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Abstract— Humans are capable of abstracting various tasks
as different combinations of multiple attributes. This perspec-
tive of compositionality is vital for human rapid learning and
adaption since previous experiences from related tasks can
be combined to generalize across novel compositional settings.
In this work, we aim to achieve zero-shot policy generaliza-
tion of Reinforcement Learning (RL) agents by leveraging
the task compositionality. Our proposed method is a meta-
RL algorithm with disentangled task representation, explicitly
encoding different aspects of the tasks. Policy generalization
is then performed by inferring unseen compositional task
representations via the obtained disentanglement without extra
exploration. The evaluation is conducted on three simulated
tasks and a challenging real-world robotic insertion task.
Experimental results demonstrate that our proposed method
achieves policy generalization to unseen compositional tasks in
a zero-shot manner.

I. INTRODUCTION

Policy transfer has been a long-standing challenge in the
robotics community. Reasoning over existing task experi-
ences and transferring knowledge to novel combinatorial
tasks with familiar elements is vital for human rapid learning
and adaption. For instance, the images in Figure [T(a) can be
abstracted as combinations of (digit, color), and humans can
effortlessly imagine other unseen combinatorial images. In
this work, we aim to enable similar ability in the context
of reinforcement learning (RL). Specifically, we consider
the generalization scenarios where tasks-of-interest can be
described by a set of degrees of variation (DoVs) and our
goal is to achieve policy transfer across unseen compositional
tasks, namely, tasks of unseen combinations of existing
DoVs. Considering the example depicted in Figure [T(b), the
robot policy is influenced not only by the goal that can
be directly measured, but also by other environment-related
properties of the system, such as robot model, friction,
control gain, etc. When facing an unseen compositional task,
e.g., (real, front) in Figure [T{b), we aim to combine the
knowledge obtained from other related tasks, e.g., (real, left),
(siml, front), to directly get the policy for the new task.

The idea of policy transfer across novel task combinations
of known DoVs is also explored in [1], where the authors
proposed a modular policy architecture to decompose the
policy into goal-specific and robot-specific modules and
demonstrated zero-shot policy transfer to unseen robot-
goal combinations using existing modules. Specifically, the
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Fig. 1: Illustration of unseen compositional tasks with ex-
isting degrees of variation. (a) While (yellow, I) image is
unseen, both yellow and I are present in other images. (b)
While (real, front) is a novel task, both real and front are
present in other tasks.

authors decompose the observations into goal-related and
robot-related observations, which are fed as input to the
corresponding neural network modules to output desired
actions. However, this method requires training an individ-
ual neural network based module for each possible value
of DoV, making it computationally expensive to scale up
when certain DoV have many possible values. For example,
given 20 different possible goals and 10 different possible
robots, this method needs to train 30 different modules
in total. Additionally, one implicit assumption of [I] is
that observation alone can capture the differences between
tasks with different DoV combinations. However, there exist
certain scenarios where the available observations fail to
reflect the differences between tasks. For example, when
learning an RL agent to push objects of different weights
using image as observation, the dynamics variations between
tasks are not captured by observation o;, but instead by
observed transitions (o¢, at, 0441,7¢). Solely performing task
decomposition w.r:t. the observation space limits the potential
to be applied in such scenarios.

In contrast, the key insight of our work is to achieve
task decomposition from the perspective of task represen-
tation instead of policy architecture as in [1]. Specifically,
we build upon the framework of context-based meta-RL
framework [2], [3], [4], [5], [6] which jointly learns a
latent task embedding from observed transitions and a policy
conditioned on the inferred task representation. The task
decomposition is achieved by disentangling latent task em-
bedding as the concatenation of embeddings for each task
DoV. For this purpose, we develop a task disentanglement
regularization objective for meta-training (Section[[lI-C). The



achieved disentanglement in the latent task space allows us to
infer novel task representations without extra experiences by
combining the existing representations of task DoVs in the
unseen tasks, thus achieving zero-shot policy generalization
(Section [[II-D).

To evaluate our approach, we extend three traditional
meta-RL tasks to compositional tasks composed of certain
DoVs and test the generalization performance of our method
on the unseen compositional tasks. Experimental results in-
dicate that the generalized policies obtained from our method
in a zero-shot manner outperform other baselines. We also
demonstrate that our proposed approach can be seamlessly
applied as a zero-shot sim-to-real generalization method. We
evaluate the sim-to-real algorithm on challenging real-world
tilted peg-in-hole tasks. Results demonstrate the effectiveness
of our approach.

