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Abstract— This paper tackles the task of singulating and
grasping paper-like deformable objects. We refer to such
tasks as paper-flipping. In contrast to manipulating deformable
objects that lack compression strength (such as shirts and
ropes), minor variations in the physical properties of the paper-
like deformable objects significantly impact the results, making
manipulation highly challenging. Here, we present Flipbot,
a novel solution for flipping paper-like deformable objects.
Flipbot allows the robot to capture object physical properties
by integrating exteroceptive and proprioceptive perceptions that
are indispensable for manipulating deformable objects. Further-
more, by incorporating a proposed coarse-to-fine exploration
process, the system is capable of learning the optimal control
parameters for effective paper-flipping through proprioceptive
and exteroceptive inputs. We deploy our method on a real-
world robot with a soft gripper and learn in a self-supervised
manner. The resulting policy demonstrates the effectiveness of
Flipbot on paper-flipping tasks with various settings beyond
the reach of prior studies, including but not limited to flipping
pages throughout a book and emptying paper sheets in a box.
The code is available here : https://robotll.github.io/
Flipbot/

I. INTRODUCTION

Deformable object manipulation has achieved notable
progress in robotics. However, until now, robots could
not match the generalization and robustness of humans in
manipulating thin and flexible objects. One of these tasks
is flipping book pages, as shown in Fig. 1, which requires
singulating and grasping paper page by page. Humans can
briskly turn pages of a book by watching the target and using
the tactile sensations on their fingertips to adjust their actions.
In this process, human instinctively combines exteroceptive
and proprioceptive perception to accommodate the irregular
paper thickness and physical properties, such as slipperiness,
stiffness, and friction. Endowing robots to have such capability
is a grand challenge in the field of robotics.

One of the foremost challenges in manipulating thin and
flexible objects is incomplete and noisy perception [1]. For
example, a stack of paper is unstable, and the contact between
each layer is not observable. Therefore, the robot may have to
perceive physical properties between paper, such as friction,
and elasticity, to successfully singulate and grasp a sheet
from a stack. Exteroceptive perception obtained from camera
sensors is incomplete for such tasks and unreliable in real-
world conditions. The depth sensors, which most existing
works rely on, cannot distinguish the different layers of
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Fig. 1. A soft gripper with the learned policy flips a book. The time-lapse
image depicts the operation of the gripper as it interacts with the book
to singulate and grasp a piece of paper. The cropped depth image in the
red line box located at the upper right corner presents the exteroceptive
observation from the depth camera. The readings on the bottom right show
the proprioceptive observation from the force-torque sensor.

stacked paper due to the paper thickness. Depth sensors are
also inherently incapable of capturing the surface’s physical
properties, such as hardness and flexibility [2]. Some works
use tactile sensors as proprioception to estimate deformable
objects’ physical properties. For example, [3] uses a high-
precision tactile sensor to measure the geometry of the
contact surface and the object’s hardness. [4] manipulates
cables with a pair of robotic grippers using real-time tactile
feedback. Nevertheless, high-precision tactile sensors are
often expensive and require specific finger shapes to fit.
In addition to the challenge in environment perception,
manipulating thin and flexible objects may desire the gripper
with the dexterity and compliance of human fingers, which
further adds to the difficulty [5].

To address the above challenges, we present Flipbot, a
self-supervised method for singulating and grasping paper-
like deformable objects at unprecedented robustness, en-
abling continuous paper flipping. At its core, Flipbot is
based on a principled solution integrating exteroceptive and
proprioceptive perceptions into policy learning. We obtain
proprioception from the Force/Torque (F/T) sensor readings
and exteroception from a depth camera. We use a procedural
motion, referred to as “Swipe” to actively interact with
the environment. When a “Swipe” motion is applied to
a piece of paper, the deformation brought about by the
interaction between the finger and object reveals imperceptible
physical characteristics like mass, flexural rigidity, and friction.
Meanwhile, visual observation provides global information
on the environment. We design a cross-sensory encoder to
integrate exteroceptive and proprioceptive perceptions into an
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implicit state representation. The encoder is trained end-to-end
in a self-supervised manner as a part of policy learning. By
incorporating exteroceptive-proprioceptive information into
policy learning, the robot is able to discover the optimal
policy for paper-flipping through continuous exploration.
Furthermore, the reward signal for policy learning is derived
from visual observation; Flipbot is fully trained by self-
exploration without human demonstration or annotation.

