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Abstract— We present Learned Risk Metric Maps (LRMM)
for real-time estimation of coherent risk metrics of high-
dimensional dynamical systems operating in unstructured,
partially observed environments. LRMM models are simple
to design and train—requiring only procedural generation of
obstacle sets, state and control sampling, and supervised train-
ing of a function approximator—which makes them broadly
applicable to arbitrary system dynamics and obstacle sets. In a
parallel autonomy setting, we demonstrate the model’s ability
to rapidly infer collision probabilities of a fast-moving car-like
robot driving recklessly in an obstructed environment; allowing
the LRMM agent to intervene, take control of the vehicle, and
avoid collisions. In this time-critical scenario, we show that
LRMMs can evaluate risk metrics 20-100x times faster than
alternative safety algorithms based on control barrier functions
(CBFs) and Hamilton-Jacobi reachability (HJ-reach), leading
to 5-15% fewer obstacle collisions by the LRMM agent than
CBFs and HJ-reach. This performance improvement comes in
spite of the fact that the LRMM model only has access to
local/partial observation of obstacles, whereas the CBF and
HJ-reach agents are granted privileged/global information. We
also show that our model can be equally well trained on a
12-dimensional quadrotor system operating in an obstructed
indoor environment. The LRMM codebase is provided at
https://github.com/mit-drl/pyrmm.

I. INTRODUCTION

The estimation of risk is a topic that spans many research
domains: from medical treatments [1], to economics and
portfolio optimization [2], [3], to robotics and autonomous
systems [4]. Within the field of autonomous systems, we
often consider risk in terms of probability that a system
causes harm to itself or its environment, and the expected
cost of such events. In this work we seek to estimate the
probability of a dynamical system arriving at a state of failure
given an initial configuration and control policy.

Such risk estimation problems have been a major fo-
cus within autonomous automobile research where collision
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Fig. 1. Visualization of inferred risk metrics for 1000 sampled states of
a Dubins vehicle within a procedurally generated maze [5]. The minimum
turning radius of the vehicle is ∼10 pixels. The estimated probability of
collision with walls for a random control policy over a finite time horizon
is colorized. We see that states with an imminent wall collision are correctly
estimated as high risk, whereas unobstructed states are low risk of collision.
For clarification, the base of each arrow, not its tip, represent the exact xy-
coordinate of the sampled state.

avoidance is of utmost concern [6]. Many of these works
emphasise prediction of future states of other vehicles [7],
[8], [9]. These works often adopt domain-specific assump-
tions that make it difficult to extend techniques beyond the
automotive domain—such as strict assumptions on vehicle
dynamics[8]; the assumption that all obstacles or other agents
can be represented as points [8], balls [9], or ellipsoids [7];
and assumptions that other agents act in predictable [7], [9]
and/or self-preserving [8] fashions.

A closely related problem is that of trajectory collision
probability assessment [10], [11] and risk-aware motion
planning [10], [12], [13]. These works evaluate the proba-
bility that a particular trajectory intersects the obstacle space
given bounded process and/or measurement noise. This is
a related—yet distinct—problem from the one considered
in this paper: i.e. evaluating the probability that a system
will arrive at a future failure state given some initial state
and control policy. Furthermore risk-aware motion planning
algorithms almost all rely on an a priori map of the ob-
stacle space with, at most, bounded uncertainty on obstacle
locations [12]. Therefore, even though our work shares
concepts and keywords with the field of sampling-based
motion planning, it occupies a different problem space than
algorithms like rapidly-exploring random tree (RRT) [14].

Hamilton-Jacobi reachability (HJ-reach) analysis [15] and
control barrier functions (CBFs) [16]—both of which are
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discussed more thoroughly in Sec. II and IV—offer rig-
orous methods for estimating unsafe sets and providing
safety-guaranteed controls for autonomous systems. How-
ever, the former suffers from limitations on scaling to high-
dimensional systems (i.e the “curse of dimensionality”) and
the latter lacks generalizability to arbitrary system dynam-
ics and obstacle sets. The scalability limitations of HJ-
reachability and generalizability limitations of CBFs moti-
vate the need for alternative methods for assessing safety
of dynamical systems and discovering safe control policies.
Drawing from the field of motion planning, sampling-based
methods are a well-known technique for overcoming the
curse of dimensionality[14]. Sampling-based techniques can
be applied to systems with arbitrary dynamics and obstacle
spaces since these properties are inherent to the sampling
process. The primary drawback of sampling-based tech-
niques to safety-critical applications is that they may lack
the strict safety guarantees that alternative methods provide.
Lew et al. [17], [18] provide strong justification for the use
of sampling-based methods for safety-critical applications
by proving asymptotic convergence to a conservative over-
approximation of reachable sets using random set theory.

