]). We modify the AirSim plugin to
incorporate the game logic to render all images within
the same game thread. To differentiate between both
the origianl AirSim command simGetImages and our
simGetBatchImages command, we refer to these as non-
batched and batched respectively.

The limitation of using this command for all agents within
the simulator is the synchronous image collection, requiring
all agents to act simultaneously at the same timestep. How-
ever, this limitation does not impact our training efficiency
as we are training a single policy.

D. Asynchronous Episodic Training

Currently AirSim only contains the functionality to reset
the entire simulator, placing all vehicles at the spawn location
reset(). Once an agent has crashed, it waits until all other
agents are finished before it can be reset. This has an impact
on the training time as experiences can only be gathered
during flight. Instead, we add the functionality to reset
individual quadrotors and to spawn at a specified location
with resetVehicle (vehicle name, pose). This func-
tion provides the capability to train agents asynchronously
and increase the rate at which experiences are generated.

E. Ape-X, Parallel Reinforcement Learning

We modify Ape-X to incorporate the additional RPC
server node created within AirSim. Figure 4 illustrates the
block diagram for the proposed decentralised network.

AgentsAirSim
S

argmax(Q)
DQNRPC

AgentsAirSim
S

argmax(Q)
DQNRPC

(s, a, s', r)

DQN

Buffer Trainer

RPC

Continuous
Loop

DQN.pt

Fig. 4: Decentralised networking architecture based off Ape-X
consisting of local policy networks performing actions on AirSim
instances. Separate servers are used for the replay buffer and trainer
which continuously samples from the buffer to train the global NN
weights.

Local NN clients (Agents) are individually paired with
AirSim instances. For each local network, previous states
are obtained using our batch render technique. Actions are
calculated using local instances of the global DQN network
hosted on the Trainer client. For every episode termination,
the local NN parameters are updated with the global param-
eters from the Trainer client. After every step of an episode,
the experience consisting of the state, action, next state,
and reward for each agent within the local AirSim instance,
(s,a,s′,r) are sent to a database. This database contains
a set of the most recent experiences with first-in-first-out



replacement. Once the database is filled, the Trainer client
continuously requests 32 mini-batches of experiences to per-
form gradient descent and update the global NN parameters.
This framework is designed to be decentralised in different
threads and communication via asynchronous messaging
using RPC servers for AirSim instances and the experience
replay database. As a result, all blocks can run networked
on different computers. Performing gradient updates using a
Trainer Client on a separate thread provides a major benefit.
The rate of gradient calculations is not synchronous to the
action time such as in [30]. For all experiments, we keep the
training frequency constant at 50Hz.

V. RESULTS

First, the batched and non-batched synchronisation tech-
niques were compared. A sweep of different agent configu-
rations is conducted which analyised the time to obtain the
quadrotor state. Then we further illustrate the cumulative
delay caused by continuing synchronisation of the non-
batched method compared to our batched method. Finally,
we show how efficient our parallel framework is for the given
collision avoidance task. Comparing the training time against
the number of agents within the simulator.

A. Batched and Non-Batched Comparison Results

First, we analyse the computational time to render the
quadrotors state for both the batched and non-batched
techniques. Figure 5(a) shows the total average time, for
each timestep, to calculate all quadrotor states within the
simulator. As illustrated, our method renders quadrotor
states quicker than the non-batched variant. Calculating 10
quadrotor states takes 197ms for the non-batched technique,
whereas our method can render the same states in 61ms,
more than half the time.

Further analysis, in Figure 5(b), shows the magnitude
of the delay caused by repeatedly synchronising the game
and render threads. For 10 quadrotors, we calculated the
synchronisation delay to be an average of 14.2ms. Whereas,
our method is only synchronising once per request, hence
an average delay of 1.6ms is recorded. This result does not
explain the entire improved efficiency and we believe further
optimisations occur within the Unreal Engine.
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Fig. 5: (a) presents the computation time to render quadrotor
states for both batched and non-batched techniques. (b) presents
the magnitude of the delay caused by synchronising the game and
render thread either once or multiple times for 10 quadrotors, using
the batched and non-batched method.

B. Parallel Collision Avoidance Agents

Using the new render technique, we show the efficiency of
using Ape-X with a fully vectorised environment. The vec-
torised environment involves multiple non-interactive agents
and multiple environments all running in parallel to train a
single policy. We present a comparison, shown in Figure 6, of
both the batched and non-batched methods for both a single
quadrotors and 50 quadrotors running in parallel. The rate
at which states were rendered for both methods of a single
quadrotor was similar, as expected. This is because the thread
is only being paused once for both methods and as a result
observation sample rate was the same, shown in Figure 6(b).
Whereas for 50 quadrotors, obtaining observations in batches
resulted in quicker training time as a result of the increased
rendering efficiency, shown in Figure 6(c).

All experiments are tabulated in Table II. Tests were
performed using an Intel i7-11700K CPU, Nvidia RTX 2070
Super GPU, and 64GB of RAM. To illustrate the computa-
tional power used when training, metrics on CPU and GPU
utilisation with GPU power consumption were collected.
Training time is the time for the model to converge to an
episode reward of 300. We validated our model on the test
arena, shown in Figure 3, for each experiment. On average
the success rate was 78%, showing good generalisation to
new environments.

TABLE I: Comparison of state-of-the-art work, illustrating the training time for various problems and the state space used.
Furthermore, computer specification is listed and the number of agents used to train the policy. Our work increases the
number of agents, reduces training time using similar hardware than other works.