The primary contribution of the presented work is the
proposed new approach, Flipbot, for sigulating and grasping
paper-like objects. It achieves substantial improvements over
the prior studies while maintaining exceptional robustness.
Our extensive experiments show that Flipbot is able to
perform page-flipping from the beginning to the end of a
book accurately and consistently, and exhibits remarkable
zero-shot generalization under conditions never encountered
during training: novel paper materials such as coated and
plastic paper and tasks such as emptying a box full filled
with paper.

II. RELATED WORK

Deformable object manipulation presents a persistent and
enduring challenge within the field of robotics. Conventional
analytic approaches rely on modeling object dynamics and
then using model predictive control [6], or trajectory opti-
mization [7] for manipulation. However, analytic approaches
require substantial prior knowledge of geometry, and the
physical properties of the object [1]. For example, [8]
presents an approach for manipulating a piece of thin
deformable object by analyzing the object’s internal energy
exchange concerning object poses. And [9] proposes a close-
loop shape control method utilizing visual markers, which
limits the generality. Moreover, the high-dimensional state
representation and complex dynamics of the deformable object
provide additional challenges to generalizing novel objects
and environments.

Recently, learning-based methods have become increasingly
popular alternatives to perform deformable object manip-
ulation. Most work [10], [11] learns the object dynamic
from visual features rather than explicit modeling physical
processes. For example, [12] encodes visual observation into
latent space with self-supervision, followed by model-based
planning. Another line of approach defines a set of primitives
for deformable object manipulation and learns a mapping
from image to predefined primitives [13]. Such image-to-
primitive formulation has been applied across various tasks
including manipulating rope [14], smoothing fabric [15],
and blowing bags [16]. However, the physical information
of the environment, which necessitates deformable object
manipulation, is challenging to be obtained from visual
perception. In this regard, [17] estimates the physical prop-
erties of fabric materials through a high-resolution tactile
sensor, GelSight [18]. Further, [4] proposes an approach to
manipulate a cable based on tactile feedback without vision
sensory. [19] employs tactile sensors to manually collect data
for training a classifier that can differentiate between towels
with thicknesses of 1-3 layers. Then a heuristic approach is

used to consistently attempt to grasp specific layers of towels
based on the classifier’s prediction outcomes. Nevertheless,
tactile sensors alone are hard to provide global information
about the environment, which inevitably restricts the range
of manipulation or requires prior knowledge of objects.

More recently, a small number of papers have explored
the use of soft grippers in deformable object manipulation,
which is known for its ease of grasping objects without high
precision control [8], [20]. The authors of [21] demonstrated
a soft gripper system that is capable of handling a wide range
of food products by reconfiguring fingers into different poses.
In addition, [5] quantitatively indicates that the compliance
of the soft gripper can facilitate the manipulation of thin
deformable objects.

Compared with the above studies, our presented approach,
Flipbot, incorporates exteroceptive and proprioceptive feed-
back in deformable object manipulation rather than relying
on a single perception source. Flipbot thus combines the best
of both worlds: the global information about the environment
afforded by exteroception and the local information about
physic property afforded by proprioception. Filpbot also
leverages the compliance from a soft pneumatic gripper for
performing dexterous behavior. The resulting policy has taken
the real robot to various tasks surpassing prior published work
in the field of deformable object manipulation.

III. METHOD

The goal of Flipbot aims to empower robots to effectively
singulate and grasp thin and flexible objects through ex-
teroceptive and proprioceptive perception. Our key insight
is that global information about positions and shapes on a
large scale provided by vision and local information about
contact and force provided by proprioceptive perception are
indispensable parts of manipulating deformable objects like
paper. Also, proprioception and exteroception fusion reveals
physical information that helps robots better explore and
make decisions. The overview of Flipbot is shown in Fig. 2.

First, we utilize a simple soft gripper for manipulation (see
Fig. 4(c)). The natural compliance of the soft gripper provides
unique benefits for manipulating thin and flexible objects
while avoiding damage to the object. Another advantage is
that the soft gripper has a more straightforward actuation
strategy in movements such as bending the fingers, compared
with fully actuated rigid grippers.