In this paper we provide a simple, sampling-based
method for approximating risk metrics for arbitrary dynam-
ical systems in partially-observed environments and train a
supervised-learning model—referred to as learned risk metric
maps (LRMM)—that can rapidly infer failure probabilities
in a priori unknown environments. We then show that, in
spite of HJ-reach and CBF safety guarantees, the LRMM
model can provide a greater level of safety in a time-critical
parallel autonomy task due to it’s rapid estimation of risk.

II. RELATED WORK

In this section we position our work relative to the
closely related techniques of Hamilton-Jacobi reachability
(HJ-reach) and control barrier functions (CBF).

The theoretical foundations for this paper can be traced
back to the concept of inevitable collision states; i.e. the
set of states for which a dynamical system cannot avoid
future collisions with obstacles regardless of control input
[19], [20]. HJ-reachability represents a modern treatment of
inevitable collision states that provides a rigorous theoretical
foundation for computing the set of unsafe states that may
lead to failure (e.g. collision); often referred to as the
“backward reachable set” (BRS) [15].

The BRS of the obstacle space, Cobs, is computed by
solving for the value function, V (t, sω), of the Hamilton-
Jacobi-Isaacs partial differential equation (PDE) for all states
over time horizon t [21], [22]. The value function then
allows us to described the BRS of the obstacle space as
Vobs(t) = {s : V (t, x) ≤ 0}. This is the set—often called
the unsafe set—for which there exists a control action, a that
would lead the system to collision with the obstacle space
over time horizon t. The HJ value function also provides a
means to calculate the optimal control for avoiding obstacles
as a gradient of the value function; see Bajcsy et al. for
details [23].

HJ-reachability has been used to develop provably-safe
autonomous navigation algorithms for arbitrary dynamical
systems within partially-observed environments by treating
the unknown portion of the environment as an obstacle [23].
While the general applicability of HJ-reachability makes it a
powerful tool, it suffers from the “curse of dimensionality”
that make it very difficult to apply the technique in real-
time on anything save the simplest, low-dimensional, slow-
moving systems [15], [24], [23].

Control Barrier Functions (CBF) offer an alternative,
complementary approach to HJ-reachability that provide
provably-safe control of autonomous systems in the pres-
ence of obstacles [16], [25]. In contrast to HJ-reachability,
CBFs can provide real-time safe control for high-dimensional
control-affine systems. CBF-based controllers—or more pre-
cisely, controllers based on CBFs and control Lyapunov
functions (CLFs)—work by mapping state (safety) con-
straints onto a set of control constraints by taking Lie
derivatives of the constraints along the dynamics, and then
encoding them as inequality constraints within a quadratic
program (QP) that can be solved to determine stabilizing
(i.e. target-tracking, using CLFs) and safe (i.e. obstacle-
avoiding, using CBFs) control inputs; see Ames et al. [16]
for a detailed discussion.

General methods do not exist for discovering CBFs for a
given control system, requiring that they be hand-designed.
Furthermore CBFs require an explicit mathematical model of
obstacles or keep-out regions to be avoided; something that is
often impractical in real-world applications. Choi et al. [24]
propose a method for blending HJ-reachability and CBFs;
however this technique still suffers from the poor scalability
to high-dimensional systems.

The learned risk metric maps (LRMM) described in the
following sections attempt to overcome the drawbacks of
HJ-reach and CBF methods by providing a constructive (i.e.
not hand-designed) model that rapidly estimates risk metrics
for high-dimensional dynamical systems within arbitrary
obstacle spaces.

