
Real-Time Simultaneous Localization and Mapping with LiDAR
Intensity

Wenqiang Du and Giovanni Beltrame

Abstract— We propose a novel real-time LiDAR intensity
image-based simultaneous localization and mapping method,
which addresses the geometry degeneracy problem in un-
structured environments. Traditional LiDAR-based front-end
odometry mostly relies on geometric features such as points,
lines and planes. A lack of these features in the environment
can lead to the failure of the entire odometry system. To
avoid this problem, we extract feature points from the LiDAR-
generated point cloud that match features identified in LiDAR
intensity images. We then use the extracted feature points
to perform scan registration and estimate the robot ego-
movement. For the back-end, we jointly optimize the distance
between the corresponding feature points, and the point to
plane distance for planes identified in the map. In addition, we
use the features extracted from intensity images to detect loop
closure candidates from previous scans and perform pose graph
optimization. Our experiments show that our method can run in
real time with high accuracy and works well with illumination
changes, low-texture, and unstructured environments.

I. INTRODUCTION

Simultaneous Localization and Mapping (SLAM) is a
fundamental problem in robotics. SLAM is the process of
building a map of the environment and in the meanwhile,
tracking the robot’s pose on the generated map. There are
many kinds of SLAM methods, such as visual SLAM [1],
Light Detection and Ranging (LiDAR) SLAM [2], visual and
LiDAR SLAM [3], visual-intertial and ranging SLAM (VIR-
SLAM) [4] and so on. In this paper, we focus on the LiDAR
SLAM.

Numerous SLAM methods based on LiDAR [3], [5]–[7]
have been proposed over the past few years. Most of them
are based on the geometric features (e.g., edges and planes
[2], [7]) of LiDAR point clouds. These methods are robust
and accurate in most structured environment. However, when
the environment has little structure, these methods can suffer
from geometric degeneracy and fail [8], [9]. For example,
in a long corridor or a cave environment, there might be
enough plane features, but too few edge features to estimate
the relative ego-motion movement between two consecutive
scans. Unfortunately, aligned plane features (like in the
corridor) alone are not sufficient to estimate the robot pose
in six degrees of freedom (6DOF), meaning the robot could
lose the sense of forward or backward movement.

To solve this problem, one needs an additional reference
to constrain the sixth degree of freedom. One possible way

The authors are with the Department of Computer Engineer-
ing and Software Engineering, Polytechnique Montreal, University
of Montreal, Montreal, QC, H3T1J4, Canada. {wenqiang.du,
giovanni.beltrame}@polymtl.ca

(a) Feature points in the current scan (top) and the previous scan
(bottom) are matched with ORB features from intensity images.

(b) The matched feature points are used to perform the scan
registration.

Fig. 1: The matched 3D points from two consecutive scans and their
corresponding feature points. The points in (b) are the 3D points
that are extracted from point clouds according to the indexes of
matched features from (a). The red points represent matched points
of the previous frame, and the green points stand for matched points
in the current scan. Those points are then used for scan registration
to estimate the relative poses between two consecutive frames.

is to extract feature points from textural information. Re-
cently, many researchers tried to add intensity information to
augment [10] or assist [11] LiDAR SLAM systems, improv-
ing their performance. However, these feature points from
textural information are already presented in 3D space and
theoretically are enough to constrain the 6DOF movement.
Why not directly perform scan registration with these feature
points? We propose a pure LiDAR intensity SLAM method
which directly extracts feature points from intensity images
and perform scan registrations to estimate the robot’s ego-
movement. Our contributions are:

• A novel real-time LiDAR intensity image-based SLAM
system, aiming at solving the geometric degeneracy
problem;

• Combining the benefits of visual SLAM systems with
those of LiDAR SLAM systems, without suffering from
blurring or illumination changes;

• A lightweight front-end due to fewer feature points
and adding ground plane constraint and LiDAR Bundle
Adjustment (BA) to the back-end;

• Intensity-based loop closure detection and pose graph
optimization;

ar
X

iv
:2

30
1.