Then, we use a coarse-to-fine exploration process to obtain
unobservable physical information about deformable objects.
In this process, first, the depth camera provides a rough
observation of the object. We then use a procedural motion
“Swipe” and an F/T sensor to monitor the object’s state. One
advantage of using the F/T sensor instead of a tactile sensor
is that the force sensor can be assembled seamlessly with
soft hands without a specific finger design.

Last, we use a cross-sensory encoder to fuse the proprio-
ception and exteroception and use model-free reinforcement
learning (RL) to learn the policy that avoids explicit modeling
of diverse and frequent transitions in the contact state between
the object and the soft hand.
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Fig. 2. System Overview. We train the policy using SAC in the real world. We follow a coarse-to-fine exploration process to obtain exteroception and
proprioception. First, the camera captures the depth image, and the cropped area is used as extrinsic perception. Next, the soft finger “Swipe” on paper
captures force ( f x, f y, f z) and torque (mx,my,mz) values from force sensors as proprioception. The RL agent receives the observations and predicts the
actions to be performed by the robot, and receives the reward based on changes in page numbers.

A. Problem Formulation

We formulate the problem of the paper-flipping as a
Markov Decision Process (MDP). An MDP consists of four
components: a state space S, an action space A, a reward
function R(st ,st+1), and a transition probability P(st+1|st ,at).
In our framework, an agent uses a policy π(at |st) to select
an action at for controlling the robot and receives rewards
rt . The goal of the reinforcement learning framework is to
obtain the optimal policy π∗, which maximizes the expected
discounted sum of rewards over a finite time horizon. To
achieve this objective, we utilize the Soft Actor-Critic [22]
(SAC) algorithm for training. SAC requires the learning of an
actor network that maps observations to actions and a critic
network that estimates the expected future rewards based on
the input.

B. Observations via Coarse-to-Fine Exploration

The state is defined as st = (otv,ot f ), where otv refers to
the exteroceptive observation, ot f refers to the proprioceptive
observation, shown in Fig. 2. We deploy a coarse-to-fine explo-
ration procedure with two steps for obtaining observations otv
and ot f . First, a wrist-mounted camera takes the environment’s
point cloud pt from a height and converts the point cloud to
a depth image. We then use a 60 × 60 resolution window
to crop the depth image, as the exteroceptive observation otv.
Next, we perform an exploratory “Swipe” motion, to obtain
physical information about the contact surface between the
paper and the finger. The robot first descends a certain distance
that the finger of a soft hand approaches the surface of the
top right corner of the paper diagonally, where the distance
is calculated according to the point cloud pt . Then, we give
the soft gripper a positive air pressure so that fingers touch
and interact with the paper. After this process, we record
readings from the F/T sensor, including forces ( f x, f y, f z) in
x,y,z axes and three simultaneous torques (mx,my,mz) about
the same axes. Thus, the proprioceptive observation ot f is
defined as a tuple of ( f x, f y, f z,mx,my,mz). Fig. 3 shows
forces and torques after “Swipe” on different pages in the
book. By incorporating an F/T sensor and exploratory action,
ot f latently contains rich information related to contact states

Page 1

Page 25

Page 50 Normalized forces and torques

fx

fy

fz

mx

my

mz

Page 1
Page 25
Page 50

0 0.2 0.4 0.6 0.8 1

Fig. 3. Visualization of forces and torques after “Swipe” on the different
page numbers.

between the fingers and the object, such as gripper-object
friction.

C. Action and Reward

After the coarse-to-fine exploration procedure, the robot
predicts the action based on observations to singulate and
grasp the paper. The action includes a gripper displacement,
denote as (xt ,zt ,θt), as shown in Fig. 4(a). The gripper
displacement refers to the relative difference between the
current pose after the “Swipe” exploration procedure and the
desired one. Specifically, xt ∈ [−6mm,6mm] is the relative
displacement on the line α connecting the two fingertips,
where α belongs to the longitudinal plane A formed by
two fingers. θt ∈ [0°,3°] is the orientation of the gripper
about the normal β ⊥ A. zt ∈ [−6mm,6mm] is the the relative
displacement on the line γ , where γ ⊥ (α×β ). Furthermore,
an additional action component Λ is utilized to govern the
closing or opening of the gripper. Operationally, we control
the gripper aperture by commanding the pressure change.
Thus, the action is formally defined as at = (xt ,zt ,θt ,Λ),
where each coordinate of the action is discretized based on
the characteristics of the workspace.

