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Francky Catthoor1,4, Georges Gielen1,4

Abstract— This work proposes a first-of-its-kind SLAM ar-
chitecture fusing an event-based camera and a Frequency Mod-
ulated Continuous Wave (FMCW) radar for drone navigation.
Each sensor is processed by a bio-inspired Spiking Neural Net-
work (SNN) with continual Spike-Timing-Dependent Plasticity
(STDP) learning, as observed in the brain. In contrast to most
learning-based SLAM systems, our method does not require any
offline training phase, but rather the SNN continuously learns
features from the input data on the fly via STDP. At the same
time, the SNN outputs are used as feature descriptors for loop
closure detection and map correction. We conduct numerous
experiments to benchmark our system against state-of-the-art
RGB methods and we demonstrate the robustness of our DVS-
Radar SLAM approach under strong lighting variations.

MULTIMEDIA MATERIAL

Please watch a demo video of our SNN-based DVS-Radar
fusion SLAM at https://youtu.be/a7gvZWNHGoI

I. INTRODUCTION

Simultaneous Localisation and Mapping (SLAM) is an
important problem for autonomous agents such as drones
[1], [2]. Most state-of-the-art SLAM systems integrate raw
odometry data with feature matching using standard RGB
cameras in order to detect loop closures (i.e., places already
visited by the agent) and to correct the drift in raw odometry
accordingly [3]. However, using RGB cameras alone does
not provide upmost robustness, such as insensitivity to light-
ing variations and environmental conditions [1]. Therefore,
multi-sensor SLAM systems fusing RGB with e.g., lidar,
radar and event-based cameras have emerged with increased
robustness compared to RGB alone [2], [4].

Event-based cameras (also called Dynamic Vision Sensors
or DVS) are a novel type of imaging sensor composed
of independent pixels xij that asynchronously emit spikes
whenever the change in light log-intensity |∆Lij | sensed
by the pixel crosses a certain threshold C [5] (see Fig.
1). In contrast to RGB cameras, DVS cameras can still
perform well in low-light conditions [1] and produce a
spatio-temporal stream that contains patterns in both the
spatial and spike timing dimensions, making them a natural
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Fig. 2: a) Our sensor fusion drone setup used for jointly
acquiring event camera and radar data. The warehouse
environment (detailed in [6]) in which the drone navigates
is also shown. The warehouse is equipped with Ultra Wide
Band (UWB) localisation for ground truth acquisition [6]. b)
Event and radar data are fed to SNNs that continually learn
on the fly via STDP (see Fig. 4). The SNN output is used for
loop closure detection to perform SLAM. Radar detections
are also used to model the obstacles (black dots in b).

choice as input for Spiking Neural Networks (SNNs). Indeed,
SNNs are bio-plausible neural networks that make use of
spiking neurons, communicating via binary activations in an
event-driven manner, matching the DVS principle [7].

SNNs have recently gained huge attention for ultra-low-
energy and -area processing in power-constrained edge de-

Fig. 1: Conceptual illustration of event-based vision. a) The
camera outputs a stream of spikes in both space and time.
b) Each pixel xij fires a spike when its change in light log-
intensity ∆Lij crosses a threshold. The spike is positive when
∆Lij > 0 (red dots) and negative (blue dots) otherwise.
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vices such as drones [8]. In addition, the use of event-driven
learning rules such as Spike-Timing-Dependent Plasticity
(STDP) [9] enables unsupervised learning at the edge using
emerging sub-milliwatt neuromorphic chips [10], [11], as
opposed to power-hungry GPUs. Furthermore, SNN-STDP
systems are also a good choice for continual, on-line learning
[12], dropping the need for offline SNN training. Hence, this
work studies the use of SNNs equipped with STDP learning
for fusing DVS and radar data on power-constrained drones.