09
25

7v
2 

 [
cs

.C
V

] 
 1

9 
Ju

n 
20

23



II. RELATED WORK

In the past decades, many researchers worked in SLAM
and achieved many great results. In 1990, Smith et al. [12]
firstly used extended Kalman filter (EKF) to estimate the
relative position among objects in an unknown environment
and build a stochastic map to store these estimations of
spatial relationships and their uncertainties. Nowadays, there
are many kinds of SLAM systems [13], many using an
Inertial measurement unit (IMU), cameras, and/or LiDARs.

LiDAR-based SLAM systems have been well studied in
both theory and industrial applications in recent years. One
representative work is LOAM [2], a real-time method for
estimating odometry and mapping. LOAM only consumes a
LiDAR’s point cloud and then extracts edge and planar points
from this point cloud to register consecutive scans at 10Hz
and providing map updates at 1Hz. Another popular work
is Cartographer [14], which uses a scan-to-submap matching
strategy with loop closure detection and graph optimization,
achieving high accuracy even in real-time. LeGO-LOAM [7]
is also a real-time odometry and mapping SLAM method,
which uses only the LiDAR of ground vehicles as a front-
end sensor. LeGO-LOAM extracts ground planar and edge
features and assigns them different labels, which significantly
decreases the number of features. Shang et al. [5] proposed
LIO-SAM, which is a tightly-coupled LiDAR-inertial odom-
etry system. LIO-SAM can estimate the odometry by using
LiDAR and a 9-axis high-frequency IMU. Shang et al. results
showed that LIO-SAM is much more accurate than LOAM
and can be run in real-time on a computationally limited
platform.

Differentiating from these feature-based odometry meth-
ods, Chen et al. [15] proposed a direct method to estimate the
odometry using LiDAR and IMU. Their results showed that
their method is more accurate than a feature-based approach.
DLO [15] is another direct LiDAR odometry algorithm that
can match consecutive frames of point cloud directly with
high accuracy in real-time for computationally-limited robot
platforms, but it is sensitive to dynamic objects. Lin et
al. [16] [17] developed a robust and accurate SLAM system
using solid-state LiDAR with small field of view (FoV).

In addition to traditional algorithms, some deep learning-
based LiDAR SLAM [18]–[20] systems also achieved good
performance. PointNet [21] and PointNet++ [22] leverage
deep learning techniques to directly extract semantic features
from 3D point clouds, enabling their use in segmentation and
extraction of semantic information. In addition to feature ex-
traction, deep learning was used in SegMatch [23] for place
recognition matching 3D segments. PointNetVLAD [24] is
a combination of PointNet and NetVLAD [25], which uses
end-to-end learning to extract global features from a frame
of point cloud, which are very useful for place recognition.

Recently, as LiDAR resolution is steadily increasing,
we can generate much more clear and textured images
(see Fig. 1a) from intensity information. In recent years,
integrating intensity information into their SLAM system
has emerged as a novel approach among researchers [26]–

[28]. Wang et al. [11] introduce intensity features into their
SLAM system, using both intensity and geometric features to
improve the performance of the SLAM system. Li et al. [10]
extract intensity edge points in a solid-state LiDAR-inertial
SLAM system, while [27], [29] proposed a novel visual place
recognition method using LiDAR intensity information.

In this paper, we propose a novel lightweight LiDAR
odometry method which directly matches 3D feature points
extracted from intensity images. This method can merge both
the feature tracking ability of visual SLAM and LiDAR’s
high accuracy. We also propose an intensity image-based
back-end, including additional constraints between intensity
features and using intensity information to detect loop clo-
sures.

III. METHOD

The pipeline of our proposed method is shown in Fig. 2. In
our system, a LiDAR generates a point cloud within 100ms
that is called a frame or a scan. To estimate the movement
of the robot, we need to calculate the relative pose between
consecutive frames. We use intensity odometry to implement
this procedure in the front-end. In addition, we use the
term “odometry” to describe the relative pose between the
current frame and the initial frame. The odometry from
the front-end is generally inaccurate, so we need to use a
back-end to optimize the odometry. In the back-end, we
use the scan-to-map method [2] and LiDAR BA [30] to
correct the drift. However, map optimization is generally not
enough for removing the accumulated drift, and we add loop
closure detection as an additional means to reduce drift. In
our case, we perform loop closure detection on the LiDAR
intensity image and use pose graph optimization to update
the trajectory and generate the final trajectory of the robot.

