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Abstract— Segmenting unseen objects is a crucial ability for
the robot since it may encounter new environments during the
operation. Recently, a popular solution is leveraging RGB-D
features of large-scale synthetic data and directly applying the
model to unseen real-world scenarios. However, the domain
shift caused by the sim2real gap is inevitable, posing a crucial
challenge to the segmentation model. In this paper, we em-
phasize the adaptation process across sim2real domains and
model it as a learning problem on the BatchNorm param-
eters of a simulation-trained model. Specifically, we propose
a novel non-parametric entropy objective, which formulates
the learning objective for the test-time adaptation in an open-
world manner. Then, a cross-modality knowledge distillation
objective is further designed to encourage the test-time knowl-
edge transfer for feature enhancement. Our approach can be
efficiently implemented with only test images, without requiring
annotations or revisiting the large-scale synthetic training
data. Besides significant time savings, the proposed method
consistently improves segmentation results on the overlap and
boundary metrics, achieving state-of-the-art performance on
unseen object instance segmentation.

I. INTRODUCTION
In recent years, a rising development trend in robotics is

the transition from controlled labs to unstructured environ-
ments. When encountering new environments and objects,
the robot system must have the ability to adjust itself
and recognize unseen objects. Such capability is essential
for robots to understand working environments better and
perform various manipulation tasks. To achieve this goal, we
approach the task of Unseen Object Instance Segmentation
(UOIS) [1], [2], [3], [4], which aims to conduct instance-
aware segmentation of unseen objects in tabletop scenes. In
UOIS, the robot system needs to learn the concept of “object”
and generalize it to unseen ones.

However, unlike ImageNet [5] and MS COCO [6], which
have spurred significant development of the classification and
object detection for natural images, a large-scale realistic
dataset that contains sufficient objects for robotic manipula-
tion scenes is currently unavailable [2]. As a result, existing
UOIS methods [1], [2], [3], [4] generally resort to large-scale
synthetic RGB-D data to train a perception model. For exam-
ple, Xie et al. [1] propose using synthetic scenes that can be
rendered into RGB-D images from various viewpoints with
automatically generated labels. Previous works [1], [2], [3],
[4] typically use synthetic depth or RGB-D images to train a
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model that can separately segment each object instance, since
the depth inputs have better generalization potential than the
non-photorealistic RGB images. After training, the model is
directly deployed on unseen realistic datasets. Though such
a workaround achieves good performance, it has in turn led
to the neglect of domain shift caused by the “sim2real gap”.
For robot perception, the synthetic data fail to model many
aspects of the real world, like the object texture, lighting
conditions, depth noises, etc. This sim2real gap degrades the
model’s performance on realistic data, especially on those in
unseen environments.

Therefore, rather than betting the generalization ability
to elaborate models as in previous works [1], [2], [3],
[4], we place emphasis on the model’s adaptability across
domains. Specifically, we propose a Fully Test-time RGB-
D Embeddings Adaptation (FTEA) framework to mitigate
the domain gap between synthetic and unseen realistic data.
First, we propose a novel Non-parametric Entropy Objective
(NEO) that can be calculated without the explicit classifica-
tion layer to enable test-time adaptation for the open-world
UOIS task. The NEO leverages non-parametric distributions
to formulate Shannon entropy [7] as the learning objective,
since the Shannon entropy is shown to be related to error and
shift [8], i.e., more confident predictions are generally more
correct and have fewer shifts. Second, we design a Cross-
modality Knowledge Distillation (CKD) module to encour-
age knowledge transfer during testing. Different from other
KD methods [9], [10], CKD aims to distill the knowledge
from multimodal (RGB-D) features to unimodal (RGB or
depth) ones, thus enhancing the unimodal features for better
fusion. Finally, we utilize the affine transformation provided
by BatchNorm (BN) [11] layer as the modulation parameters
to conduct fully test-time RGB-D embeddings adaptation.