II. RELATED WORK
A. RL Policy Generalization across Similar Tasks

Policy generalization has been a long-standing challenge
in robotics community. While RL [7] achieves promising
results on robotic manipulation tasks [8], [9], the impedance
of deploying RL algorithms lies at the numerous data re-
quired during training. To this end, many efforts have been
devoted to generalizing the existing policies to similar tasks.
A common application of policy generalization is sim-to-
real [10], where a policy is learned in simulation and then
transferred to the real world. This is usually achieved by
domain randomization, which randomizes the tasks with a
wide task distribution in simulation and assumes the real-
world task is captured by this distribution [11], [12], [13].
Meta-RL approaches [3], [4], [6], [14], [15], [16], [17]
offer another perspective of policy generalization by learning
to learn from a distribution of tasks, enabling the agent
to quickly adapt to novel tasks with limited explorations.
Context-based meta-RL. methods [3], [4], which view meta-
RL as task inference and learn a hidden task variable
from collected experience, have demonstrated the ability to
adapt meta-policy to real-world manipulation tasks [4], [18].
However, those methods still require collecting online rollout
data for task inference and are therefore not zero-shot. Zero-
shot policy transfer is particularly useful in circumstances
when online interactions are expensive; for example, the
task objects are fragile such as the thru-hole components
in PCB assembly. In this work, we improve context-based
meta-RL methods for policy transfer in a zero-shot manner
by considering the task decomposition in the latent task
representation.

B. Task Decomposition in Robotics

Task decomposition is widely investigated in the robotics
field to ease the learning process and reuse the knowledge
from similar tasks. Most of the research efforts focus on
decomposing long-horizon manipulation tasks temporally
into several sub-tasks and learning sub-policy for each sub-
task [19], [20], [21], [22], [23], [24]. The learned sub-policies
that can be re-arranged in a novel way to obtain the policy

for unseen long-horizon tasks. There are also some works
that consider task decomposition from other perspectives. For
example, [25] performs task decomposition by leveraging
the correspondence in the provided analogy and decompose
a task as a (action, object) tuple. [26] decomposes the task
in the feature space as principle and non-principle features.
[27] reasons task decomposition from the object-centric way.
The task decomposition considered in our work is most
similar to [1], in which tasks are decomposed by a set of
degrees of variation. By leveraging knowledge from different
tasks with common degrees of variation, we aim to directly
obtain policies for novel combinatorial tasks with existing
degrees of variation. However, unlike [1] that performs task
decomposition through a modular policy architecture, we
achieve task decomposition in the context of meta-RL by
disentangling the latent task representation.

III. OUR PROPOSED APPROACH

In this section, we first give a brief review of prior works
on context-based meta-RL algorithms in Section This
provides the background to formalize our problem setup in
Section Afterwards, we describe our method in two
parts: how to enable task decomposition in the latent task
representation during training in Section [[II-C| and zero-shot
policy generalization leveraging the achieved decomposition

in Section [II=D}

A. Preliminary: Context-based Meta-RL

Meta-RL typically assumes a distribution of tasks p(7T).
Each task 7 is modeled as an independent Markov decision
process (MDP), M = (S, A, P, R), where S corresponds to
the state space, A corresponds to the action space, P denotes
the transition probability, and R represents the real-valued re-
ward. Meta-RL algorithms learn the task-conditioning policy
from training tasks sampled from p(7), and adapt the learned
policy to new tasks. Specifically, we focus on one perspective
of meta-RL, i.e. context-based meta-RL, which views meta-
learning as task inference [3], [4]. These methods, with an
encoder g4, map each task 7; into a task embedding z;
based on the past experience on this task, e.g. context ¢; =
{(st,as,s},7¢) }e=1...nv [3]. The policy my is conditioned on
the task embedding so that it can be adapted to different
tasks, i.e.,

an~m(-|s,z;), where z; ~ ¢y(-|c;). (D

While our method is agnostic to the specific context-based
meta-RL algorithms, in our implementation, we build on the
framework of probabilistic embeddings for actor-critic RL
(PEARL) [3], which optimizes the objective,

ETi [Ezi"“(]d)(zilci) [R(,];a zi) + BDKL (q¢ (Zi | ci) ”p(zl))H )

(2)
where R(7;,z;) denotes the addition of actor and critic
objectives as defined in [3]. We refer the readers [3] for
more technical details.
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Fig. 2: Illustration of the targeted policy generalization
setting in our work. We assume the tasks-of-interest can be
described as combinations of degrees of variation (DoV).
Given experience from training task set T,.4;, (blue), we
aim to generalize across tasks (in red) whose DoV combi-
nations are unseen but each DoV label is present in T q;1,.