The use of radar sensing for drone navigation has recently
been investigated in a growing number of works [13],
[14], [15], [16], [17]. Indeed, fusing radar sensing with
vision-based sensors such as DVS is attractive since radars
intrinsically provide complementary information to camera
vision, such as target velocity and position in a range-azimuth
map (also called bird’s eye view vs. projective plane in
cameras) [17]. In addition, radars are robust to environmental
conditions as they are not sensitive to occlusion by dirt and
can sense in the dark [14].

This work deviates from most fusion-based SLAMs by
proposing a first-of-its-kind, bio-inspired SLAM system fus-
ing event camera with radar (see Fig. 2, 4), using SNNs that
continuously learn via STDP, as observed in the brain [9].
It also deviates from most learning-based SLAM systems
which typically require the offline training of a Deep Neural
Network (DNN) on a dataset of the working environment
captured beforehand [2]. In contrast, our DVS-Radar fusion
SNN learns on the fly and keeps adapting its weights via
unsupervised STDP as the drone explores the environment.
At the same time, the SNN outputs are fed to a bio-inspired
RatSLAM back-end [18] for loop closure detection and map
correction. Crucially, our continual STDP learning approach
enables the deployment of our system in environments not
captured by datasets and therefore, not known a priori (vs.
offline training in state-of-the-art DNN-based SLAMs [2]).

We use our sensor fusion drone shown in Fig. 2 to jointly
acquire DVS and radar data during multiple drone flights in a
challenging, indoor environment, in order to perform SLAM
(see Fig. 2 b). We assess the performance of our proposed
DVS-Radar SNN-STDP SLAM system against ground truth
positioning, recorded via Ultra Wide Band (UWB) beacons
[6]. The main contributions of this paper are the following:

1) We propose what is, to the best of our knowledge, the
first continual-learning SLAM system which fuses an
event-based camera and an FMCW radar using SNNs.

2) We propose a method for radar-gyroscope odometry,
where radar sensing provides the drone’s velocity, and
a method for obstacle modelling via radar detections.

3) We experimentally assess the performance of our
SLAM system on three different flight sequences in a
challenging warehouse environment and we show the
robustness of our system to strong lighting variations.

This paper is organized as follows. Related works are
discussed in Section II, followed by background theory
covered in Section III. Our proposed methods are presented
in Section IV. Experimental results are shown in Section V.
Conclusions are provided in Section VI.

II. RELATED WORKS

A growing number of bio-inspired [18], [19], [20] and
sensor fusion [1], [2], [4] SLAM systems have been proposed
in recent years . Among the most related to this work, a DVS-
RGB SLAM system has been proposed in [1], providing
robust state estimations by fusing event-based cameras, RGB
and raw IMU odometry. In addition, the system of [1] has
been implemented on a drone for indoor navigation and was
shown to be robust to drastic changes in lighting conditions
and in low-light scenarios. In contrast to [1], which makes
use of hand-crafted features, our system uses an SNN with
STDP learning. In addition, we do not fuse the richer
information obtained from RGB as in [1], but rather fuse
DVS with sparser radar detections instead, which makes the
reliable template matching of the SNN outputs challenging.

Recently, the LatentSLAM system has been proposed in
[2] as a learning-based pipeline using a DNN encoder which
provides latent codes for template matching, trained offline
on a dataset capturing the environment in which the robot
must navigate. The inferred latent codes are fed to the loop
closure detection and map correction back-end of the popular
RatSLAM system [18] to correct the drift in raw odometry.
In contrast, our proposed continual learning system does not
require any offline training phase, enabling its deployment in
unseen environments without the requirement of capturing a
dataset of the working environment beforehand.

As stated earlier, we make use of the RatSLAM loop
closure detection and map correction back-end in this work
[18], [21]. RatSLAM has been proposed as a bio-inspired
system following the navigational processes of the rat’s
hippocampus [18]. Even though the original RatSLAM uses
raw RGB images for template matching, further evolutions
of RatSLAM, such as LatentSLAM, replace the raw RGB
input by the stream of associated latent codes obtained
through learned feature extraction [2]. In this work, we feed
both our proposed radar-gyroscope odometry and the latent
codes inferred by our proposed continual learning SNN-
STDP fusion system to the RatSLAM back-end.