Given the simulation-trained model, FTEA is indepen-
dent of re-training on the large-scale synthetic data and
does not introduce extra parameters, which establishes a
key advantage of flexibility. Meanwhile, compared to the
inference process (taking 1∼10s per frame in recent state-of-
the-arts [2], [3]), the computation overhead of the proposed
adaptation is negligible (taking 0.04s per frame with a total
of 500 iterations), making FTEA particularly efficient. The
proposed method is evaluated on two real-world RGB-D
image datasets for the unseen object instance segmentation,
i.e., OSD [12] and OCID [13]. Extensive experiments show
that FTEA consistently improves segmentation performances
and achieves state-of-the-art results on various evaluation
metrics, demonstrating the effectiveness of our method.
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Fig. 1: Illustration of the proposed FTEA. We use the two-stream CNN architecture for RGB-D inputs, which is largely
simplified for better visualization. During test time, all convolutional layers are frozen, only the affine parameters and
normalization statistics of the BN layer are modulated based on two novel objectives, i.e., NEO and CKD.

II. RELATED WORK

Unseen Object Instance Segmentation UOIS aims to
conduct instance-aware segmentation of unseen objects in
tabletop environments, which is useful for robots to perform
various manipulation tasks. As a pioneer, Xie et al. [1], [4]
tackle this problem by proposing a two-stage framework.
The framework first operates only on depth to produce
rough initial segmentation masks and then refines those
masks with RGB. Then, Xiang et al. [2] introduce a fully
convolutional network based model called UCN that can
be trained end-to-end. Different from previous approaches
that mainly rely on depth for segmentation, UCN utilizes
both depth images and non-photorealistic RGB images to
produce feature embeddings for every pixel, which can be
used to learn a distance metric for clustering to segment
unseen objects. Recently, several methods are proposed to
tackle specific challenges in UOIS. For instance, RICE [3]
focuses on the occlusion problem in clutter scenes and
utilizes a graph-based representation of instance masks to
refine the outputs of previous methods. UOAIS-Net [14]
presents a new unseen object amodal instance segmentation
(UOAIS) task to emphasize the amodal perception for robotic
manipulation in a cluttered scene, and introduce a large-
scale photo-realistic synthetic dataset named UOAIS-SIM
to improve the sim2real transferability. Other works related
to UOIS include clustering [15], [16], [17], novel category
discovery [18], [19], [20], [21], and unsupervised semantic
segmentation [22], [23], [24].

Though previous UOIS methods have been demonstrated
to be effective, the domain shift problem is not explicitly
concerned and tackled. It is worth noting that the photo-
realistic data used by UOAIS-Net are also generated with
rendered scenes in the simulator, thus synthetic. Differently,
we present a new perspective for the solution of the domain
shift problem in UOIS and propose an efficient framework
to conduct the adaptation during test time.

Test-time Adaptation When the model is deployed, it
is inevitable to encounter unlabelled images that are not
observed before. This is a key characteristic of robot per-

ception and the UOIS task. Therefore, developing strategies
to adapt the model at test time is essential. Recently, test-time
training (TTT, TTT+) [25], [26] uses unlabelled test instances
to conduct self-supervised learning as the adaptation. But
such methods heavily rely on the choice of proxy tasks and
also need to visit training data that could be unavailable in
practice. To address the above limitations, Wang et al. [8]
propose Tent to reduce generalization error by test-time
entropy minimization. Tent optimizes itself according to
its own predictions, which is not relevant to proxy tasks.
However, the aforementioned test-time adaptation method is
mainly applied in traditional close-set tasks such as image
classification, and exploits the output distributions of classi-
fiers as the test-time objective optimization. For the UOIS
task, the model generally can not be trained with an explicit
discriminative layer with a certain number of classes, which
poses a major obstacle for the test-time adaptation in UOIS.

III. METHOD

A. Overview

1) Network Architecture: To deal with RGB-D inputs, we
adopt the two-stream CNN with late fusion as our basic
network architecture. As shown in Figure 1, a pair of realistic
RGB-D images are separately processed with CNN, and the
RGB and depth feature maps are bilinearly upsampled to the
full resolution as the input images. Then the late fusion is
conducted for a joint representation. We use the UCN [2]
as our simulation-trained model due to its conciseness and
end-to-end fashion.