A. Intensity Odometry

Assume that we have two consecutive frames of
point clouds X = {X1,X2, · · · ,XJ} and Y =
{Y1,Y2, · · · ,YI} from a LiDAR: one direct way of es-
timating the relative pose is directly applying an Iterative
Closest Point (ICP) algorithm [31] to calculate the rotation
matrix R and T:

argmin
R,T

∑
Xj∈X ,Yi∈Y

∥ Yi −RXj −T ∥2 (1)

However, this method usually consumes significant time
and computation resources [2]. To reduce the computation
cost, we need to extract representative points for the scan
registration, thereby reducing the number of points used for
optimization (up to a limit: we still need to maintain the
original relationships between two frames).

In order to decrease the number of points used for opti-
mization, Zhang et al. [2] tried to extract edge and plane
features. The points of the edge feature of the current frame
can be matched with the edges in the map. The same goes
for plane features.



Mapping Optimized 
Pose

Feature tracker

LiDAR frames

Generate
Intensity Image

Scan
registration

Intensity Odometry

ikd-Tree map for planar features

LiDAR BA Residual 

Point to Plane
Residual

Map optimization

Sliding windowold new

Joint optimization
Keyframe?

Yes
Add to Pose Graph 

Detect Loop?

Add Between Factor

Yes

Update Pose Graph
Lidar-rate Pose

Global Pose Graph Optimization

Fig. 2: System overview of the proposed method. The whole system consists of three parts, including intensity odometry, map optimization,
and pose graph optimization. The intensity odometry part is the core of the proposed method. It consists of intensity image generation,
feature tracking, and scan registration. The map optimization corrects the drift by jointly minimizing both LiDAR BA residual and point
to map plane residual. Pose graph optimization corrects the whole trajectory by adding loop constraints.

With edge and plane features, we can optimize the point
to line distance, and point to plane distance jointly, and
estimate R and T. However, sometimes we cannot extract
edge features accurately enough, like in the long corridor or
cave environment. In this case, we will lose the ability to
estimate 6DOF movement.

To solve this issue, we extract and track features directly
from intensity images. Fig. 1a shows the intensity images
generated from an Ouster-64 LiDAR, where the image
resolution is 1024 × 64. Even if the vertical resolution
is low, we can still extract enough features (the red and
green circles are the ORB features [32]–[34]) for estimating
movement. We extract 3D points, Y2 = {Y1,Y2, · · · ,Yk}
directly from the point cloud according to the index of the
matched ORB feature points from the intensity image. Each
3D feature point is assigned a score S ∈ {S1,S2, · · · ,Sn}
obtained during feature extraction. Similarly, we can extract
the corresponding points X2 = {X1,X2, · · · ,Xk} in the
following scan, and we scan match as a least squared
estimation problem:

X̄n = RXn +T (2)

argmin
R,T

∑
n∈N

∥ (Yn − X̄n) · Sn ∥2 (3)

where N = [1, 2, · · · , k], and Sn is the score of the nth
matched feature point according to Hamming distance. This
way, we can limit the number of features to around 200
points.

B. Map Optimization

The LiDAR intensity odometry generates a transformation
matrix

T̂ =

[
R T
0 1

]

7

6

5
4

3

2

1
0

f0

f1

f2

X5

X6

X7

X4

X3

X2

X1
X0

n

Features

Factor node

LiDAR frames

LiDAR
Keyframes

Edges

Loop edges

Sliding Window

Fig. 3: Illustration of the sliding window strategy used for LiDAR
BA (top) and Pose graph (bottom) with loop closure contraints.

between current sensor frame and the map frame. In this
module, we jointly optimize the scan-to-map residual and
LiDAR BA residual to correct the pose drift.