III. RISK METRIC MAPS

Our work considers partially observable Markov decision
processes [26] defined as the tuple (C,A,O, T,R). C is the
configuration space that defines the possible states of the
system, s ∈ C, as well as the obstacles and/or failure-states
of the system, Cobs ⊂ C. Let the obstacle-free set of the
configuration space be defined as Cfree = C \ Cobs. A is
the action space and an action is given as a ∈ A. O(s)
is the observation function; an observation is given as o ∼
O(s). The state transition function, T (s′|s, a), represents
probability of arriving in state s′ when taking action a in state
s. The reward is drawn from the reward function r ∼ R(s, a).
A stochastic policy π(a|o) ∈ Π represents the probability, or
probability density, of taking action a given observation o.

An observation-action trajectory from
timestep α to ω is defined as τα,ω =(
o(α), a(α), o(α+1), a(α+1), ..., o(ω−1), a(ω−1), o(ω)

)
. Note

that we use parenthetical superscripts to represent specific



time steps. Let T be the set of all possible trajectories τ
under dynamics T and policy π. Let J(τα,ω) : T → R
be the trajectory cost function that maps a trajectory to a
real-valued number (e.g. fuel usage, time, etc.).

With slight abuse of notation on the variables α and ω, let
us define the cost-limited forward reachable set [27] from
state sα to all states sω

Ω(sα, Jth) = {sω ∈ C|∃τα,ω ∈ T , J(τα,ω) ≤ Jth} (1)

Define the failure cost function

Z : C → R (2)

that maps each state s ∈ C to a real value that corresponds to
to the failure-state set Cobs. In this work we define a failure
cost function such that

Z(sω ∈ Cobs) = 1

Z(sω ∈ Cfree) = 0
(3)

Let Z be the set of all failure cost functions Z. Define the
risk metric as

ρ : Z → R (4)

In this work we only consider coherent risk metrics such
as conditional value at risk (CVaR), worst case, or expected
cost [4].

Finally—with slight abuse of notation on ρ—we can define
the risk metric map

ρ (s, π;Z, Cobs, T ) : C ×Π→ [0, 1] (5)

which maps the configuration and policy space to the real-
value range [0, 1] by assigning to each state-policy pair (s, π)
a risk value parameterized by the failure cost function Z,
obstacle space Cobs, and vehicle dynamics T . By using the
binary failure cost function in Eqn. 3 and expected cost as our
risk metric, our risk metric map is identical to the probability
the system arrives at a failure state over an infinite time
horizon when starting from state s and following policy π.
For brevity of notation we drop the parameter variables and
refer to the risk metric map as ρ(s, π) or even ρ(s) when
the policy is assumed to be uniform random sampling of
bounded controls. Note that we can relate the risk metric
map to inevitable collision obstacles (ICO) [19] as

ICO (Cobs) = {s ∈ C|∀π, ρ(s, π) = 1} (6)

A. Approximate Risk Metrics

Many kinodynamic systems of interest—such as cars,
aircraft, maritime vessels, etc.—have continuous state and
action spaces making enumeration over all states and con-
trol trajectories in Eqn. 1 impossible. Furthermore, obstacle
spaces in Eqn. 3 are often implicitly defined and only sensed
with partial observability. This means that the explicit deriva-
tion of risk metrics at each state of a system is impractical,
if not impossible.

We can, however, formulate a finite-horizon approximation
of Eqn. 5 at a given state. Algorithm 1 gives a recursive,
sampling-based estimate of the risk metric at state s, which is

Algorithm 1 Approximate Risk Metric
procedure APPRXRISKMETRIC(s, τ, π, t, n,m)

z ← CHECKFAILURE(s, τ)
if z = 1 or m = 0 then

return z
P ← ∅
V,E ← SAMPLEFORWARDREACHABLESET(s, π, t, n)
for sω, τω in ZIP(V,E) do

P ← P∪{APPRXRISKMETRIC(sω, τω, π, t, n,m−
1)}

return COHERENTRISKMETRIC(P )

arrived at by trajectory τ , and subsequently following policy
π over a time horizon of t ∗m.

The algorithm works by checking if a state is in collision
with obstacles (i.e. failure cost function from Eqn. 3) and
then recursively sampling the stochastic policy π which
samples the forward reachable set Ω(s, t) of state s with
a cost function of time t (Eqn. 1). This recursive sampling
generates a tree rooted at s with a branching factor of n
and depth of m. The recursive base of the algorithm is to
simply return the value of the failure cost function at the
leaf node, which is either 0 or 1. Otherwise the algorithm
returns a coherent risk metric—such as expected cost—over
all immediately adjacent sampled states in the tree.

