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Abstract— This work proposes a self-supervised learning sys-
tem for segmenting rigid objects in RGB images. The proposed
pipeline is trained on unlabeled RGB-D videos of static objects,
which can be captured with a camera carried by a mobile robot.
A key feature of the self-supervised training process is a graph-
matching algorithm that operates on the over-segmentation
output of the point cloud that is reconstructed from each video.
The graph matching, along with point cloud registration, is able
to find reoccurring object patterns across videos and combine
them into 3D object pseudo labels, even under occlusions or
different viewing angles. Projected 2D object masks from 3D
pseudo labels are used to train a pixel-wise feature extractor
through contrastive learning. During online inference, a clus-
tering method uses the learned features to cluster foreground
pixels into object segments. Experiments highlight the method’s
effectiveness on both real and synthetic video datasets, which
include cluttered scenes of tabletop objects. The proposed
method outperforms existing unsupervised methods for object
segmentation by a large margin.

I. INTRODUCTION

Autonomous robots should be able to reason about objects
even when human supervision is not available [1]. This
work considers a setup where a robot navigates in a static
environment and passively collects RGB-D videos. The en-
vironment contains unknown rigid objects, which rest stably,
potentially in cluttered configurations, on supporting surfaces
like tabletops. The same object instances can reappear in
various scenes with arbitrary 6D poses while being partially
occluded by different surrounding objects. This raises the
following question: Can a robot learn to correctly segment
objects in RGB images given its prior experience of col-
lecting unlabeled videos that contain the involved objects
without any human supervision?

While some objects, such as a coke can or a sugar
box, can be relatively easily singled out from a scene due
to their characteristic texture or simple geometries, other
more complex and articulated objects pose a more serious
challenge in the absence of prior knowledge. For example,
a lamp can have a concave lampshade, a gooseneck, and a
base. It’s hard for a robot to tell from a single snapshot if they
are individual objects or parts of the same object. This paper
argues that robots can address this problem without prior
knowledge or human supervision by simply collecting videos
of scenes, which can be extended to a lifelong learning
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Fig. 1: Self-Supervised Learning Pipeline. Top: Step 1. Object over-
segmentation on the 3D reconstruction of each video. Step 2. Generating a
distinctive feature for each 3D segment by training an initial feature extractor
φ1 using contrastive learning. Step 3. A graph-matching algorithm operates
over the 3D segments and their φ1 features to identify sets of segments to
be grouped as objects. Step 4. Using contrastive learning to train another
feature extractor φ2, which uses as positive examples pixels that belong
to the same hypothesized objects. Bottom: Upon inference, given an RGB
image and a foreground mask, the network φ2 generates pixel-wise features
as input to a clustering algorithm for object segmentation.

process. The idea is to identify object parts that appear
simultaneously in the same spatial arrangement in different
scenes. The key contribution of this work towards this idea
is a graph-matching algorithm that identifies reoccurring
sets of neighboring 3D object parts. The overall approach
utilizes the results of the matching algorithm to train a pixel-
wise feature extractor through contrastive learning, which
can be directly consumed by a clustering method for object
segmentation.

The proposed pipeline is shown in Fig. 1. The learning
system receives as input a collection of unlabeled RGB-D
videos from multiple scenes and returns a pixel-wise feature
extractor φ2 that can generate distinctive object features for
segmentation. The system first performs (over-)segmentation
of the 3D point cloud for each input video resulting in 3D
segments corresponding to simple geometries. This is done
by reconstructing each 3D scene, removing the background
using plane detection, and segmenting the scene using exist-
ing non-learning, geometry-based methods [2], [3]. The 3D
segments are projected to the 2D frames, and a pixel-wise
feature extractor φ1 is learned to generate distinctive features
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for each 3D segment through contrastive learning, similar
to MaskContrast [4]. The 3D segments are then abstracted
as nodes of a graph, where edges connect adjacent nodes,
and nodes are represented by their features according to
φ1. Reoccurring graph patterns are searched across different
scenes by a feature-based, sub-graph matching algorithm [5].
Graph matching is used here as a mechanism to identify can-
didate pairs of object instances with multiple parts. The cor-
responding point clouds of the candidates are registered and
matched nodes with low registration scores are pruned out.
The remaining matched nodes and the segments represented
by those nodes are considered parts of the same object. Then,
a second network φ2 is learned using contrastive learning
to generate pixel-wise features of object instances. During
inference, given an RGB image and a foreground mask, φ2

returns pixel-wise object features, which are then clustered
using a variant of the mean-shift algorithm [6], [7] to output
the object segmentation of the input RGB image.