LiDAR Bundle Adjustment (BA): Similar to visual SLAM
BA, we can use the LiDAR BA (a non-linear optimization
problem) to correct the drift. With this strategy, the last k
frames are used in a residual function. We remove the oldest
frame if the number of frames is larger than k, and add the
newest frame to the sliding window as Fig. 3 showed. We
can then match the current frame with the last k frames
in the window and store the matched 3D feature points
in Pc = {Pc

0,P
c
1, · · · ,Pc

k}, and F l = {Fl
0,F

l
1, · · · ,Fl

k}
for current and last k frames, respectively. Where Pc

i =
{Pc

i0,P
c
i1, · · · ,Pc

im}, Pc
ij = [pijx , p

ij
y , p

ij
z , 1]

T , The trans-
formation matrix of the last k frames are calculated and
stored in T̂ l = {T̂0, T̂1, · · · , T̂k} by the previous map
optimization step. The residual function is therefore:

fb =

k∑
i=0

m∑
j=0

(T̂Pc
ij − T̂iF

l
ij) (4)



(a) Trajectories in outdoor
environment with up and
down stairs (191m).

(b) Trajectories in outdoor
environment with steep
slope (414m).

(c) Trajectories on moun-
tain with a long slope
(507m).

(d) Trajectories in park-
ing lot with flat ground
(249m).

(e) Trajectories on the
street with revisiting the
start point (478m).

Fig. 4: Trajectories results in multiple environments. The experimental results prove that our method is able to estimate the position
accurately in various scenarios. LeGO-LOAM’s algorithm works well in flat environments, but not in environments with slopes.

(a) (b) (c) (d) (e)

Fig. 5: Absolute Pose Error in multiple environments. The APE of our method is the smallest in all these scenarios, followed by A-LOAM.

where fb is the residual of LiDAR BA. In addition, we treat
T̂ from the intensity odometry as an initial pose of current
frame.

Scan-to-Map: To match with previous plane feature
points, we create an ikd-Tree [35] map, which is a incre-
mental 3D k-d Tree. This map incrementally updates a k-
d tree with incoming plane feature points. Compared to
static k-d trees, this method has lower computation cost.
For plane features, we divide the plane into ground plane
and general plane features. When meeting a flat area, adding
ground plane constraints is better than plane only method
since the ground plane can constrain the roll and pitch
direction more accurately. We extract normal plane features
like in [2]. As for the ground plane, we first give an initial
height of robot to extract possible ground planes and then
use RANSAC to segment the ground plane points. The plane
features are extracted from the point cloud, and are stored
in Pm = {Pm

0 ,Pm
1 , · · · ,Pm

n }, where Pm
0 = {px, py, pz}T .

For each plane feature point Pp
i , we can find 3 nearby plane

points from the ikd-Tree map, and store them in Fm =
{Fm

0 ,Fm
1 , · · · ,Fm

n }, where Fm
i = {Pm0

i ,Pm1
i ,Pm2

i }. The
residual function can be formulated as:

P̂m
i = RPm

i +T (5)

fs =

n∑
i=0

(P̂m
i −Pm0

i )T ·
(

(Pm1
i −Pm0

i )× (Pm2
i −Pm0

i )

|(Pm1
i −Pm0

i )× (Pm2
i −Pm0

i )|

)
(6)

where P̂m
i is the 3D mapped point which was converted by

Pm
i from the sensor to the map coordinate system through

(5). Pm0
i , Pm1

i , and Pm2
i are nearby points of P̂m

i on the
map.

After getting the residual function of LiDAR BA and scan-

(a) Map generated by our
method in the long corridor en-
vironment.

(b) Trajectories of A-LOAM,
LeGO-LOAM and our method.

Fig. 6: Map and trajectories of the Spot robot in a building with
long corridors. In this scene, we walked along the corridor back to
the starting point. In this experiment, the drift of LeGO-LOAM is
relatively large, and the performance of A-LOAM is close to our
method, but it is not clear from these two graphs which method is
better.

to-map, we can formulate the whole optimization problem
as:

argmin
R,T

(fb + fs) (7)

C. Pose Graph Optimization

During map optimization, we can get a better pose estima-
tion of the current frame. Once done, we can use optimized
results to correct the drift for the future frames and publish
high-frequency optimized odometry in real time. In the
backend, we build a pose graph on top of map optimization
with LiDAR keyframes. First of all, we extract keyframes
from whole LiDAR frames with three criteria:

• The distance between current frame and last keyframe



(a) Map result of our method
with a different path.