B. Learned Risk Metric Maps
While Alg. 1 provides an approximation to risk metrics in

Eqn. 5, this only provides an approximation at a single state
and not an approximation over the entire state space. Fur-
thermore, we need privileged access to obstacle information
in order to perform collision checking during the sampling
process. This means that Alg. 1 is of limited use in real-time
systems where obstacles may only be partially sensed (e.g.
via cameras or Lidar).

We seek a method for approximating risk metrics over
finite time horizons for kinodynamic systems operating in
unstructured, partially observed obstacle spaces. To achieve
this we use Alg. 1 as a data generator to train a function
approximator (e.g. neural network) that takes as input the
local observation, o ∼ O(s), and outputs the inferred risk
metric, ρ̂(s). Training data is generated under policy πg (e.g.
uniform random from bounded control space [17], [18]).
Therefore we define the learned risk metric map (LRMM)
function approximator as

ρ̂(o;πg) : O → [0, 1] (7)

Algorithm 2 gives a rough overview of the relatively sim-
ple procedure for training the LRMM model in Eqn. 7. This
consists of generating obstacle sets; sampling states from
these obstructed configuration spaces; pulling observations
from these states and computing risk metrics at each state;
and finally, training a supervised model on these observations
and risk metrics.

Similar to sampling-based motion planners (e.g. RRT [14])
and online planning methods (e.g. monte carlo tree



Algorithm 2 Training Learned Risk Metric Maps
CM ← GENERATEOBSTACLESETS(M)
SN ← SAMPLESTATES(CM , N)
ON ← OBSERVESTATES(SN )
PN ← APPRXRISKMETRICS(SN , τ, π, t, n,m)
ρ̂← TRAINMODEL(inputs=ON , targets=PN )

search [26]) approximate risk metrics use sampling tech-
niques to explore the configuration space using tree struc-
tures. However, LRMM differs in that it does not directly
attempt to determine policies or motion plans for navigating
the configuration space. Therefore, it is not necessary to form
a connected graph with all sampled states and instead allows
for many disjoint trees sampled throughout the configuration
space making it highly parallelizable.

IV. EXPERIMENTS

In this section we provide simulation experiments demon-
strating the utility of learned risk metric maps. We provide a
case study on parallel autonomy, comparing effectiveness of
LRMMs with control barrier functions (CBFs) and Hamilton-
Jacobi reachability (HJ-reach) in a 4-dimensional car-like
robot. We then provide training results for high-dimensional
systems in unstructured obstacles spaces such as a quadrotor
in an obstructed room.

For all experiments the LRMM models are trained with
Alg. 2 using a branching factor n = 32, a tree depth m = 2,
time horizon of t = 2 seconds per tree depth, and expected
value of our failure cost function (Eqns. 3) as our coherent
risk metric. Similarly, a held-out test set of data is generated.
Models consist of a 64-neuron, single layer, feed-forward
network with a sigmoid activation function. Another sigmoid
function is applied at the output layer to bound outputs
to the range [0, 1] so that outputs represent probabilities.
The training process uses a mean squared error (MSE) loss
function for the regression problem.

For software implementation, state and control spaces are
defined and sampled using Open Motion Planning Library
(OMPL) [28]. Network models and training are implemented
with PyTorch [29]. In Sec. IV-A CBF quadratic programs are
solved using the CVXOPT library [30]. The HJ-reachability
PDE is defined and solved with the OptimizedDP library
[31]. In Sec. IV-B PyBullet [32] is used for quadrotor
system dynamics, 3D collision checking, and rendering. All
data generation, model training, and evaluation experiment
configurations are managed using hydra-zen [33]. LRMM
training and experiment software is provided at https:
//github.com/mit-drl/pyrmm.