2) The Pipeline: First, we construct a non-parametric
entropy objective (NEO) for test-time adaptation in an open-
world setting, as described in Section III-B. Then, in Section
III-C, a cross-modality knowledge distillation (CKD) module
is further proposed to encourage test-time knowledge transfer
for feature enhancement. Finally, we fix all convolutional
layers and minimize the proposed NEO and CKD loss to
modulate the affine parameters and normalization statistics
of the BN layer, as detailed in Section III-D.



B. Non-parametric Entropy Objective

To modulate features during test time, a learning ob-
jective based on the model’s predictions of test data is
typically required. Recent works [8], [27] have demonstrated
the effectiveness of using the entropy objective based on
discriminative outputs (e.g., classification probabilities) [8],
[27]. However, unlike the standard recognition model, UOIS
is conducted in an open-world setting, and thus does not
explicitly train a discriminative layer that generate logits
and probabilities for the direct calculation of entropy. To
address this problem, we propose a novel non-parametric
entropy objective (NEO). Specifically, NEO leverages the un-
supervised clustering to obtain centroids that present pseudo
instance labels, then calculates non-parametric classification
probabilities to construct the entropy objective.

Unsupervised Clustering Given a bunch of RGB-D em-
beddings on a feature map, we aim to cluster all pixels into
groups to segment unseen objects. But the number of unseen
objects is uncertain, which prevents the usage of clustering
algorithms with a known number of clusters such as k-
means or spectral clustering. Thus, we follow UCN [2] to
use the mean shift [28] clustering algorithm with the von
Mises-Fisher (vMF) distribution [29], which automatically
discovers the number of objects and generates a segmentation
mask for each object. After the unsupervised clustering, we
can calculate the centroid of each cluster. The i-th cluster’s
centroid vector ci is obtained by averaging all feature map
vectors vx,y which belong to the i-th cluster Ci as

ci = avg(vx,y) for all vx,y ∈ Ci, i = 1,2, ...,n (1)

where x and y denote locations on the feature map along the
x-axis and y-axis. After performing the average operation for
each cluster, we obtain the set of all centroids c as

c = {c1,c2, ...,cn}, (2)

where n is the number of objects, which is estimated by the
unsupervised clustering algorithm.

Non-parametric Classification Probability Different
from the classification with standard supervised learning,
UOIS segments objects in the instance-level, thus having an
uncertain number of “classes”, which prevents the usage of
the parametric classifier. Inspired by recent self-supervised
learning methods with instance discrimination [30], [31],
we propose to calculate classification probabilities in a non-
parametric way.

Without specifying the number of classes, we conduct
non-parametric classification by using the metric between
the candidate feature vector v and the i-th cluster’s centroid
vector ci as

P(i|v,c) = exp(s(v,ci))

∑i exp(s(v,ci))
, s(v1,v2) =

v>1 v2

‖v1‖‖v2‖
, i ∈ Nk,

(3)

where s(·, ·) is the cosine similarity to measure how well v
matches the i-th cluster/object, Nk is the set of numbers to
indicate candidate v’s corresponding cluster and k nearest
clusters.

Entropy Objective As an unsupervised objective, the
Shannon entropy [7] is widely used and demonstrated to be
effective for assessing the output error and shift [8]. With the
proposed non-parametric classification probability, we can
calculate the Shannon entropy as

Lneo =−∑
i

P(i|v,c) log2 P(i|v,c), (4)

where P(i|v,c) is the probability that v is recognized as the
i-th cluster given a collection of centroids c.