(b) Trajectories of different
methods.

Fig. 7: Instead of going back around in a circle to the starting point,
we went back and forth through all the corridors for this test and
then returned to the starting point. This situation is extreme because
there is no good loop to correct the drift in the pitch direction. The
experimental results show that LeGO-LOAM drifts more than in the
previous scenario. A-LOAM and our method are almost the same.

is larger than a threshold.
• The angle between two keyframes is larger than a

threshold.
• The number of matched feature points is less than a

threshold.
We can use the optimized poses of keyframes as the vertexes
of the pose graph, and the relative poses between two
keyframes as the edges of pose graph.

We also add loop constraints to the pose graph, as Fig. 3
shows, we use the latest keyframe as the anchor frame. With
a trained vocabulary, we can compare descriptors of the cur-
rent keyframe with a database where the history descriptors
are stored. If we can not match it with history descriptors,
then no loop closure is found for this keyframe [27]. If we
successfully match a previous keyframe, we can then put it
into the outlier rejection procedure to test whether it is an
incorrect loop closure. If it is positive, we can add this loop
constraint between the current and the loop candidate factor
node in the pose graph. Finally, we use g2o [36] to solve the
pose graph optimization problem.

IV. EXPERIMENTAL RESULTS

To prove our algorithm’s reliability, we present our exper-
imental results in an indoor environment with long corridors
(Fig. 9b), a multi-storey indoor environment, a mountain,
and a street environment. The reason why we chose these
environment is that they are all different from each other, and
they are challenging for pure LiDAR SLAM. In the indoor
environment, we have long corridors and narrow passages. In
the mountain environment, we have steep slopes and narrow
passages. In the street environment, we have many obstacles
and many turns. Those scenarios are difficult for pure LiDAR
SLAM to handle. In the following, we will introduce the
details of our experiments.

In our experiments, we compared our approach with two
other popular pure LiDAR SLAM systems: LeGO-LOAM
[7] and A-LOAM [6]. The A-LOAM and LeGO-LOAM
algorithms were obtained from their open-source code avail-
able on Github. The attempt to compare the open-source

(a) The front view of the map of our method

(b) The front view of the map of A-LOAM

Fig. 8: Difference between our method and A-LOAM in long
corridors. As we can see, the map generated by our method is
smoothly connected to the starting position, but the map generated
by A-LOAM has a clear break at the end.

(a) Spot robot for indoor experiment (b) Indoor corridor

Fig. 9: Indoor environment and Spot robot used for testing our
algorithm. Spot with Ouster LIDAR mounted on it walking and
collecting data in the corridor shown on the right.

Intensity-SLAM [11] was unsuccessful as we could not run
it. Our intensity based SLAM system shows competitive
performance in different environments, including indoor,
outdoor, and some extreme scenarios, such as long corridors.
Most other LiDAR SLAM systems fail in such extreme
environment with fewer edge features. We first tested our
method with a public dataset provided by Shan et al. [27]
which was collected by Ouster OS1-128 LiDAR. LIO-SAM’s
trajectory [5] was treated as the ground truth since it is
estimated based on LiDAR, 9-axis IMU and GPS, which
is much more accurate than LiDAR only SLAM. In Fig. 4,
we present the trajectories of our method, LeGO-LOAM,
and A-LOAM in various terrains, while Fig. 5 shows the
corresponding Absolute Position Error (APE) of Fig. 4. From
Fig. 5, we can say our method has a significantly lower (T-
test [37], p<1e-5) APE than others, except for the scenario
in Fig. 5a where our result is not significant (T-test, p=0.857
compared with A-LOAM). The results in Fig. 4 and Fig. 5
prove our proposed approach achieves competitive results
compared to both A-LOAM and LeGO-LOAM, especially



TABLE I: Time consumption of different algorithms (ms)