A. Parallel Autonomy Case Study

Problem setup. We consider a Dubins-like kinodynamic
system—referred to as Dubins4D and illustrated in Fig. 2—
which is commonly studied in related works [23], [25] with
dynamics given as

ẋ = v cos θ + dx, ẏ = v sin θ + dy, θ̇ = u1, v̇ = u2 (8)

Fig. 2. Dubins4D parallel autonomy simulation environment. Obstacles
are randomly placed red circles, the goal is the partially obscured green
circle, the agent and its velocity vector is indicated in blue, and the lidar
ray casts are light gray. A “reckless” control system navigates the vehicle
to the goal without regard to obstacles. We evaluate LRMM, CBF, and HJ-
reach methods as “guardian agents” who can take temporarily take control
of the vehicle to avoid obstacles.

where state, s := (x, y, θ, v), represents the location in
Cartesian frame, heading, and linear speed of the vehicle,
respectively; and controls, u := (u1, u2), are the turn-rate
and linear acceleration, respectively. The system is subject
to state constraints vmin ≤ v ≤ vmax; control constraints
u1,min ≤ u1 ≤ u1,max, u2,min ≤ u2 ≤ u2,max; and bounded
disturbance ‖dx‖ ≤ dr, ‖dy‖ ≤ dr.

We consider the case where the Dubins4D system in Eqn.
8 is operated in the presences of obstacles and steered by
a “reckless driver”, i.e. a controller that guides the system
to a goal region but makes no effort to avoid obstacles1.
The objective is to provide a parallel autonomous system—
referred to as the “guardian agent”—that judiciously takes
control from the driver to prevent collisions with obstacles
[34]. It is desired that the guardian agent be minimally-
interfering; it should only take control when collisions are
imminent and is not responsible for optimizing navigation to
the goal.

The environment executes in a non-blocking fashion; that
is to say that simulation time continues to progress even
while agents are computing their next action. This charac-
teristic of the environment is designed to demonstrate the
importance of computation time in safety-critical robot appli-
cations. The observation spaces is a 17-tuple with simulation
time, relative position to goal, absolute heading and speed,
and 12 ray-casts equally distributed around the vehicle that
sense obstacle locations.

In this experiment we compare three guardian agents:
LRMM, CBF, and HJ-reach.

LRMM: The LRMM agent is trained with 35,072 samples
drawn from 274 randomly generated obstacle configurations
that are completely distinct from those configurations used
during the evaluations in Table I; i.e. LRMM was not allowed
to train on the evaluation set. During runtime evaluation, the
LRMM agent works by inferring risk from observation of

1For our experiments the “reckless driver” is a control Lyapunov function
(CLF) taken from [25]; however, any other controller could be used so long
as it generates a non-zero frequency of obstacle collisions.
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TABLE I
COMPARATIVE STUDY OF LEARNED RISK METRIC MAPS, CONTROL BARRIER FUNCTIONS, AND HAMILTON-JACOBI REACHABILITY AS PARALLEL

AUTONOMY AGENTS IN THE DUBINS4D DRIVING ENVIRONMENT

Agent Observation
Type

Num.
Obstacles

Policy
Compute

Time [ms]

Success
Rate

[% eps]

Collision
Rate

[% eps]

Timeout
Rate

[% eps]

Intervention
Rate

[% steps]

LRMM local/partial 5 2.4±5.0 45.3± 7.3 29.7±5.6 25.0± 4.8 30.7± 32.5
CBF global/privileged 5 52.9± 41.2 46.2± 5.9 35.1± 5.2 18.8± 3.8 32.8± 39.4

random none 5 1.4± 2.7 27.1± 6.9 68.4± 5.9 4.5± 2.9 ∼ 50
inactive none 5 1.0± 2.3 44.4± 7.4 55.4± 7.3 0.1± 0.5 0
brakes-only none 5 0.3± 0.7 0.6± 0.9 9.0± 3.8 90.4± 3.7 100

HJ-reach global/privileged 1 344.0± 850.0 54.0± 5.2 46.0± 5.3 0.0± 0.3 < 1.0

the system’s current state. If the inferred risk is greater than
a user-defined threshold (ρ̂(s) > 0.85 in our experiments),
then the LRMM agent takes active control of the vehicle and
applies maximal braking and maximal turning control until
the risk estimate drops below the threshold, at which time
control is returned to the driver agent2.

CBF: The CBF agent is based on high-order CBFs
described in [25]. CBF-based controllers are most often
considered in the context of fully-autonomous systems, but
we can easily adapt them to parallel autonomy systems. At
each new state that the system encounters, the CBF agent
formulates and solves the quadratic program (QP) described
in Sec. II. If the CBF constraints are active in the QP
solution—i.e. at least one CBF inequality constraint reaches
an equality—then the CBF agent overrides the driver and
applies the controls resulting from the QP solution. Note
that CBFs require an explicit, analytical description of the
obstacle space in order to formulate the CBF-based QPs. For
our experiments we work around this by providing the CBF
agent with privileged, global knowledge of the obstacle space
that is not given to the LRMM agent.