Since RGB-based SLAMs constitute today’s state of the
art, we will benchmark our DVS-Radar SLAM against both
LatentSLAM and RatSLAM, and against ORB features [22]
extensively used in state-of-the-art SLAM systems [3], [23].

III. SNN BACKGROUND THEORY

Unlike frame-based DNNs, SNNs make use of event-
driven spiking neurons as activation function, often modelled
using the Leaky Integrate and Fire (LIF) neurons [24]:{

dV
dt = 1

τm
(Jin − V ) with Jin = w̄Tsyns̄(t)

σ = 1, V ←− 0 if V ≥ µ, else σ = 0
(1)

where σ is the spiking output, V the membrane potential,
τm the membrane time constant, µ the neuron threshold
and Jin = w̄Tsyns̄(t) the input to the neuron, resulting from
the inner product between the neuron weights w̄syn and the
spiking input vector s̄(t). The LIF continuously integrates
its input Jin in V following (1). When V crosses the firing



threshold µ, the membrane potential is reset back to zero
and an output spike σ = 1 is emitted. SNNs are therefore
a natural choice for processing event-driven sensors such as
DVS, by flattening along space the spiking image in Fig. 1
into a vector of spike trains s̄(t).

Fig. 3: SNN-STDP architecture. The network is composed
of two distinct ensembles of LIF neurons (M coding neurons
and N error neurons). The input spikes s̄(t) are fed to
the coding neurons via the fully-connected weights ΦT .
The coding neurons recurrently infer the SNN output spikes
c̄(t) ←− LIF{Wc̄(t) + ΦT s̄(t)} by integrating s̄(t) with the
past outputs c̄(t) through recurrent weights W . The error
neurons receive c̄(t) via weights Ψ and infer the error spikes
ē(t)←− LIF{Ψc̄(t)−s̄(t)} used during STDP learning. STDP
(3)-(4) is locally applied to weights Φ,W,Ψ following [25].

In order to detect loop closures and perform map correc-
tion, learning-based SLAMs seek to infer lower-dimensional
latent codes c̄ from the sensory observation [2]. In this work,
we use the SNN in Fig. 3, proposed in [25], as our baseline
architecture to continuously infer spiking latent codes c̄(t)
from the input s̄(t), while jointly learning features Φ from
the data in an unsupervised way. This can be formulated as:

c̄,Φ = arg min
c̄,Φ
||Φc̄− s̄||22 + λ1||c̄||1 +

λ2

2
||Φ||2F (2)

with s̄ and c̄ the N -dimensional input and M -dimensional
output vectors, with their elements representing the average
spike rates of the corresponding input and output spike train
vectors s̄(t) and c̄(t). Φ is the transposed SNN input weight
matrix, λ1 is a sparsity-controlling parameter (defined by the
LIF threshold µ [25]) and λ2 is a weight decay parameter.
The term ||Φc̄− s̄||22 in (2) minimizes the re-projection error
between the output latent code c̄ and the input s̄ through the
weights Φ without supervision (similar to an auto-encoder).

It can be shown [25] that the SNN in Fig. 3 solves (2) by
jointly inferring c̄(t) while continuously adapting its weights
Φ,W,Ψ via STDP learning (3)-(4) [25]. In (3) and (4), ηd
is the learning rate, Ap, An the long-term potentiation (LTP)
and depression (LTD) weights, τp, τn the potentiation and

depression decay constants, wsyn,ij the jth weight of neuron
i and τij the time difference between post- and pre-synaptic
spike times across the jth synapse of neuron i.

wsyn,ij ←− wsyn,ij + ηdκ(τij) (3)

κ(τij) =

{
Ape

−τij/τp , if τij ≥ 0

−Aneτij/τn , if τij < 0
(4)

Eq. (2) is never solved explicitly, but rather solved implicitly
by the SNN-STDP of Fig. 3 as it iterates. Each weight learns
in a local manner, avoiding weight transport problems [26].