A-LOAM LeGO-LOAM Ours
Features extration 6.33 ± 1.99 10.78 ± 4.36 10.70 ± 1.50
Scan registration 20.04 ± 4.06 2.53 ± 3.88 3.15 ± 2.07
Map optimization 10.63 ± 2.61 21.61 ± 7.55 29.02 ± 6.23
PGO N/A 23.48 ± 7.81 1.73 ± 10.51

in Fig. 4d where the trajectory is close to the ground
truth trajectory in the end, while others drift a lot. The
effectiveness of LeGO-LOAM is limited to level terrains as
it relies on a ground plane constraint. It becomes challenging
to extract the ground plane information in uneven terrains,
thereby hindering its performance in such environments.

We also test our algorithm indoors with a Spot robot (from
Boston Dynamics) equipped with Ouster Os0-64 LiDAR
(Fig. 9a). The scene of this experiment mainly contains
the same long corridor as Fig. 9b. In this scenario, we ran
different algorithms for testing the ability of localization and
map building in real world. Both Fig. 6a and Fig. 7a are the
maps generated by our algorithm. Fig. 6b and Fig. 7b then
show the trajectories of differnt algorithms in the correspond-
ing environments. From the trajectories, we can see that
LeGO-LOAM drifts a lot. A-LOAM’s and our trajectories
are almost the same. Due to the indoor environments, we
can hardly collect the ground truth trajectories with RTK.
So we try to analyze the map details (Fig. 8) to evaluate the
algorithm strengths and weaknesses. Fig. 8a shows the front
view of Fig. 6a, and Fig. 8b shows the front view of the
same scenario generated by A-LOAM. We can see that our
method can smoothly connect the start point at the end of the
trip, but A-LOAM’s map is disconnected. At this point, we
can say that our method is more reliable in such an extreme
environment. In addition, we analyzed the time consumption
of different SLAM algorithms on the Intel processor with
the same data collected by Os0-64 LiDAR. Table I shows
that our intensity-based front-end is able to calculate the
odometry within 15 ms and our method is efficient enough
to meet the real-time requirements of 10 Hz LiDAR.

V. CONCLUSIONS

In this paper, we propose a novel intensity-based pure
LiDAR SLAM method. We first proposed a novel lightweight
intensity-based odometry method, which directly match 3D
features point extracted from the intensity images. Then we
propose a novel map optimization method, which jointly op-
timizes the LiDAR BA and point-to-plane residuals. Finally,
we propose a novel intensity-based pose graph optimization
method, which can optimize the pose graph based on the
intensity image. We tested our method in both outdoor and
indoor environments. The results proved that our method can
achieve competitive results compared with other popular pure
LiDAR SLAM methods. In the future, we will further im-
prove our method by using more advanced feature extraction
methods and loop closure detection methods. We will also
test our method in more challenging environments.

REFERENCES

[1] T. Qin, P. Li, and S. Shen, “VINS-Mono: A robust and versa-
tile monocular visual-inertial state estimator,” IEEE Transactions on
Robotics, vol. 34, no. 4, pp. 1004–1020, 2018.

[2] J. Zhang and S. Singh, “LOAM: Lidar odometry and mapping in real-
time.” in Robotics: Science and Systems, vol. 2, no. 9, 2014.

[3] T. Shan, B. Englot, C. Ratti, and D. Rus, “LVI-SAM: Tightly-coupled
lidar-visual-inertial odometry via smoothing and mapping,” in 2021
IEEE international conference on robotics and automation (ICRA).
IEEE, 2021, pp. 5692–5698.

[4] Y. Cao and G. Beltrame, “VIR-SLAM: Visual, inertial, and ranging
slam for single and multi-robot systems,” Autonomous Robots, vol. 45,
no. 6, pp. 905–917, 2021.

[5] T. Shan, B. Englot, D. Meyers, W. Wang, C. Ratti, and R. Daniela,
“LIO-SAM: Tightly-coupled lidar inertial odometry via smoothing and
mapping,” in IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS). IEEE, 2020, pp. 5135–5142.