B. Problem Formulation

Our goal is to achieve zero-shot policy transfer across
unseen compositional tasks. We define compositional task
as the task equipped with a predefined set of degrees of
variation (DoVs) [1]. Loosely speaking, a task DoV describes
one varied aspect of the task. For example, in Fig. [T[b),
there are two DoVs describing the tasks, i.e. environment
and goal, and the DoV goal has three unique values, i.e.
left (red trajectory), front (blue trajectory), and right (yellow
trajectory). Formally, considering the task distribution p(7),
each 7; is equipped with a unique combination C; of M task
DoVs as C; = (v}, . - -, ¥j;), where y is the label of the j-th
DoV of task 7;. The M DoVs are problem-dependent and
identical for all the tasks 7; in the task set T, while each
DoV can have different labels and the task DoV combination
C; for each task 7; is unique. We assume the DoV labels,
C;, of each task 7; in T are given. Our problem setting
aims at generalization across tasks whose DoV combinations
are unseen but the DoV labels are present in training tasks
Ttrain, as illustrated in Figure [2]

C. Task Decomposition via Latent Task Embedding Disen-
tanglement

In this section, we describe how we achieve task decompo-
sition w.r.t. task DoV combinations in the context of meta-
reinforcement learning (Meta-RL). Figure [3] illustrates our
framework. The key insight is to achieve task decompo-
sition by enforcing the disentanglement of the latent task
representation in [3] during meta-training. While traditional
meta-RL algorithms learn the task embedding z; with a
single encoder g4 as Eq. E], we replace it with M separate
DoV encoders qg,, Ggs, - - -+ oy » Where gy, (z}”|c;) learns
the DoV embedding for the j-th DoV of task Ti. The
task embedding is obtained by concatenating all M DoV

embeddings as z; = [z!',...,z/"], and the policy 7y is
conditioned on the disentangled task embedding:
a~my(-s,z;) where z; = [z)",... z/"]
3)

z)) ~qg,(|c;), i =1,2,..., M.

For different tasks 7,7, sharing the same label in the
J-th DoV, ie., yi = yj = yj;, their corresponding DoV
embedding should be regularized to follow an identical
probability distribution. One naive way to implement this

principle is to bring close the corresponding DoV embed-
ding of different tasks with shared DoV labels within the
sampled data batch. However, we found empirically that this
strategy is easily prone to the affection of noise, making
the training process unstable. To this end, we introduce a
target distribution p(ztwget) for the j-th task DoV with y;
label, and mlmmlze the Kullback—Leibler (KL) divergence
between gy, (2;” |c;) and p(z{),,.;). Inspired by [28], [29],
Exponential Movmg Average (EMA) is incorporated into our
training scheme to update this target distribution during train-
ing, achieving robustness against outliers during training. For
each DoV label y; of the j-th DoV, we maintain an individual
target distribution p(z3,,.,). Following PEARL [3], our
DoV embedding is modeled as Gaussian distribution. So
we maintain the EMA for both the mean ﬁ?j and variance
3% of p(2/1,4e¢)- This task disentanglement regularization
is ertten as follows for each task 7;, where X is a hyper-
parameter to balance different loss items.

M
his =AY Dicr(gy, (27
j=1
p(zi/t;rget) N(#‘g ’ Ey])
where gy, (z]"|c;) = N(p}”,%}) is the current prediction
for task 7;. fi;’ and ¥ are updated in each training step ¢
with EMA:

|Ci)|‘p(zgérget)) (4)

aY g T e ()
Yjst yj,t—1 Yj )
Ej <—7'-2j +(1-71)-27,

where 7 = 0.99 in our implementation. The task disentan-
glement regularization is applied during meta-training, as
summarized in Algorithm [T where red lines highlight the
differences compared with PEARL.