In Section IV-A, we use the SNN in Fig. 3 to build a DVS-
Radar fusion architecture that outputs latent codes while
continuously learning on the fly without any pre-training.

IV. PROPOSED METHOD

A. DVS-Radar fusion architecture using SNN-STDP

In order to jointly infer latent codes and continually learn
a set of SNN weights capturing the DVS and radar data
features, we use the unsupervised SNN-STDP ensemble of
Fig. 3 (see Section III) in a fusion setting, by assigning:
i) a first SNN-STDP ensemble to the positive polarity of
the DVS; ii) a second SNN-STDP ensemble to the negative
polarity of the DVS, and iii) a third SNN-STDP ensemble
to the radar detection output (see Fig. 4).

Fig. 4: DVS-Radar SLAM using SNN-STDP ensembles. The
spiking DVS image is flattened as a vector and each event
polarity (+ or −) is fed to its corresponding SNN-STDP
network. Radar detections are transformed into a spiking
image using (6,7) and flattened before being fed as a spiking
vector to the corresponding SNN-STDP. The outputs c̄+,−,r
of each SNN are concatenated, then averaged on a time
window (8) and scaled (9) to get C̄(t). For each time-step k∗,
the latent codes C̄k∗ and the odometry are fed to a RatSLAM
back-end [18] for loop closure detection and map correction.

In our experiments, we degrade the time resolution of
the DVS camera to spiking bins of δTDVS = 5ms and the
DVS resolution to 65 × 86, as a good balance between
computational time and performance. Each polarity channel
of the DVS data is then directly connected to its respective



SNN-STDP ensemble by flattening the image plane as a
binary spiking vector ( ¯DVS+,−(t) in Fig. 4).

For the radar data, our drone setup of Fig. 2 provides radar
detections of the form:

Dk = {(xd,i, yd,i, vd,i) ∀i = 1, ..., Nt} (5)

where k is the radar frame time index, xd, yd are the
Cartesian coordinates of the detection (in meters), vd is the
radial (or Doppler) velocity of the detection [16], and Nt is
the number of detected targets in frame k (with a frame rate
of 20 FPS). Therefore, radar detections can be seen as binary
events (or spikes) with their address given by the associated
coordinate (xd, yd).

We transform the detection set (5) into a spiking image
R of size Wr ×Hr by a) quantizing the coordinates to lie
between [0,Wr−1] for xd and [0, Hr−1] for yd via (6), and
b) assigning a value of 1 to the radar image pixels associated
with a detection coordinate and 0 everywhere else, via (7).

Qxd,i = b(Wr − 1)
xd,i

maxx
c Qyd,i = b(Hr − 1)

yd,i
maxy

c (6)

R[Qxd,i, Q
y
d,i] = 1 ∀i = 1, ..., Nt else R = 0 (7)

where maxx = 10m and maxy = 10m are the maximum
coordinate extents that the radar can detect. We set Wr =
15, Hr = 30 as a good balance between radar image
resolution and computational time during SNN processing.
An example of a spiking radar image obtained using (6)-(7)
is shown in Fig. 4. Next, we feed the spiking radar image
R to its SNN-STDP ensemble by flattening R as a spiking
vector with an oversampling in time of ×10 in order to meet
the DVS time resolution of δTDVS = 5ms, i.e., each spiking
radar image is fed 10 times to the SNN-STDP input.