[6] Q. Tong and C. Shaozu, “A-LOAM: Advanced implementation of
loam,” https://github.com/HKUST-Aerial-Robotics/A-LOAM, 2019.

[7] T. Shan and B. Englot, “LeGO-LOAM: Lightweight and ground-
optimized lidar odometry and mapping on variable terrain,” in 2018
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). IEEE, 2018, pp. 4758–4765.

[8] K. Ebadi, M. Palieri, S. Wood, C. Padgett, and A.-a. Agha-
mohammadi, “DARE-SLAM: Degeneracy-aware and resilient loop
closing in perceptually-degraded environments,” Journal of Intelligent
& Robotic Systems, vol. 102, pp. 1–25, 2021.

[9] W. Xu, Y. Cai, D. He, J. Lin, and F. Zhang, “FAST-LIO2: Fast direct
lidar-inertial odometry,” IEEE Transactions on Robotics, 2022.

[10] H. Li, B. Tian, H. Shen, and J. Lu, “An intensity-augmented lidar-
inertial slam for solid-state lidars in degenerated environments,” IEEE
Transactions on Instrumentation and Measurement, vol. 71, pp. 1–10,
2022.

[11] H. Wang, C. Wang, and L. Xie, “Intensity-SLAM: Intensity assisted
localization and mapping for large scale environment,” IEEE Robotics
and Automation Letters, vol. 6, no. 2, pp. 1715–1721, 2021.

[12] R. Smith, M. Self, and P. Cheeseman, “Estimating uncertain spatial
relationships in robotics,” in Autonomous robot vehicles. Springer,
1990, pp. 167–193.

[13] B. Huang, J. Zhao, and J. Liu, “A survey of simultaneous localization
and mapping,” arXiv preprint arXiv:1909.05214, 2019.

[14] W. Hess, D. Kohler, H. Rapp, and D. Andor, “Real-time loop closure
in 2D LIDAR SLAM,” in 2016 IEEE International Conference on
Robotics and Automation (ICRA). IEEE, 2016, pp. 1271–1278.

[15] K. Chen, B. T. Lopez, A.-a. Agha-mohammadi, and A. Mehta, “Direct
LiDAR Odometry: Fast Localization with Dense Point Clouds,” IEEE
Robotics and Automation Letters, vol. 7, no. 2, pp. 2000–2007, 2022.

[16] J. Lin and F. Zhang, “A fast, complete, point cloud based loop closure
for lidar odometry and mapping,” arXiv preprint arXiv:1909.11811,
2019.

[17] ——, “Loam livox: A fast, robust, high-precision LiDAR odometry
and mapping package for LiDARs of small fov,” in 2020 IEEE
International Conference on Robotics and Automation (ICRA). IEEE,
2020, pp. 3126–3131.

[18] X. Chen, A. Milioto, E. Palazzolo, P. Giguère, J. Behley, and
C. Stachniss, “SuMa++: Efficient LiDAR-based Semantic SLAM,”
in Proceedings of the IEEE/RSJ Int. Conf. on Intelligent Robots and
Systems (IROS), 2019.

[19] X. Chen, T. Läbe, A. Milioto, T. Röhling, J. Behley, and C. Stachniss,
“OverlapNet: A siamese network for computing LiDAR scan similar-
ity with applications to loop closing and localization,” Autonomous
Robots, pp. 1–21, 2022.

[20] D. Cattaneo, M. Vaghi, and A. Valada, “LCDNet: Deep Loop Closure
Detection and Point Cloud Registration for LiDAR SLAM,” IEEE
Transactions on Robotics, vol. 38, no. 4, pp. 2074–2093, 2022.

[21] C. R. Qi, H. Su, K. Mo, and L. J. Guibas, “PointNet: A 3D
Convolutional Neural Network for real-time object class recognition,”
in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2017, pp. 652–660.