HJ reachability: The HJ-reach agent is based upon
Hamilton-Jacobi reachability [23], [15].

As the Dubins4D driver moves the vehicle through the
state space, the HJ-reach agent assess the value function at
each state and determines if it is within the unsafe set Vobs(t).
If the system arrives in the unsafe set, then the HJ-reach
agent takes control and applies the optimal control to steer
the system away from the obstacle set.

Several modifications to the Dubins4D environment were
necessary for the HJ-reach agent to be applied. First, like
the CBF agent, the HJ-reach agent was granted privileged
information about the obstacle space in order to formulate
the HJ PDE3. Furthermore, we granted the HJ-reach agent a
precomputation phase where the agent is allowed to “peek”

2Note that this collision avoidance policy is a heuristic and not derived
from the LRMM output. Thus, in this case study, LRMM helps to answer
the question of when to take control, but not what control to apply; i.e. the
LRMM is not prescriptive of control. See Sec. V for discussion of future
work on this topic.

3Unlike CBFs, HJ-reachability does not explicitly require analytical
descriptions of the obstacle space and can—in principle—work with an
implicit description, e.g. a discretized mesh of the obstacle space. However,
our implementation of HJ-reachability was constrained by the Python
libraries available for solving the HJ PDE [31] which required explicit
obstacle descriptions (e.g. circular regions of known radius and position)

at the complete obstacle configuration prior to environment
initiation and then given time to solve for the HJ value
function over a discretized mesh of the state space. The
computation of the HJ value function can take up to 2
minutes on the same computer hardware that solves CBF
QPs in 50 milliseconds. This is so slow that—without this
precompute phase—the entire simulation time window would
have elapsed before the HJ-reach agent even had the chance
to interact and control the system. Finally, we could only
impose a single obstacle for the HJ-reach agent due to
limitations of the software library used to implement the HJ
solver.

Other Baselines: We also compare against a set of
baseline agents—random, inactive, brakes-only—that have
simplistic policies that, respectively, intervene with random
controls at random times; never intervene on the drivers
actions; and always intervene and apply maximum braking
at all times. These baselines help bound the possible perfor-
mance metrics within the Dubins4D environment.

Comparative Results: Table I provides the experimental
results from our Dubins4D parallel autonomy case study. A
set of 2048 environment configurations (i.e. placement of ob-
stacles, goal, and initial vehicle state) are randomly generated
and each agent is evaluated in each of these environment
configurations—except the HJ-reach agent which had it’s
own set of 2048 environments due to its limitation to single
obstacles. The agents are evaluated based on their policy
computation time, success rate (i.e. proportion of trials that
end at the goal state), collision rate (trials that end in collision
with obstacles), timeout rate (trials that end in neither goal or
collision), and intervention rate (i.e. the percent of time steps
for which the guardian agent takes control from the driver).
Ideally, a guardian agent would have a perfect success rate;
a zero collision and timeout rate; and a minimal intervention
rate (only takes control at the critical moments to avoid
collision and then returns control to the driver); however,
such a “perfect” guardian agent is not actually possible in
this contrived scenario—see discussion below.

The key insight from Table I is that the LRMM agent
performs at least as well—if not better than—CBFs and
HJ-reach methods in this real-time, safety-critical, parallel
autonomy task. This is in spite of the fact that the LRMM
agent only has access to a local, partial observation of
the environment whereas the CBF and HJ-reach agents are