As the drone navigates, DVS and radar data are fed to the
SNN ensembles which continuously learn features via STDP
and infer M -dimensional spiking outputs c̄+(t), c̄−(t), c̄r(t)
corresponding to the positive DVS channel, the negative DVS
channel and the radar data. The outputs are then concatenated
and averaged on a time window of length ∆Tavg = 0.1s to
obtain the fused latent code C̄ ∈ R3M (see Fig. 4):

C̄(t∗) =
1

∆Tavg

∫ t∗

t∗−∆Tavg

c̄+(t)
c̄−(t)
c̄r(t)

 dt (8)

Finally, we apply standard scaling to compensate for the
covariate shifts during drone navigation [27], as well as for
the scale differences between the elements of C̄, greatly
helping template matching between the latent codes:

Cl ←−
Cl −ml

stdl
(9)

where the mean ml and standard deviation stdl of element
Cl are estimated on-line using the algorithm provided in [28].

Fig. 4 shows that the averaged and scaled latent codes
C̄(t), together with the raw radar-gyroscope odometry (see
Section IV-B) are fed to the RatSLAM back-end [18] (at a
rate fs = 10 FPS). The RatSLAM back-end detects loop
closures by measuring the similarity between the currently

sampled latent code C̄k∗ and the previous latent codes
C̄k,∀k < k∗ associated to the past drone poses in order to
correct all drone poses {Xk, Yk,Ψk} (with location Xk, Yk
and yaw angle Ψk), maintaining localisation and mapping.

B. Radar-Gyroscope Odometry
Since accelerometer data can be too noisy due to the erratic

drone vibrations, we use the radar sensor to retrieve the drone
heading velocity vh, while the on-board gyroscope is used
to measure the yaw rotation velocity Ψ̇. The odometry is
obtained by integrating vh and Ψ̇ following the standard
equations of movements:

Ψk ←− Ψk−1 + Ψ̇δtg

Xk ←− Xk−1 + vh cos(Ψk)δtr

Yk ←− Yk−1 + vh sin(Ψk)δtr

(10)

where k denotes the time step or pose index, δtg = 1ms
is the gyroscope sampling period, δtr = 40ms is the radar
frame period, and Xk, Yk denote the drone coordinates.

We measure the drone heading velocity vh from the radar
detections in each frame by first projecting the Doppler
velocity [16] of each detection back to the heading direction.
Then, we take the median value of all the obtained velocities
following Algorithm 1. We use the median value instead
of the mean in order to provide robustness to outliers. In
addition, we restrict the detections to lie in a ±60◦ field of
view around the drone heading axis in order to further reject
unreliable measurements that are caused by the attenuation
of the radar antenna gain profile for high azimuth angles.

Algorithm 1 Radar odometry for heading velocity

Input: Radar detections: {xd,i, yd,i, vd,i ∀i = 1, ..., Nt} for
the current frame, Valid angle range θv = 60◦.

Output: Heading velocity: vh
1: V = {}: empty array
2: for i ∈ {1, ..., Nd} do
3: // Loop over all detections in the current radar frame
4: θi = | arctan(

xd,i

yd,i
)|

5: if θi < θv then
6: // If detection angle is within the valid range
7: Append vd,i

cos θi
to V //projecting radial velocity to

8: end if y-axis (i.e., drone heading axis).
9: end for

10: return vh = median(V )

C. Radar-based obstacle aggregation
The radar sensor provides a direct and robust mean for

the reconstruction of walls and other landmarks observed
by the drone during its flight. For each pose k, a set of
radar detections Dk = {xd,i, yd,i ∀i} is available and can
be aggregated with the previous detections and the previous
drone poses in order to reconstruct the walls and obstacles.
For each pose k, the radar detections are rotated by the drone
yaw angle Ψk and translated by the drone position [Xk, Yk]:[
x̃d,i
ỹd,i

]
←−
[
cos(Ψk) − sin(Ψk)
sin(Ψk) cos(Ψk)

] [
xd,i
yd,i

]
+

[
Xk

Yk

]
∀i (11)



Therefore, each time a loop closure is detected (see
Section IV-A), our pipeline refines not only the past poses
{Xk, Yk,Ψk}, but also the obstacle coordinates [x̃d,i, ỹd,i]
by applying (11) again with the corrected Ψk and [Xk, Yk].
Our obstacle aggregation is shown in both Fig. 2 b) and Fig.
8, where walls and obstacles can clearly be seen.