C. Cross-modality Knowledge Distillation

Compared to the “perfectly” generated RGB-D data, real-
world RGB-D images have inevitable noise, such as the
black holes in the depth images. The fusion of RGB-D
features generally makes the network more stable to such
noise [2], [32]. Therefore, while testing on realistic RGB-D
images, the privileged [33] multimodal (i.e., RGB-D fused)
features can be utilized to enhance the unimodal (i.e., RGB
or depth) networks. Based on this motivation, we propose
to distill the knowledge from the multimodal features to the
unimodal ones to encourage the test-time knowledge transfer
for feature enhancement. This cross-modality knowledge
distillation (CKD) constructs another objective for test-time
adaptation. In CKD, the full multimodal network (two-stream
CNN) is set as the teacher, while the student is the smaller
partial unimodal network (one-stream CNN).

We use soft targets (i.e., probabilities of the input belong-
ing to the classes) as the distilled knowledge in CKD. For
each candidate feature vector v on the teacher feature map,
the i-th soft target is

P(i|v,c, T ) =
exp(s(v,ci)/T )

∑i exp(s(v,ci)/T )
, (5)

where T is the temperature factor to control the importance
of each soft target. Due to the absence of a parametric
classifier, here we use the non-parametric probability as
similar with Equation 3.

For the individual RGB and depth modality (i.e., the
student), we use the same spatial cluster assignment as
the teacher, but they hold different representations vrgb and
vd , thus producing different cluster centroids crgb

i and cd
i .

Then, the soft targets of RGB and depth modality, i.e.,
P(i|vrgb,crgb, T ) and P(i|vd ,cd , T ), can be obtained simi-
larly to Equation 5. Finally, we formulate the cross-modality
knowledge distillation objective as

Lckd =
1
2
(KL(P(i|v,c, T ),P(i|vrgb,crgb, T ))+

KL(P(i|v,c, T ),P(i|vd ,cd , T ))), (6)

where KL(·, ·) denotes the Kullback-Leibler divergence loss.
The gradients propagated through the multimodal distribu-
tion are stopped. By optimizing Equation 6, the response
knowledge of the multimodal teacher network is distilled
into the unimodal student network.



Method
OSD [12] OCID [13]

Overlap Boundary Overlap Boundary
P R F P R F F@.75 P R F P R F F@.75

Mask RCNN [34] 74.4 72.7 73.4 53.1 48.1 49.8 - 80.8 73.9 76.1 68.2 58.4 61.8 -
UOIS-Net-2D [1] 80.7 80.5 79.9 66.0 67.1 65.6 71.9 88.3 78.9 81.7 82.0 65.9 71.4 69.1
UOIS-Net-3D [4] 85.7 82.5 83.3 75.7 68.9 71.2 73.8 86.5 86.6 86.4 80.0 73.4 76.2 77.2

UCN [2] 84.3 88.3 86.2 67.5 67.5 67.1 79.3 86.0 92.3 88.5 80.4 78.3 78.8 82.2
UCN+ [2] 87.4 87.4 87.4 69.1 70.8 69.4 83.2 91.6 92.5 91.6 86.5 87.1 86.1 89.3

UOAIS-Net [14] 85.3 85.4 85.2 72.7 74.3 73.1 79.1 70.7 86.7 71.9 68.2 78.5 68.8 78.7
FTEA (Ours) 85.8 92.0 88.6 69.2 75.7 71.7 87.3 86.2 93.9 89.5 79.5 79.5 79.1 85.1

FTEA+ (Ours) 89.9 89.4 89.5 72.6 76.0 73.8 88.3 92.0 93.3 92.3 86.5 88.0 86.7 91.1

TABLE I: The unseen object instance segmentation (UOIS) performances of the proposed FTEA and other state-of-the-art
methods on OSD [12] and OCID [13] datasets. “+” denotes the zoom-in operation [2] to refine segmentation results.

D. Fully Test-time RGB-D Embeddings Adaptation

By minimizing the above entropy objective Lneo and dis-
tillation objective Lckd , we can adapt our model fully in test
time. However, tuning all parameters like that in the training
phase is inefficient and could easily cause model instability
[8]. As the channel of the feature map can be considered as
a feature detector [35], [36], re-calibrating channel responses
has been widely studied and utilized in network pruning
[37], multimodal fusion [38], [39], representation learning
[40], [41], etc. Besides, previous works [42], [43], [44], [45]
on unsupervised domain adaptation (UDA) share a similar
idea, i.e., utilizing statistics of the BN layer as domain-
related knowledge. However, the UDA methods require the
use of source or target data to conduct the adaptation in
advance, thus becoming difficult to be applied during test
time or online. Differently, we use the channel-wise affine
transformation provided by the BatchNorm (BN) [11] layer
to stabilize the test-time adaptation and aim for an effective
fusion of RGB-D embeddings.