TABLE II
RISK METRIC TRAINING AND TESTING RESULTS ON UNSTRUCTURED ENVIRONMENTS AND HIGH-DIMENSIONAL SYSTEMS

Dynamics Obstacle
Space

State
Dims

Control
Dims

Observe
Dims

Train
Samples

Final Train
MSE/MAE

Test
Samples

Test
MSE/MAE

Dubins-3D Mazes 3 1 8 65536 3.70e-3
1.83e-2 4096 3.38e-2

5.51e-2

Dubins-4D Circles 4 2 17 35072 2.38e-3
3.71e-2 5260 2.98e-3

3.68e-2

Quadrotor Walls &
Polyhedra 12 4 16 65536 1.69e-4

7.88e-3 8192 4.97e-4
1.13e-2

granted privileged global knowledge of the obstacle space.
The success of the LRMM agent is due in large part to
its rapid computation time. Needing only to make a feed-
forward pass through a shallow neural network in order to
estimate risk metrics, the LRMM agent can run approxi-
mately 20x faster than the CBF agent—which needs to solve
quadratic programs at each step—and > 100x faster than the
HJ-reach agent—which needs to interpolate a value function
and its derivative on a 4-dimensional mesh of the state space.
Even though CBFs and HJ reachability can provide theo-
retical guarantees about control robustness and optimality,
these experiments highlight the practical challenges of their
implementations in real-time safety-critical applications.

The LRMM and CBF agents both produce roughly the
same success rate of 45%. LRMM slightly outperforms CBFs
with a 30% collision rate. The Dubins4D environment is
randomly initialized such that collisions are unavoidable in
some episodes; i.e. the initial state of the vehicle is already
within the region of inevitable collision (Eqn. 6) [19]. From
the inactive-agent we see that—without intervention from
a guardian—the “natural” proportion of episodes ending in
collision is roughly 55%. From the brakes-only agent—
which always intervenes and immediately brings the vehicle
to a stop—we see that an approximate lower bound on
collision rate is 9%. LRMM produces a higher rate of episode
timeouts—with neither goal nor obstacle being reached—
which tend to be caused by the guardian agent bringing
the vehicle to a complete stop until the end of the episode.
Both LRMM and CBFs have roughly a 30% intervention
rate. LRMM and CBF agents significantly out-perform the
baseline random agent across all metrics.

Direct comparison with HJ-reach in terms of success,
collision, and timeout rate is made difficult by the fact that
it was not exposed to the same number of obstacles as other
agents. HJ-reach results are included to highlight the long
computation time relative to other methods. This is also what
leads to it’s low intervention rate. By the time that the HJ-
reach agent has identified that the system has entered an
unsafe set and computed the optimal evasion control, the
vehicle has already collided with the obstacle.

B. High-Dimensional Systems & Unstructured Environments

As demonstrated in Sec. IV-A, learned risk metric maps
can infer a dynamical system’s current risk of failure much
more rapidly than existing techniques like CBFs and HJ-
reachability. These alternative techniques become even less

Fig. 3. Visualization of quadrotor in an highly unsafe state (i.e. upside
down and near an obstacle). Color of the quadrotor is scaled from green-
to-red based on the inferred risk metric which, here, accurately estimates
the high risk of the current state. Obstacles and walls made transparent for
easier visualization. Rendered in PyBullet [32].

usable in higher-dimensional systems—where solutions of
PDEs over the state space become prohibitively expensive—
and unstructured environments—where obstacles cannot be
explicitly/analytically described. In this section we show
that learned risk metric maps can effectively estimate risk
values in such challenging environments. In addition to the
Dubins4D environment, we train risk models for a Dubins
vehicle in highly-obstructed procedurally-generated mazes
(see Fig. 1) and a quadrotor within procedurally-generated
rooms with random polyhedron obstacles (see Fig. 3).

Table II gives the risk metric map training and testing
results for these three systems. In addition to the MSE
training and testing loss we also report mean absolute error
(MAE) at the end of training and on the test set. This gives
more intuition on how accurately the models estimate risk.
We see that all models average a risk estimation error of
< 10% of the true risk on the test set.

V. CONCLUSION

In this paper, we present learned risk metric maps (LR-
MMs) for real-time estimation of coherent risk metrics of
high-dimensional dynamical systems operating in unstruc-
tured, partially observed environments. We compared the
proposed LRMM with other state of the art methods: CBF
and HJ-reachability, with results showing advantages of the
proposed LRMM’s computation efficiency and general appli-
cability. As noted in Sec. IV-A, a shortcoming of LRMMs
is that they estimate failure probabilities, but they do not
prescribe the control necessary to avoid failure. We anticipate



that future work will remedy this—perhaps through some
fusion with control barrier functions—and seek to provide
formal guarantees on LRMM accuracy [17].
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