V. EXPERIMENTAL RESULTS

We will now compare the mean absolute error (MAE)
of our method against state-of-the-art RGB-based solutions
on three different flight sequences (Seq.1-2-3 in Fig. 5).
In addition, we test our DVS-Radar system under lighting
variations (Seq.3 in Fig. 5), by randomly switching the lights
on and off. Table I reports the SNN-STDP parameter values
used in our experiments, tuned manually for optimising the
SLAM performance, starting from the values in [25].

ηd ηc M N+,− Nr µ+,− µr

3× 10−4 1 64 65× 86 15× 30 0.3 0.03

τ
+,−
m τr

m Ap An τp τn
0.017 s 0.17 s 1 0.8 0.0208 s 0.008 s

TABLE I: SNN-STDP parameters. ηd is the STDP learning
rate. ηc is the SNN coding rate [25]. The number of coding
neurons M is the same for all SNN ensembles in Fig. 4. The
number of error neuron N+,−,r is equal to the dimensions
of the input image to each SNN, where +,−, r respectively
denote the SNN ensemble for the positive DVS, the negative
DVS and the radar data in Fig. 4. µ+,−,r and τ+,−,r

m are
the neuron thresholds and membrane constants in (1) for the
respective SNNs. Ap,n, τp,n are the STDP parameters in (4).

Data is acquired in a challenging warehouse environment
composed of storage aisles, with high visual ambiguities
between the scenes. This makes the disambiguation of the
drone location hard due to the redundancy between the dif-
ferent views [2], [29] (see Fig. 5). Our warehouse [6] is also

Fig. 5: Flight data used in this work. The drone location
is hard to disambiguate visually (e.g., view 1 vs. 4, 2 vs. 3).
Data were acquired during three different flight sequences:
seq.1: the red path; seq.2: a combination of all paths, and
seq.3: the blue and red path with strong lighting variations.

equipped with Ultra Wide Band (UWB) beacons for ground
truth positioning, noted (xgt

k , y
gt
k ) with k the time index, only

used for error assessment. When computing the error, since
the ground truth coordinates and the SLAM coordinates are

not in the same coordinate system [18], the ground truth
coordinates are translated and rotated in order to match the
SLAM coordinate system. We identify the rotation angle and
translation vector by minimizing for the drone localisation
MAE (identified via grid search). This localisation MAE
is obtained as the average error between the ground truth
(xgt
k , y

gt
k ) and the SLAM localisation (xk, yk) on the complete

flight sequence (with length Tend):

MAEL =
1

Tend

Tend∑
k=1

(|xk − xgt
k |+ |yk − y

gt
k |) (12)

In addition, the mapping MAE is obtained a posteriori, as
the deviation between all ground truth points and the map
obtained at the end of the SLAM process:

MAEM =
1

Tend

Tend∑
k=1

min
j
{|xk − xgt

j |+ |yk − y
gt
j |} (13)

A. Normal lighting conditions

Table II reports the MAEL and MAEM of our approach
against state-of-the-art solutions that make use of standard
RGB camera data: i) the original RatSLAM [18]; ii) the La-
tentSLAM, trained specifically for our environment following
[2], on a set of 3998 frames acquired independently from
Seq-1-2-3; and iii) ORB features for template matching [22]
using Lowe’s Ratio Test [30]. Table II also reports ablation
results when using only one modality alone.

For LatentSLAM and our method, the similarity between
two frames i, j is computed as sij =

C̄Ti C̄j
||C̄i||2||C̄j ||2

where C̄i,j
is the latent code (8, 9) obtained by each method.

For ORB feature matching, sij is computed as sij = 1−
Nm/maxm with Nm the number of matches and maxm the
maximum number of matches between the two frames i, j.

The RatSLAM back-end integrates the odometry of Sec-
tion IV-B and detects loop closures by sampling the latent
codes C̄i at 100ms intervals and by testing the similarities
sij ,∀j against a threshold θ tuned for minimum MAE (θ =
0.65 for Radar-only, θ = 0.6 for DVS-only and DVS-Radar).