At the end of an episode, the reward is given, 1 for
successfully flipping a single layer of paper and 0 for
otherwise. In other words, flipping two or more layers of
paper simultaneously is treated as a failure. The reward is
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automatically determined by identifying page numbers on the
book, which we describe further in Sec. III-E

D. Policy architecture

The policy π(at |st) is modeled with a cross-sensory encoder
and a multilayer perceptron (MLP) block, as shown in Fig. 2.
The cross-sensory encoder takes the exteroceptive observation
otv and proprioceptive observation ot f as inputs and embeds
them into a latent vector, which represents the abstraction
of proprioception and exteroception. More specifically, otv is
processed by a global pooling layer and concatenated with
ot f to be a vector of size 1x7. Then, the concatenated vector
is fed into subsequent an MLP block to compress inputs to a
more compact representation lt . At last, the lt is fed through
the subsequent MLP layer to predict actions.

E. Training via self-supervision

We train the policy in a real robot platform. Fig. 4(c) shows
our hardware setting for training, including the following
major components: a Universal Robot 10 robot arm equipped
with a 3D printed thermoplastic polyurethane soft gripper, an
ATI gamma F/T sensor, and an Intel Realsense L515 depth
camera, as well as a recycling mechanism. During the whole
training, we only use a book assembled with printer paper, as
shown in Fig. 4(c). We train our model through trial-and-error
with the following procedure:

At each training step, the robot starts to execute coarse-
to-fine exploration from an initial pose. In the process of
“Swipe”, the wrist-mounted camera captures an RGB-D
image. The depth channel is used to construct exteroceptive
observation otv, and the page number nt is recognized from

Printer paper Coated paper Plastic paper

Single layer (0°)

Book (30°)

Box (60°)

Fig. 5. A subset (9 of 27) of our test scene settings. Columns from left
to right show different paper materials: printing paper, coated paper, and
plastic paper. Rows from top to bottom show different test scenarios and
workspace tilt angles

RGB channels for reward calculation. The robot then descends
a certain distance that the finger approaches the paper’s
surface to perform an exploratory action to obtain the physical
observation ot f from the readings of F/T sensors. After this,
the robot downloads the latest policy parameters from the
optimizer to predict action at and executes. We automatically
calculate rewards according to the change of page numbers
without human intervention, the reward rt is 1 if nt+1 = nt +2,
otherwise 0. The page number identification benefits from
Tesseract [23]. At last, the generated episode is added to a
replay buffer, and the optimizer sampling from this replay
buffer to update the policy. We use the Adam optimizer with
a learning rate of 3× 10−3. The robot then continuously
collects episodes until it reaches the last page of the book,
at which point the book is reset to the first page again using
the recycling mechanism. In this way, human intervention is
kept at a minimum during the training process.

The final model training took four hours, with the learning
curves for the training presented in Fig. 4(b).

IV. EXPERIMENTS

We design a set of experiments in real-world settings to
evaluate the system’s generalization ability to novel object
physical parameters and the advantage of using exteroceptive
and proprioceptive exploration. For all following experiments,
we use the same robot hardware setting and the same model
trained with the book assembled from printer paper, described
in Sec. III-E. The system’s performance is evaluated on its
generalization to unseen paper types (i.e., flipping different
types of paper when only trained on printer paper) and unseen
scenarios(e.g., emptying paper in a box) and its efficiency
(i.e., the speed and accuracy of paper-flipping).

Scene setup: We investigate the performance of our system
across various object settings and scene configurations. In
total, we have 27 different test scenes with the combination
of test scenarios, paper types and tilt angles. We test with
the following three scenarios:
• Full Book page flipping. It is a similar scenario as in policy

training, where the robot needs to flip book pages one by
one throughout the book.



TABLE I
RESULTS OF EXPERIMENTS IN THE REAL WORLD.