In genral, the BN layer is widely used in deep learning to
eliminate internal covariate shift and improve generalization.
It performs a linear transformation followed by the convo-
lutional or fully-connected layers. We denote by xm,l,k the
k-th channel for the l-th layer feature maps of m-th modality
(RGB or depth in our setting), then the transformation of the
BN layer can be written as

x′m,l,k = γm,l,k
xm,l,k−µm,l,k√

σ2
m,l,k + ε

+βm,l,k, (7)

where the scaling and shift factors γm,l,k and βm,l,k are ad-
justable affine parameters, the normalization statistics µm,l,k
and σm,l,k are updated with momentum.

Thus, by adapting the scaling and shift factors γm,l,k, βm,l,k
and updating the statistics µm,l,k, σm,l,k of the BN layer, the
proposed method does not introduce new parameters. Given
the simulation-trained model, our method is independent
of re-training on the large-scale synthetic data. Meanwhile,
the fully test-time adaptation re-calibrates channel-wise re-
sponses of RGB and depth feature maps, thus providing
better weighted fused RGB-D embeddings for unseen object
instance segmentation. Finally, the overall objective for test-
time adaptation can be formulated as

Ltotal = λ1Lneo +λ2Lckd , (8)

where the two terms Lneo and Lckd are weighted by the
balancing parameters λ1 and λ2.

IV. EXPERIMENTS

A. Datasets and Evaluation Metrics

Datasets The model is pre-trained on the synthetic Table-
top Object Dataset (TOD) [1], which consists of 40k syn-
thetic scenes of cluttered objects in tabletop environments.
The proposed method is evaluated and compared on two
real-world datasets, named OSD [12] and OCID [13]. OSD
consists of 111 images in tabletop environments with aver-
aged 3.3 objects per image. OCID has 2,346 images on both
tabletop and floor with averaged 7.5 objects per image. It is
worth noting that OSD has manually labeled segmentation
masks while OCID generates semi-automatically labeled
annotations, which are easily influenced by the noise of depth
images.

Evaluation Metrics We follow previous works [1], [2], [4]
to use the object precision/recall/F-measure (Overlap P/R/F)
metrics to evaluate the object segmentation performance, and
the Boundary P/R/F to evaluate how sharp the predicted
boundary matches against the ground truth boundary. Be-
sides, F@.75 is used to denote the percentage of segmented
objects with Overlap F-measure ≥ 75% [2]. Though the
IoU is a standard metric in segmentation tasks, it is highly
correlated to the overlap F-measure, thus is not reported
in the UOIS task [3]. All P/R/F and F@.75 measures are
reported in the range of [0,100].

B. Comparison with State-of-the-art Methods

In this section, we first compare the proposed method
with several state-of-the-art methods. As shown in Table
I, our method outperforms all competitors on both OSD
and OCID datasets. Specifically, FTEA+1 achieves 89.5 and
92.3 Overlap F-measure, 73.8 and 86.7 Boundary F-measure,
88.3 and 91.1 F@.75, on OSD and OCID respectively,
which validates the effectiveness of the proposed approach.
Additionally, when we use the end-to-end model without
extra zoom-in refinement, i.e., FTEA in the next-to-last line

1FTEA+ denotes adopting the zoom-in refinement strategy in [2].