Architecture Seq-1 (L) Seq-1 (M) Seq-2 (L) Seq-2 (M)

RatSLAM [18] 0.72 0.22 2.49 0.57
LatentSLAM [2] 0.54 0.21 1.68 0.39
ORB features [22] 0.46 0.17 0.95 0.39
Ours (Radar) 0.68 0.28 0.98 0.64
Ours (DVS) 1.65 0.19 0.84 0.51
Ours (DVS-Radar) 0.51 0.17 0.81 0.45

TABLE II: MAEL (L) and MAEM (M). The lower the better.

In addition to Table II, Fig. 6 and 7 visually show the
SLAM results for both Seq-1 and Seq-2. It can be remarked
on both Fig. 6, 7 and in Table II that the DVS-Radar fusion
setup outperforms the Radar-only and the DVS-only cases,
by reaching lower MAEL and MAEM values. This clearly
shows the advantage of DVS-Radar fusion.

Compared to the previously-proposed RGB-based solu-
tions, our proposed system outperforms both the original



RatSLAM and the LatentSLAM, which makes use of a 11-
layer DNN trained offline. In addition, our system either out-
performs or reaches close MAEL and MAEM performances
compared to ORB features used with RGB.

This is remarkable given a) the small size of our SNN-
STDP networks (equivalent to a 1-hidden-layer network in
terms of complexity versus 11 layers in LatentSLAM), b)
the fact that our network is not pre-trained offline as in
LatentSLAM, but is rather initialized randomly and learns
features from the input data on the fly via unsupervised
continual STDP adaptation, and c) the fact that it does not use
RGB as in most SLAMs and solely relies on lower-fidelity
DVS and Radar data. In contrast to the RGB-based solutions
of Table II, our DVS-Radar setup enables us to work under
strong lighting variations, where RGB solutions fail.

B. Under low light conditions

Fig. 8 shows the SLAM results obtained for Seq-3 of Fig.
5, where lighting variations were conducted by randomly
turning on and off a subset of the neon lighting in the ware-
house during the drone flight. Fig. 8 clearly demonstrates
the robustness of our DVS-Radar approach in low light,
compared to the other methods.

It must be remarked that systems fusing RGB with radar
have been proposed for having robustness towards environ-
mental conditions [2], [31]. However, the RGB sensor still
remains unreliable in low lighting, while in our architecture,
both the DVS and radar stay functional under low light.
A video showcasing our system on Seq-3 is provided at
https://youtu.be/a7gvZWNHGoI.

Fig. 6: Seq-1 (dimensions in meter), red path in Fig. 5 (the
obstacle modelling of Section IV-C is not plotted for clarity).

VI. CONCLUSIONS

This paper has presented what is, to the best of our
knowledge, a first-of-its-kind SLAM system fusing DVS and
radar data with SNNs. Unlike most learning-based SLAM
systems, where a DNN is trained offline using a dataset
captured beforehand, our proposed system does not require

Fig. 7: Seq-2, all paths combined in Fig. 5 (the obstacle
modelling of Section IV-C is not plotted for clarity).

Fig. 8: Seq-3, blue and red paths in Fig. 5 with strong light-
ing variations. Our proposed DVS-Radar system is robust
against lighting and clearly outperforms the other methods.
Our obstacle aggregation of Section IV-C is also shown,
where walls and shelves are modelled by the black dots.

any pre-training but relies on the continual and unsupervised
adaptation of the SNN weights via STDP learning as the
drone explores the environment. Finally, it has been shown
that our DVS-Radar SLAM reports a competitive perfor-
mance compared to state-of-the-art RGB-based solutions
while enabling robust navigation and obstacle modelling
under strong lighting variations. We believe that this work
holds clear promise for the deployment of environmentally
robust, continual learning SLAM systems for drones via low-
power SNN processors.
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