Method Tilt angle

Full Book page flipping Paper-box emptying Single paper grasping

Printer Paper Coated Paper Plastic Paper Printer Paper Coated Paper Plastic Paper Printer Paper Coated Paper Plastic Paper
SR PPH SR PPH SR PPH SR PPH SR PPH SR PPH SR PPH SR PPH SR PPH

Flex&Flip [8]

0◦
72% 223 77% 239 52% 161 69% 214 82% 254 49% 152 83% 260 91% 282 74% 229

Flipbot-w/o prop 85% 264 93% 288 66% 205 81% 251 91% 282 60% 186 95% 295 98% 304 85% 264

Flipbot 94% 291 96% 298 82% 254 90% 279 94% 291 68% 211 99% 307 98% 304 92% 285
Flex&Flip [8]

30◦
76% 236 74% 229 44% 136 62% 192 72% 223 42% 130 80% 248 87% 270 76% 236

Flipbot-w/o prop 88% 273 87% 270 63% 195 84% 260 88% 273 55% 171 85% 264 92% 295 86% 267

Flipbot 93% 288 91% 282 72% 223 88% 273 91% 282 62% 192 92% 285 95% 295 90% 279
Flex&Flip [8]

60◦
64% 198 56% 174 47% 192 56% 174 58% 180 38% 118 84% 260 82% 254 83% 257

Flipbot-w/o prop 76% 236 72% 223 62% 192 77% 239 70% 217 58% 179 86% 267 85% 264 91% 282

Flipbot 84% 260 82% 253 70% 217 82% 254 80% 248 66% 205 96% 298 92% 285 94% 291
* SR stands for success rate.

A: Book
0 degrees
Coated paper

B: Book
0 degrees
Plastic paper

C: Box
30 degrees
Printer paper

D: Book
60 degrees
Printer paper

E: Book
60 degrees
Printer paper

Fig. 6. Flipbot performs paper-flipping in different scenes. A-D: Flipbot successfully singulates and grasps a piece of paper in various settings; E: Flipbot
fails to singulate and grasp a piece of printer paper with a 60-degree tilt angle. The circled area in red denotes that two layers of paper were flipped.

• Paper-box emptying. The robot grasps each sheet one by
one from a pile of paper dumped into a box until emptying
it. This is more challenging than the book setup because
the physical interaction between the paper is more complex
without the constraints of the spine.

• Single paper grasping. The robot grasps a single piece of
paper lying on a flat surface.

In each scenario, we use three types of paper that have
different physical properties, including the printer paper,
coated paper, and plastic paper. The physical property of
printer paper is the same as we have used during training,
which has the highest friction coefficient among the three
types. The coated paper and plastic paper are unseen paper
types. The coated paper has the lowest friction coefficient
and the plastic paper has medium friction coefficient. The
detailed physical properties of these three paper types are

TABLE II
PHYSICAL PROPERTIES OF TEST PAPER

Physical properties Printer paper Coated paper Plastic paper
(seen type) (unssen type) (unssen type)

Static Coefficient
of Friction 0.462±0.0087 0.283±0.0104 0.334±0.0066

Kinetic Coefficient
of Friction 0.417±0.0542 0.174±0.0229 0.259±0.0263

Young’s Modulus
in Machine Direction(GPa) 2.84±0.17 2.62±0.14 1.54±0.23

Density
(g/m2) 102.5±2.32 59.8±0.93 385.4±1.74

Thickness
(mm) 0.096±0.006 0.057±0.012 0.151±0.017

shown in Tab. II. Meanwhile, we also vary tilt angles (0, 30,
60 degrees) for the workspace to test the effect of gravity on
paper flipping.

Metric: We utilize two evaluation metrics for validat-
ing algorithm performance: success rates (successful paper



flips/total attempts) and PPH (successful paper flips per hour).
The success of paper flipping for each attempt is measured
by whether the gripper detaches and flips strictly one piece
of paper. For example, in the book page flipping task, the
robot detaches and flips two pieces of paper simultaneously
is considered a failure. PPH is the product of the speed of
flipping in an hour and the success rate, which includes the
time of perception, network inference, and robot execution
in enabling paper-flipping manipulation. It is important to
note that our Flipbot implementation is not optimized for
high-speed execution; thus, the reported PPH is solely used
to compare relative performance.

Algorithm comparisons: We compare with the following
methods:
• Flex&Flip [8]: it simplifies a piece of paper as a linear

object and uses a physical model to analyze the motion. Its
original version could only grasp a single piece of paper
lying on a flat surface. We adapt and extend the physical
model provided by the authors and hardcode the thickness
of different paper types to allow for multi-layered paper
flipping.