[22] C. R. Qi, L. Yi, H. Su, and L. J. Guibas, “PointNet++: Deep
Hierarchical Feature Learning on Point Sets in a Metric Space,”
Advances in neural information processing systems, vol. 30, 2017.

https://github.com/HKUST-Aerial-Robotics/A-LOAM


[23] R. Dubé, D. Dugas, E. Stumm, J. Nieto, R. Siegwart, and C. Cadena,
“SegMatch: Segment based place recognition in 3D point clouds,”
in 2017 IEEE International Conference on Robotics and Automation
(ICRA). IEEE, 2017, pp. 5266–5272.

[24] M. A. Uy and G. H. Lee, “PointNetVLAD: Deep Point Cloud Based
Retrieval for Large-Scale Place Recognition,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2018,
pp. 4470–4479.

[25] R. Arandjelovic, P. Gronat, A. Torii, T. Pajdla, and J. Sivic,
“NetVLAD: CNN Architecture for Weakly Supervised Place Recogni-
tion,” in Proceedings of the IEEE conference on computer vision and
pattern recognition, 2016, pp. 5297–5307.

[26] T. D. Barfoot, C. McManus, S. Anderson, H. Dong, E. Beerepoot,
C. H. Tong, P. Furgale, J. D. Gammell, and J. Enright, “Into Dark-
ness: Visual Navigation Based on a Lidar-Intensity-Image Pipeline,”
in Robotics Research: The 16th International Symposium ISRR.
Springer, 2016, pp. 487–504.

[27] T. Shan, B. Englot, F. Duarte, C. Ratti, and D. Rus, “Robust Place
Recognition using an Imaging Lidar,” 2021 IEEE International Con-
ference on Robotics and Automation (ICRA), pp. 5469–5475, 2021.

[28] T. Guadagnino, X. Chen, M. Sodano, J. Behley, G. Grisetti, and
C. Stachniss, “Fast sparse lidar odometry using self-supervised feature
selection on intensity images,” IEEE Robotics and Automation Letters,
vol. 7, no. 3, pp. 7597–7604, 2022.

[29] L. Di Giammarino, I. Aloise, C. Stachniss, and G. Grisetti, “Visual
place recognition using lidar intensity information,” in 2021 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS).
IEEE, 2021, pp. 4382–4389.

[30] Z. Liu and F. Zhang, “BALM: Bundle Adjustment for Lidar Mapping,”
IEEE Robotics and Automation Letters, vol. 6, no. 2, pp. 3184–3191,
2021.

[31] S. Rusinkiewicz and M. Levoy, “Efficient variants of the icp algo-
rithm,” in Proceedings third international conference on 3-D digital
imaging and modeling. IEEE, 2001, pp. 145–152.

[32] R. Mur-Artal, J. M. M. Montiel, and J. D. Tardos, “ORB-SLAM: A
Versatile and Accurate Monocular SLAM System,” IEEE transactions
on robotics, vol. 31, no. 5, pp. 1147–1163, 2015.

[33] R. Mur-Artal and J. D. Tardós, “ORB-SLAM2: An Open-Source
SLAM System for Monocular, Stereo, and RGB-D Cameras,” IEEE
Transactions on Robotics, vol. 33, no. 5, pp. 1255–1262, 2017.

[34] C. Campos, R. Elvira, J. J. G. Rodrı́guez, J. M. Montiel, and
J. D. Tardós, “ORB-SLAM3: An Accurate Open-Source Library for
Visual, Visual–Inertial, and Multimap SLAM,” IEEE Transactions on
Robotics, 2021.

[35] Y. Cai, W. Xu, and F. Zhang, “ikd-Tree: An incremental KD tree for
robotic applications,” arXiv preprint arXiv:2102.10808, 2021.

[36] R. Kümmerle, G. Grisetti, H. Strasdat, K. Konolige, and W. Burgard,
“G2o: A general framework for graph optimization,” in 2011 IEEE
International Conference on Robotics and Automation. IEEE, 2011,
pp. 3607–3613.

[37] T. K. Kim, “T test as a parametric statistic,” Korean journal of
anesthesiology, vol. 68, no. 6, pp. 540–546, 2015.


	INTRODUCTION
	RELATED WORK
	METHOD
	Intensity Odometry
	Map Optimization
	Pose Graph Optimization

	EXPERIMENTAL RESULTS
	CONCLUSIONS
	References