The experimental results of Section VI show that the pro-
posed technique significantly outperforms multiple baselines
both on real-world and photo-realistic synthetic datasets.

II. RELATED WORK

Self-Supervised Learning. Many recent studies on self-
supervised learning [8]–[12] focus on generating a pre-
trained model from a large dataset using pseudo labels
without human supervision. Given the pre-trained model,
downstream tasks (e.g., object segmentation) can be trained
with less annotated data. Many of the existing methods
require object region proposals that contain one or very
few salient objects. This object localization process is usu-
ally performed by 2D region proposals [13] and saliency
detection [4] for static images, or object tracking [14],
[15] and optical flow [16], [17] for videos. Nevertheless,
they are not as suitable for cluttered scenes [18] as the
errors introduced during region proposal are often too large.
Meanwhile, generating a pre-trained model is not ideal as it
still requires manually labeled ground truth to finetune for
downstream tasks, such as segmentation. This work, on the
other hand, focuses on finding object pseudo labels that can
be directly used for training.

Segmentation without Manual Annotation. Many unsu-
pervised methods have been proposed for object/scene seg-
mentation. Notable non-learning methods are Mean Shift [6]
for image segmentation, and LCCP [2], SymSeg [3],
CPC [19] for point cloud segmentation. Some efforts have
studied RGB-D segmentation for unknown objects, including
UOC [20], UOIS [21], RICE [22], SD-MaskRCNN [23].
These methods typically train a neural network on synthetic
data, where ground-truth labels are automatically generated.
Fine-tuning these models on real data is nontrivial without
manual annotation. Recently, some work has been done on
unsupervised semantic segmentation. PiCIE [24] uses invari-
ance to photometric effects and equivariance to geometric
transformations as an inductive bias. STEGO [25] proposes
a novel contrastive loss function that encourages features to

form compact clusters while preserving their relationships
across the corpora.

Unsupervised Object Discovery This work is also related
to unsupervised object discovery in general. Some repre-
sentative works include [26], which is an object detection
method that uses part-based matching with bottom-up region
proposals, and [27] that formulate the problem as ranking
amenable to distributed methods available for eigenvalue
problems and link analysis.

III. PROBLEM SETUP AND NOTATION

This work addresses the problem of object segmentation
given an RGB-D image I of a novel scene, which contains
various, potentially cluttered objects. Each object is assumed
to have appeared before in a collection of m unlabeled raw
RGB-D videos V = {V1, V2, ..., Vm} that were passively
recorded by a mobile robot while observing static scenes.
There are K unique object instances O = {O1, O2, ..., OK}
that the robot can observe. Image frame at time t in the train-
ing i-th video Vi is denoted as Iti , i.e., Vi = (I1

i , I
2
i , ..., I

Ni
i ),

where Ni is the total number of frames in Vi. Each frame
Iti is composed of a color and a depth image denoted as
Iti .color and Iti .depth respectively. Each frame I of a video,
as well as the test image, may contain only a subset of
the object set O, denoted as OI ⊆ O. Background objects,
such as furniture, are assumed to be known a priori and
are automatically removed from the RGB-D images. No
additional information, such as the number of objects in each
scene, or labels that help with segmentation is available.

IV. OBJECT SEGMENTATION DURING TESTING

During online inference, a learned function φ2(x) : X →
Z is used to extract a normalized feature vector z for
each pixel x in the given test RGB image. A clustering
algorithm is applied over the foreground pixels based on their
extracted features. This foreground mask can be generated
with a saliency detection method, such as BasNet [28] and
DeepUSPS [29]. See the example of Fig. 2.

Fig. 2: Example of saliency detection [28] for generating the foreground
mask (right) given RGB input (left).

Since the number of objects in a given image is not known,
clustering methods, such as K-Means, which require this
input, are not applicable. Thus, this work adapts a variant
of the von Mises-Fisher mean-shift [7] for feature clustering.
This variant not only considers the feature similarity of pixels
but also the 2D proximity of pixels. A simple post-processing
step is applied so that pixels in a feature cluster are separated
if the corresponding pixels do not form a connected compo-
nent. The online inference is computationally efficient (∼
6fps). The detailed training process of φ2 is described in the
following section.