• Flipbot-w/o prop: policy learns from only exteroceptive
sensory (i.e., depth camera), which directly maps the visual
observation to action.

• Flipbot: policy learns with coarse-to-fine exteroceptive-
proprioceptive exploration, which is the full non-ablated
method we propose in this article.

A. Experimental Results

Comparison to prior work. We first compare the perfor-
mance of our approach with Flex&Flip [8] with different
paper types and scenarios (row 1 vs. row 3 in Tab. I).
Note that Flex&Flip [8] is the state-of-the-art method for
single-layer paper grasping, and we extend it to multi-layered
paper scenarios (i.e., paper-box emptying and full book page
flipping). In the single paper grasping case, Flipbot performs
better (+16%) than Flex&Flip [8] on printer paper. The
advantage is much more pronounced in multi-layered paper
cases, with Flipbot outperforming Flex&Flip [8] around 20%.
In all three test scenarios, quantitative results in Tab. I suggest
that our method (Flipbot) maintains comparable success rates
on unseen paper types (i.e., coated and plastic paper) with
respect to the seen paper type (i.e., printer paper). In contrast,
the performance of Flex&Flip [8] on the plastic paper type
degrades significantly (up to -20%) on unseen paper types.

Effectiveness of exteroceptive-proprioceptive explo-
ration. We conduct controlled experiments to evaluate the
contribution of exteroceptive-proprioceptive exploration quan-
titatively. The proprioceptive perception provides information
on the unobservable physical features, facilitating policy
learning effectiveness. As a result, compared with Flipbot-
w/o prop that does not use proprioceptive, Flipbot achieved a
higher success rate. Quantitative results in Tab. I indicate that
compared to Flipbot-w/o prop, the success rate of Flipbot
increases at most 24% and at least 4% across test cases.

Generalization to novel tilt angles of workspace. In this
experiment, we investigate the generalization ability of these

methods to gravity changes by varying tilt angles (0, 30, 60
degrees) of the workspace (see Fig. 6C-D). In different tilt
angle setups, detaching a single sheet of paper becomes more
challenging as the physical properties between the different
layers of the paper change with the direction of gravity.
Quantitative results in Tab. I show that the performance of
our learned policy degrades slightly as the tilt angle increases.
We hypothesize this happened since the physics in these test
scenes differ from the training, increasing the difficulty of
generalization. Nevertheless, Flipbot still outperforms other
methods in terms of success rate and PPH in all test cases.

Overall, our experimental evaluation demonstrates that
Flipbot is an efficient approach for paper-flipping tasks. We
find the exteroceptive and proprioceptive perceptions are
essential for paper-flipping, particularly for sigulating and
detaching a sheet from a pile of paper. The learned policy
has been demonstrated to outperform state-of-the-art methods
and is also applicable to tasks beyond the reach of prior
studies, such as turning pages throughout a book. Our work
is not without limitations. First, when the working area is at a
larger inclination angle, the friction between the paper tends
to be smaller. Hence, multiple layers of paper are easy to
be grasped simultaneously (see Fig. 6E). Also, two layers of
paper sometimes stick together. We assume it happens because
of Van der Waals forces. A dual-arm system may be essential
to address this issue, suggesting exciting opportunities for
future study.

V. CONCLUSION

We have presented a novel solution for singulating and
grasping thin and flexible deformable objects that utilize the
cross-sensory encoding of exteroceptive and proprioceptive
perceptions, which we term Flipbot. Meanwhile, the system
takes advantage of the under actuation and compliance
of the soft pneumatic actuator to control contact forces
precisely for the singulation of a thin layer of deformable
objects. We deploy the algorithm on a real-robot system and
show that integrating exteroceptive and proprioceptive inputs
can effectively facilitate deformable object manipulation.
Extensive controlled experiments demonstrated the robustness
and effectiveness of Flipbot. Beyond the experiment results,
our work extends frontiers in deformable object manipulation,
and the methodology presented in this work can have broad
applications. A future direction is to extend the proposed
approach to long-horizon deformable object manipulation
tasks, such as origami folding, cleaning messy desktops,
collecting mail and letters, etc.
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