Author Agents Image State
Dimensions

Training Compute Power
Envs Agents Total Steps Time CPU GPU RAM

Kersandt 2018 [30] 1 1 1 (30×100) 150,000 41 hours - - -
Shin 2019 [24] 1 1 1 (4×64×64) 100,000 - Intel i7 3.4 GHz Nvidia Titan X -
Çetin 2020 [31] 1 1 1 (30×100) 50,000 14 hours Intel i7 Nvidia GTX 1060 16GB
Polvara 2020 [3] 1 1 1 (4×84×84) - 7.6 days Intel i7 Nvidia Tesla K-40 32GB
He 2020 [32] 1 1 1 (80×100) 50,000 - - - -
Çetin 2021 [4] 1 1 1 (30×100) 75,000 48 hours Intel i7 Nvidia GTX 1060 16GB
Singla 2021 [26] 1 1 1 (84×84) 300,000 - Intel i7 Nvidia GTX 1050 8GB
Fang 2021 [27] 1 9 9 (64×64) - 29 mins Intel i7-9700 Nvidia RTX 2080Ti 64GB
Jang 2022 [2] 5 1 5 (3×84×84) 4,000,000 33h Intel i9-9900K Nvidia RTX 2080Ti -
Devo 2022 [28] 1 8 8 (84×84) 2,700,000 - Intel i9-9900K 2×Nvidia RTX 2080Ti 64GB
Ours 2 37 74 (2×32×32) 65,000 11 mins Intel i7-11700k Nvidia RTX 2070 64GB
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Fig. 6: Comparison of episode reward and number of observations
rendered for both batched and non-batched methods using 1 (a),(b)
and 50 (c),(d) quadrotors in parallel. Reduction in training time is
observed for 50 quadrotors, but not for 1 quadrotor.

As expected, increasing the number of agents collecting
experiences resulted in dramatically shorter training time.
Furthermore, we noticed a configuration of 25 quadrotors
acting in parallel using batched rendering achieved roughly
the same time to converge as the non-batched method. The
fastest training time was achieved with 74 agents acting in
parallel over 2 environments with 11 minutes to converge.
Whereas, the slowest total training time took 3.9 hours to
converge.

The total RAM utilised by the distributed framework for a
single environment amounts to 7.3GB. Furthermore, 12.6GB
of RAM was used for two simulation instances of AirSim but
split between two independent computers. Although, we only
utilised approximately 2GB of RAM for the replay buffer,
larger state spaces for more complicated tasks such as the
ones identified in Table I illustrate the need for additional
RAM. Distributing the computational resources over many
computer allows for larger state spaces and replay buffer
sizes.

TABLE II: Comparison between the parallel architecture and
rendering technique. Batched rendering performed slightly better,
however CPU utilisation sharply rose at 50 agents. This was solved
by using two instances of AirSim to train a total of 74 agents.

Threading
Method

Agents Train
Time

Utilisation% GPU
PowerEnvs Agents Total CPU GPU

Non-Batched
Observations

1 1 1 3.8h 24% 53% 101W
1 50 50 18m 62% 59% 95W

Batched
Observations

1 1 1 3.9h 24% 54% 92W
1 25 25 17m 27% 53% 93W
1 50 50 14m 73% 55% 95W
2∗ 37 74 11m 31% 56% 91W

∗ Environment instances run on networked computers to overcome the
CPU bottleneck.

We notice CPU usage dramatically increases after 37
quadrotors. Therefore, it can be assumed for any given
computer specification, a sweet spot exists where a maximum
number of quadrotors can be used for the fastest throughput.
For this, we would need to run further experiments. We
attempted to run simulations with 100 and 200 quadrotors in

a single environment with no increase in performance. For
our setup, the sweet-spot was approximately 50 quad rotors
per environment as shown by the 73% CPU utilisation.

GPU utilisation and power were not dependent on the
number of quadrotors. This leads us to believe, alongside
the results of the CPU utilisation, that the bottleneck for
number of quadrotors per environment lies with the CPU
performance.

Figure 7 illustrates the behaviour of the quadrotors during
training. As the agents start to collect experiences, the ε-
greedy action selection results in initially random actions in
an attempt to explore the environment (a). As soon as the
experience replay buffer is filled, the ε value decreases and
the agent starts to exploit the policy (b).

(a) (b)
Fig. 7: Comparison between the exploration (a) and exploitation
(b) behaviour during training.

We also noticed the frequency of gradient calculations
of the NN droped when multiple AirSim instances were
run on a single computer. For two instances, the training
frequency resulted in 14Hz, further illustrating the need for
the decentralised parallel framework we present here.

VI. CONCLUSION

In this paper, we improve upon the state-of-the-art by
providing a more efficient way of parallel agent training.
To do so, we incorporate a non-interactive environment
setup, which prevents rendering and collisions of all agents.
Using a non-interactive vectorised setup also leads to fewer
required meshes to create individual areas, improving the
computational performance. We incorporated a batch ren-
dering method, which prevented redundant game and render
synchronisation which lead to increased throughput and
reduced training time. With our modified Ape-x architecture,
and asynchrounous episodic training, we were able to run 74
quadrotors in parallel in two individual environments on two
network computers, 10 fold greater than current state-of-the-
art. The increased agent count dramatically reduced training
time down to 11 minutes from 3.9 hours. This technique
allows greater utilisation of RAM for larger replay buffer
requirements. Furthermore, we show the that CPU resource
utilisation is the bottleneck in our system. We overcome
this by distributing the computational resources over many
networked computers. Future work will investigate how the
performance of the CPU can be improved using techniques
such as GPU-accelerated physics engines. Furthermore, we
will test an agent trained using our framework on a physical
quadrotor, investigating the performance of sim-to-reality
gap.
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