D. Zero-Shot Policy Generalization through Task Decompo-
sition

When generalizing policies to novel tasks, traditional
meta-RL algorithms usually requires adequate explorations
on the new tasks. However, exploration can be costly in
some scenarios, e.g., the task objects are fragile such as the
thru-hole components in PCB assembly. In contrast, we can
achieve zero-shot policy generalization leveraging the task
decomposition obtained from Section We identify two
scenarios of zero-shot policy generalization as follows.

a) S1: Test tasks are defined by combinations of DoV
labels already seen in training tasks T}..;,. In this case,
we directly concatenate the EMA {z}J, ., }}Z, of the cor-
responding DoV embeddings obtained from training as the
test task representation. The meta-policy conditioned on the
concatenated task representation is used as the generalized
policy for the new task.

b) S2: Test tasks have DoV label that does not exist
in the training tasks T4y, denoted as, y; = y*. Similar to
PEARL meta-test, our method first collects context in one
single task 7;.s; with the unseen DoV label and acquires the
latent task representation z;.s;. Then the embedding of the
DoV label, z}/,, is inferred as the corresponding dimensions
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Fig. 3: We achieve task decomposition via disentanglement in the latent task space. The disentanglement is achieved by
encoding different task DoVs with individual DoV encoders and enforcing identical task DoVs across different tasks have

similar embeddings.

Algorithm 1 Our meta-training procedure. Differences with
PEARL are highlighted in red.

Require: Batches of compositional training tasks
{T:}i=1.. 7 with corresponding task DoV combinations
{C;}i=1.. 1, learning rate aq, o, a3

1: Init. replay buffer B; for each training task
2: while not done do
3:  for each task 7; do

4 Initialize context c; = {}
5: for k=1,..., K do
6: Sample z.’ ~qg;(lci),i=1,...,.M
7: Concatenate task embedding z; = [z!",...,z!"]
8: Gather data from 7y (als,z;) and add to 5; and
update ¢; = {(s;,a;,8;,17)}i:1..8 ~ B;
9: end for
10:  end for
11:  for step in training steps do
12: for each 7; do
13: Sample context batch ¢; ~ S.(B;) and RL batch
b, ~ B;
14: Sample z!” ~ qe,(-lci),j=1,...,. M
15: Concatenate task embedding z; = [z!,...,z!"]
16: Compute L&, L. L% same as PEARL
; W " v
17: zlis - )‘ Zj:l DKL ((M;(E;/J‘C,) ‘ |p(z’fl//(j,l"g(ﬁt))’
where p(zj‘,/(JI,’rget> - ./\/'(/];/J ’ E?J)
18: a7 e T (L)
19: SUf e r BT (1 - 7). 2P
20: end for
21: Cb? A ¢j_a1v¢j Zi (ﬁimm + £ZKL + £:its> ’j =
1,.... M
22: Update 0,0g same as PEARL

23:  end for
24: end while

extracted from z;.s;. After obtaining the embedding of this
unseen DoV label, we repeat the steps in S1 to achieve
generalization across other test tasks with y; = y*. While

our method does require collecting experiences from one
single task in test task set, the generalization across other
test tasks is still zero-shot. As demonstrated in Section [V
this can be readily used as a sim-to-real generalization
method. For instance, we meta-train a policy to complete
10 similar manipulation tasks IN different simulation envi-
ronments. When generalizing to the real world, our method
only requires interacting with the real environment on one
single task, and is able to generalize to the other 9 tasks in
a zero-shot fashion.

IV. EXPERIMENTAL RESULTS

In the experiments, we aim to investigate the following
questions. 1) Does our method described in Section [[II-C]
effectively disentangle the learned task representation? 2)
How does the disentanglement affect the model training
for compositional tasks? 3) Can our method achieve zero-
shot policy generalization across novel tasks through task
decomposition?

A. Simulation Experiments

%, e,
Yoy % (a) Cheetah-vel-comp

(b) Ant-goal-comp (©) Tilted-peg-in-hole-comp

Fig. 4: Three set of compositional tasks for algorithm evalu-
ation. (a) Cheetah-vel-comp with varying goal velocities and
physics. (b) Ant-goal-comp with varying goal positions and
physics. (c) Tilted-peg-in-hole-comp with varying hole tilting
directions and physics.

a) Compositional Task Setup.: To study the targeted
policy transfer problem in this work, we build three set
of simulated compositional tasks shown in Figure ] Each
set of compositional tasks has two task degrees of variation
(DoVs), i.e., goal and physics. For (a) Cheetah-vel-comp and
(b) Ant-goal-comp, we extend the traditional Cheetah-vel and
Ant-goal from [15] by randomizing some physical param-
eters, i.e., body mass, body inertia, damping and friction.