Lneo Lckd

OSD [12] OCID [13]
Overlap Boundary Overlap Boundary

P R F P R F F@.75 P R F P R F F@.75
84.3 88.3 86.2 67.5 67.5 67.1 79.3 86.0 92.3 88.5 80.4 78.3 78.8 82.2

X 85.0 91.9 88.2 67.6 74.6 70.4 89.8 85.7 94.0 89.3 78.0 78.9 78.0 84.9
X 85.3 89.2 87.1 70.1 70.2 69.8 81.9 86.2 92.8 88.9 80.5 78.9 79.2 83.1

X X 85.8 92.0 88.6 69.2 75.7 71.7 87.3 86.2 93.9 89.5 79.5 79.5 79.1 85.1

TABLE II: Ablation studies of the proposed FTEA. The ablation of test-time adaptation (TTA) is implicitly included in the
first row since it should be in conjunction with at least one objective function, i.e., Lneo or Lckd .

Input
RGB
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Results
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Results
w/ adaption

(ours)

(a) OCID (b) OSD

Fig. 2: Qualitative results of the proposed approach, (a) results on the OCID dataset,
and (b) results on the OSD dataset.

Fig. 3: 20 Repeated runs of
different sampling orders.

in Table I, the improvement of our method is consistent.
Compared to UCN [2], the proposed FTEA improves the
Overlap F-measure by 2.4 and 1.0, the Boundary F-measure
by 4.6 and 0.3, the F@.75 by 5.1 and 1.8, on OSD and OCID
respectively.

C. Ablation Studies
Non-parametric Entropy Objective This objective is

crucial for UOIS to conduct test-time adaptation. As shown
in Table II, when equipped with the non-parametric entropy
objective Lneo, the model’s performances on two real-world
datasets are overall improved. Especially, Lneo significantly
improves the overlap and boundary recall, which is desirable
for discovering potential objects in unseen environments.

Cross-modality Knowledge Distillation The proposed
cross-modality knowledge distillation provides another ef-
fective learning objective Lckd for test-time feature enhance-
ment. Table II shows that Lckd works well on improving
the overlap and boundary precision of segmentation results.
Additionally, as shown in the last row in Table II, the
cross-modality knowledge distillation Lckd can be effectively
combined with the former entropy objective Lneo, thus further
improving the performance on most evaluation metrics for
unseen object instance segmentation.

Test-time Adaptation Since the test-time adaptation
(TTA) needs to be enabled with at least one proposed
learning objective, i.e., NEO or CKD, the ablation of TTA

is implicitly included in the first row in Table II. From Table
II we can observe that whether TTA is in conjunction with
the Lneo or Lckd , the segmentation results on both OSD and
OCID can be significantly improved.
D. Discussions

Adaptation Consumption Besides the performance, we
further investigate the computation consumption of the pro-
posed method. The adaptation time only accounts for single
backward pass of BN parameters, thus is way faster than
the inference with multiple zoom-in operations [2]. Table
III shows the averaged time consumption of the adaptation
process and inference, i.e., averaged 0.04s v.s. 1.24s per
iteration. Based on the setting of only adapting 500 iterations
as stated in Section IV-E, the total adaptation consumption
for a new scenario is ∼20s (0.04s per frame), which is
efficient for practical application.

BatchSize Inference time (avg) Adaptation time (avg)
1 1.24±0.03s 0.04±0.00s

TABLE III: The time consumption of the inference and
adaptation process, which is averaged over 500 iterations
with 10 repeated runs.

Qualitative Results We visualize some qualitative results
with and without the proposed FTEA in Figure 2. We
can observe in Figure 2(a) that the proposed adaptation



Modalities Overlap Boundary
RGB Depth F F F@.75

87.4 69.4 83.2
X 87.6 70.0 86.1

X 88.6 70.9 87.4
X X 89.5 73.8 88.3

Parameters Overlap Boundary
Conv BN F F F@.75

87.4 69.4 83.2
X 87.4 69.4 83.2

X 89.5 73.8 88.3
X X 82.2 65.4 75.6

TABLE IV: Segmentation performances with different adap-
tation modalities and modulation parameters on OSD.

process mitigates the under-segmentation problem of two
close objects. Besides, different from the smooth depth
images in synthetic training data, realistic depth images are
generally noisy, especially on the object’s boundary. This
problem makes outputs of boundaries blurred and causes
over-segmentation around the boundary, as illustrated in
Figure 2(b). The last row in Figure 2(b) shows that, with
the proposed adaptation process in FTEA, this problem can
be largely alleviated.