Specifically, we randomly sample 20 different sets of physi-
cal parameters and 20 different goal velocities for Cheetah-
vel-comp, leading to 400 compositional tasks in total. Thus
each task has a unique (physics, goal) DoV combination.
Similarly for Ant-goal-comp, 15 different groups of physical
parameters and 15 different goal 2D locations are randomly
sampled. In (c) Tilted-peg-in-hole-comp, we create challeng-
ing tilted peg-in-hole tasks based on robosuite [30]. The tasks
are performed using a 7-Degree-of-Freedom (DoF) KUKA
LBR IIWA robot with operation space control [31]. We adopt
a square peg-hole task with 0.5mm clearance and tilted the
hole surface plane 5° towards different directions. Tilted peg-
in-hole tasks are prone to jamming issues during execution,
thus posing more challenges to robust policy learning. The
observation space is 6-dimensional end-effector pose and the
actions are the desired end-effector poses. The compositional
tasks are composed of 4 different hole tilting directions
towards +x and £y axis separately as well as 20 different
sets of physical parameters (i.e. friction between peg and
hole, damping and controller step size).

b) Training Tasks Selection.: The training task set
T4 qin 1S a subset of the whole compositional task set T.
When selecting T'q4in, we randomly select tasks in T with
probability « € (0, 1), while ensuring each task DoV label in
T appear at least once in Ty,4;,. For example, in Figure
the 15 tasks in blue are selected for training (o = 0.625).
In the implementation, we use a = 0.5, which is discussed
in Section Other tasks in T are set aside as novel test
tasks, i.e. Tiest = T\Tirain-
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Fig. 5: Average return on test tasks during the training period.
Our method and PEARL apply the same meta-test strategy,
where the first two trajectories are aggregated into the context
for task inference.

c) Baselines.: We compare our method against two
baselines, PEARL [3] and SAC [32]. PEARL directly learns
the task embedding from training tasks without exploiting the
inherent task combinatorial structure. During generalization,
i.e., meta-test, PEARL requires extra explorations on each
test task, so it is not a zero-shot approach. The SAC agent is
trained with all the training tasks together where a training
task is randomly sampled in each episode. This can be
viewed as a variant of domain randomization. The learned
SAC policy is directly applied to test tasks. It is worth noting
that [1] can not be directly applied as a baseline because
solely decomposing tasks w.r.z. observations in the three tasks
fail to capture the dynamics differences, as discussed in
Section [II

d) Effect on Training.: Figure[5|shows the performance
of the learned policies on T;.4; as training proceeds, across
5 random seeds. Our method achieves comparable meta-test
results compared to PEARL, indicating that the enforced
regularization in latent task representation (Section [[II-C)
does not deteriorate the learning process of meta-RL. It is
worth noting that the aim of our proposed method is to
improve the performance of zero-shot policy transfer across
test tasks, instead of meta-test where the experience of the
test tasks is given.

e) Zero-Shot Evaluation.: The evaluation is conducted
for the two scenarios S1 and S2 (Section respectively.
In S1, Tyest = T\Tirain is used as the test tasks. While
in S2, we first sample task attributes that do not exist in T
and the test tasks are set as the combinations of the unseen
attributes and other seen attributes, e.g., (unseen physics,
seen goal), (unseen goal, seen physics). The experimental
results across 5 random seeds are shown in Figure [6] We
compare our zero-shot performance (Zero-shot (ours)) with
multiple baselines: 1) SAC: A single model is trained on
all training tasks with SAC [20]. 2) Prior (PEARL): The
same AN(0,1) prior distribution is applied to all the task
embeddings z; of PEARL model [3]. 3) Meta-test (PEARL):
We apply the same meta-test for PEARL as in [3]. To ensure
enough contexts on the test task, the first 8 trajectories are
aggregated into the context. 4) Meta-test (ours): The same
meta-test with PEARL is applied to the model trained with
our method. It is worth mentioning that only 1) and 2) can
achieve zero-shot generalization on novel tasks, while 3)
and 4) require extra exploration. As shown in Figure [6] our
zero-shot generalization significantly outperforms the two
zero-shot baselines, SAC and Prior (PEARL). Interestingly,
it is also superior to the two meta-test baselines, although
our generalization does not explore on the test task. We
hypothesize that the reason is our method benefits from the
EMA embedding zfgrget used to compose the embedding
z,, of the novel task, serving as a temporal ensemble of
information accumulated during training. In contrast, purely
collecting context from a single test task may suffer from its
inherent bias and easily get trapped in the local optimum.

f) Visualization of Latent Embedding.: To investigate if
the proposed method in Section effectively disentangle
the encodings in latent space, Figure [§] visualizes sampled
test task representations output by our method and PEARL
on Cheetah-vel-comp. The embeddings of test tasks with
same goal or physics are in the same color. All the embed-
dings are reduced to 2-d with PCA [33] for visualization. It
is observed that our method can distinguish different labels
of each attribute better than PEARL. Different goals are
distinctly separable by our method. For different physics,
despite their effect being indirect, similar physics parameters
still tend to induce closer embeddings.

B. Real Experiments

As described in Section [[II-D] our method can be applied
as a sim-to-real algorithm, by treating real-world tasks as
tasks with unseen physics attribute. We evaluate the method
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on a real-world 6-DoF FANUC Mate 200iD robot with the
similar setup as Tilted-peg-in-hole-comp in Section [[V-A] as
shown in Figure [7} The evaluation of real world is identical
to the evaluation of S2 in simulation (Section [V-A), where,
after meta-training in simulation, the meta-policy collects
context for one held-out task to infer the real-world physics
embedding. The obtained physics embedding is combined
with other goal embeddings learned from simulation to
generalize across the other three tasks in the real world. Each
task is used as the held-out task once for thorough evaluation.
When evaluating the generalized policy, the evaluated task is
executed 30 trials with 3 different random seeds (10 trials for
each random seed). The results are reported in Figure [f[d).
Our generalized policy achieves a success rate of 73.3% over
different unseen tasks.
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Fig. 9: Results of ablation studies.

C. Ablation Studies

a) Sparsity of Training Tasks.: In our previous experi-
ments, we sample 50% of compositional tasks (i.e. « = 0.5,
see Section [[V-A] (b) for details) for training, so that each
task DoV label would appear multiple times during training.
To examine the limit of our method, we try to reduce the
number of training tasks, i.e. & = 0.2 or 0.1, on Cheetah-
vel-comp. In this case, each task DoV label would appear

B Meta-test (ours) *

(c) Tilted-peg-in-hole-comp (d) Sim-to-real

B Zero-shot (ours)

20

s2 s2

Fig. 7: (a) Real-world setup. (b)
5° tilted hole for experiment.

only 4 or 2 times on average among training tasks. Our zero-
shot generalization performance is visualized in Figure [Oa]
Despite the performance decrease with fewer training tasks,
our approach still notably outperforms the Prior even with
the fewest training tasks (o = 0.1). This indicates our
method learns meaningful disentangled DoV embeddings
even with sparse training tasks.

b) Effect of EMA.: To justify the role of Exponential
Moving Average (EMA) in our training and zero-shot gen-
eralization, we consider the following alternative strategies:
1) training w/o EMA: Equivalently, we set 7 = 0 in Eq. [3}
In this case, the task DoV embedding is regularized by the
training task with the same DoV label sampled in the last
training batch. 2) zero-shot generalization w/o EMA: We try
another strategy to get the corresponding DoV embeddings
for an unseen task 7, instead of using EMA in S1 of
Section [[II-D] The average DoV embeddings from training
tasks with the same task DoV label with 7, is adopted
instead, i.e. zi' = mean ({2’ |7, € Tirain, y = y7}). The
results are shown in Figure [Ob] Training without EMA fails
because of the large noise in the regularization of the DoV
embeddings. EMA “smoothes out” the noise, serving as a
temporal ensemble of context accumulated during training.
In addition, it provides unbiased DoV embeddings for zero-
shot generalization, as indicated by the generalization per-
formance gap with and without EMA.

V. CONCLUSION AND FUTURE WORK

In this paper, we propose a meta-RL algorithm to achieve
zero-shot policy generalization across unseen compositional
tasks. Our method learns disentangled task representation by
encoding each task DoV separately. The DoV embeddings
obtained from training tasks enable zero-shot policy gener-
alization on test tasks by composing the task embeddings
of novel tasks. Our approach achieves significantly superior
performance on simulation tasks and can be seamlessly
applied to sim-to-real generalization.

The experiments conducted in this work are mainly the
combination of two task DoVs, i.e. physics and goal. In
future work, we hope to extend to more diverse attributes,
allowing for wider applications of zero-shot policy gen-
eralization. Besides, one implicit assumption of modeling
task decomposition via disentanglement is the specified task
DoVs are independent of each other, limiting the application
scenarios. Discovering other ways to achieve task decompo-



sition without this assumption is another interesting direction
to explore.
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