Robustness to the Sampling Order Additionally, we train
our models for multiple runs on different random sampling
orders. Figure 3 illustrates the cumulative means of per-
formance with 95% confidence intervals across 20 repeated
runs on OCID and OSD. It can be observed that the overall
performances of the model are stable, demonstrating the
robustness of the proposed method. Note that the experiments
on OCID also use random samples (not just the sampling
order) since we conduct the adaptation with only 500 test-
time images out of 2,346 images in OCID.

Modalities for Adaptation Table IV shows results with
different adaptation modalities on OSD. First, segmenta-
tion performances can be improved whether RGB or depth
modality is tuned. Second, by simultaneously tuning RGB
and depth modalities, we can obtain better-fused RGB-D
embeddings. Thus the performances become significantly
better (see the last row in Table IV) due to the effective
use of multimodal data.

Modulation Parameters We also conduct analysis on the
modulation parameters, i.e., the linear BN and the nonlinear
convolution parameters. As shown in Table IV, using BN as
modulation parameters achieves the best results. Since the
nonlinear high dimensional convolution layers are difficult
to optimize, tuning all model parameters could lead to a
negative transfer.

How Many BN Layers to Use For brevity, we split all
layers into four main building blocks as in ResNet [46].
Figure 4 illustrates the segmentation performances on OSD
when we gradually increase the number of BN layers for
adaptation. We can observe that the Overlap F-measure,
Boundary F-measure, and F@.75 are consistently improved
with more BN layers, demonstrating the effectiveness of the

Fig. 4: Performances evolution on OSD when we gradually
increase the number of BN layers for adaptation.

proposed method. On the other hand, the improvement is not
plateaued, which implies that the adaptation process can be
further enhanced by considering other effective parameters
in addition to the BN layers of the model.
E. Implementation Details

For fair comparisons, we follow previous work [2] to use
a 34-layer, stride-8 ResNet (ResNet34-8s) as the backbone,
and the full resolution 640×480 feature map with embedding
dimensions C = 64 is obtained by bilinearly upsampling.
To avoid noisy outliers, we set k = 1 in Equation 3 (i.e.,
select two clusters, the nearest cluster and the corresponding
cluster) for the calculation of the non-parametric entropy
objective Lneo. The temperature factor T in cross-modality
knowledge distillation is 1. The weight factor for the overall
loss is set as λ1 = λ2 = 1. During test time, our model is
adapted with the SGD optimizer. We use batchsize=1 as
in the typical inference phase. For the first 100 iterations
(images), the learning rate is linearly warmed up to the base
value lr = 0.005, then decayed with a cosine scheduler for
another 400 iterations (images). We do not set the “epoch”
number since there is no concept of “dataset” in the online
test-time adaptation. We use the same learning schedule for
the OSD and OCID. The data in test-time adaptation are
not shuffled unless otherwise stated. All experiments are
conducted on a single NVIDIA 2080Ti GPU with PyTorch.

V. CONCLUSIONS
In this paper, we target the task of unseen object instance

segmentation with an emphasis on the adaptation process for
unseen realistic data. To mitigate the domain shift between
the synthetic training and realistic testing data, a novel FTEA
framework is proposed to conduct the fully test-time RGB-D
embeddings adaptation. Specifically, during test time, we fix
all convolutional layers and adjust the affine transformations
provided by BN parameters via optimizing two novel unsu-
pervised objectives, i.e., the NEO and the CKD. NEO cal-
culates the entropy of probability distributions of UOIS in a
non-parametric way. CKD further encourages cross-modality
knowledge transfer during test time. Extensive experiments
on realistic RGB-D datasets OCID and OSD demonstrate
the effectiveness of the proposed approach. We hope our
work could draw attention to the test-time adaptation and
reveal a promising direction for robot perception in unseen
environments.
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