V. SELF-SUPERVISED LEARNING PIPELINE

A. Video Pre-processing

Given a set of unlabeled RGB-D videos of static objects,
a dense reconstruction method, where KinectFusion [30]
is adopted in this work, is used to estimate the camera
pose for each frame and reconstruct a 3D scene for each
video. The foreground 3D region of interest is extracted by
removing known background objects, e.g. table. And the 2D
foreground masks during training are generated by projecting
the filtered point cloud to individual 2D frames. 3D recon-
struction is employed here instead of individual depth images
for multiple reasons: a) It allows to generate pseudo labels
on the reconstructed point cloud once and then acquiring
consistent labels for segments on all of the frames of each
video via 3D to 2D projection, b) It increases the visibility
of each object given multiple views, which reduces issues
due to occlusions that can arise for individual viewpoints, c)
It avoids having to find correspondences between segments
across frames, which can be error-prone.

B. Object Over-Segmentation

Each reconstructed 3D scene is over-segmented into a
set of small segments corresponding to simple geometries.
Ideally, this over-segmentation should be consistent across
different scenes, where consistency means that the same
object surface is segmented in the same way across different
scenes. This work first adopts LCCP [2] for this purpose.
LCCP is a non-learning segmentation method based on the
local convexity of point clouds. It is able to segment convex
objects, such as a box, into a whole, and segment complex
objects into small, approximately convex parts. During the
development of this work, it is found that LCCP can fail on
certain objects with a large concave surface, such as a bowl.

To alleviate this issue, SymSeg [3] is introduced to assist
with improving (over-)segmentation quality for symmetric
concave objects. SymSeg first detects symmetries in a point
cloud and then uses them for segmentation. If no symmetry
is detected, then SymSeg is not applied. In this work, only
rotational symmetries are used, since reflection symmetries
often lead to under-segmentation in clutter. A simple strategy
to fuse the results of LCCP and SymSeg is illustrated in
Fig. 3. A 3D segment generated by LCCP is first split
into multiple parts if an overlapping symmetric segment is
detected by SymSeg. LCCP segments are then merged if
they appear in the same symmetric segment of SymSeg,
with an exception when both parts share the same symmetric
axis (e.g. a bottle standing in a bowl). Small segments
with less than 200 points are pruned. Note that this work
does not argue that this combination is the best for over-
segmentation, but they work sufficiently well as a submodule
in the pipeline. Any recent progress in class-agnostic part
segmentation may benefit this work.

C. Contrastive Learning

To generate a distinctive feature for each 3D segment,
contrastive learning is adopted to train a pixel-wise feature
extractor φ. The features will be first used during graph

Fig. 3: Splitting and Merging Segmentation Results of LCCP and
SymSeg. (a) Reconstructed point cloud of a “Jell-O” box in a bowl.
(b) Irregular segments generated by LCCP due to notable concavity. (c)
Detected rotational axis and segments generated by SymSeg. (d) Splitting
segments. (e) Merging segments.

matching and later in object segmentation. 3D segments
are projected to 2D pixels using estimated camera poses
of video frames. Given the assumption that points in the
same segment belong to the same object and their features
should be similar, the embeddings of a pair of pixels (i, j)
are pulled closer if they belong to the same 3D segment,
or pushed away otherwise. In practice, P � N , where P
is the number of foreground pixels per image, and N is
the number of segments per scene. The number of pixel
pairs is O(P 2), which results in a computationally expensive
sampling process. To alleviate this issue, the strategy from
MaskContrast [4] is adopted to reduce the computational
complexity to O(PN). Let Mi be the set of pixels from
segment i. Define the mean pixel embedding of Mi as
z̄i = 1

|Mi|
∑|Mi|
k=1 z

k
i . The mean feature z̄i is used to represent

the features of all pixels in Mi. Given positive pairs (zk, z̄i),
for k ∈ Mi, and negative pairs (zk, z̄j), for k 6∈ Mj ,
the contrastive loss for each foreground pixel k is defined
as: Lk = −log exp(zk·z̄i)/τ∑N

j=1 exp(zk·z̄j/τ)
, where τ is a temperature

hyperparameter that has a constant value of 0.07 in all our
experiments (as in MoCo [9]). The mean feature z̄i is used
to represent the 3D segment i after training.

D. Graph Matching

For each scene, a graph is generated by linking each
3D segment to a node and defining an edge between ev-
ery two segments that share a boundary in the 3D space.
Reoccurring subgraphs across multiple graphs (i.e., scenes)
are hypothesized objects since it is unlikely for two sep-
arate objects to always appear in the same poses relative
to each other in all the scenes encountered by the robot.
To find these reoccurring subgraphs, this work adapts an
algorithm based on error-tolerant, minimum-cost subgraph
matching [5]. Given a source graph G1 = (V1, E1) and
a target graph G2 = (V2, E2), the algorithm identifies a
subgraph S ⊆ G2, that minimizes the cost of matching S to a
subgraph in G1 given both structural and feature distortions.
This optimization problem is formulated into a binary linear
program (BLP) with the following objective function:

J = min
x,y,α,β

( ∑
i∈V1

∑
k∈V2

xi,k · c(i→ k)) +
∑
i∈V1

αi · c(i→ ε)+

∑
ij∈E1

∑
kl∈E2

yij,kl · c(ij → kl) +
∑
ij∈E1

βij · c(ij → ε)
)
(1)

where xi,k, yij,kl, αi and βij are binary variables to optimize:
xi,k expresses the mapping of node i from source graph
G1 to node k from target graph G2; yij,kl expresses the
mapping of edge (i, j) from source graph G1 to edge (k, l)



Fig. 4: Graph Matching. (a) Colored 3D reconstruction of two scenes. (b) 3D segments, and corresponding graphs, resulting from over-segmentation
of the point clouds. (c) Matched nodes from graph matching are highlighted. Parts of the “dumbbell” and the “lamp” are correctly matched, while the
“bleach cleanser” and the “master chef can” are incorrectly matched. (d) Matched connected components are shown in the same color. (e) 3D point cloud
registration of matched components. (f) Segments/nodes that do not register well (such as the “bleach cleanser” and the “master chef can”) are rejected
before merging the remaining segments into objects.

from target graph G2; deletion variables αi and βij are set
to be 1, if node i and edge (i, j) are deleted, respectively,
according to the match. This can happen when the 3D
segment corresponding to node i in the source scene does
not appear anywhere in the target scene. The cost of node
mapping c(i→ k) is defined as the cosine distance between
the corresponding segment features z̄i and z̄k. The cost of
edge mapping c(ij → kl) is set to 0 here as no edge feature
is provided. The cost c(i → ε) (or c(ij → ε)) expresses
the cost of not assigning a vertex (or edge) of the source
graph to a vertex (or edge) in the target graph. Both costs
are set to 0.1 in the implementation, which can be viewed
as thresholds for rejection.∑

k∈V2

xi,k ≤ 1, ∀i ∈ V1;
∑
i∈V1

xi,k ≤ 1,∀k ∈ V2 (2a)

αi = 1−
∑
k∈V2

xi,k, ∀i ∈ V1; βij = 1−
∑
kl∈V2

yij,kl, ∀ij ∈ E1 (2b)∑
l∈V2 s.t. kl∈E2

yij,kl ≤ xi,k,∀ij ∈ E1, ∀k ∈ V2;∑
k∈V2 s.t. kl∈E2

yij,kl ≤ xj,l, ∀ij ∈ E1, ∀l ∈ V2
(2c)

xi,k ∈ {0, 1}, ∀i ∈ V1,∀k ∈ V2;
yij,kl ∈ {0, 1},∀ij ∈ E1, ∀kl ∈ E2

(2d)

The objective function is subject to constraints 2a-2d. Con-
straints 2a indicate that each node from either graph can be
mapped to at most one node from the other graph. Constraint
2b indicates that if a node in G1 is not matched to any vertex
in G2, then it must be deleted. Constraints 2c indicate that
an edge should be mapped only if the corresponding vertices
are also mapped. The constraints 2d ensure that the variables
to be optimized are binary variables. Note that constraints 2b
are implicitly respected given constraints 2a and 2c. Thus, the
deletion variables αi and βij in equation 1 can be removed to
reduce the search space resulting in the following objective
function:

J = min
x,y

( ∑
i∈V1

∑
k∈V2

xi,k
(
c(i→ k))− c(i→ ε)

)
+
∑
ij∈E1

∑
kl∈E2

yij,kl
(
c(ij → kl)− c(ij → ε)

)
+
∑
i∈V1

c(i→ ε) +
∑
ij∈E1

c(ij → ε)
) (3)

Furthermore, since the 3D segment graphs are undirected,
constraints 2c can be further combined into a single one, i.e.∑

l∈V2 s.t. kl∈E2

yij,kl ≤ xi,k + xj,k, ∀ij ∈ E1, ∀k ∈ V2 (4)

The final formulation is to minimize the objective function
according to Eq. 3 given the constraints of Eqs. 2a, 4 and 2d.
Each weakly connected component in every 3D scene graph
is matched against all the weakly connected components in
all other scenes. Note that source and target graphs are not
commutative, i.e., J(G1, G2) 6= J(G2, G1).

E. False Matches Pruning

This optimization returns matched node pairs with mini-
mum cost, which are used to find matched subgraphs. Three
criteria are used to prune falsely matched subgraphs.
1. A threshold T1 is set so that only pairs of subgraphs with
a total matching cost J below this threshold are considered
valid matches. The implementation sets T1 to be proportional
to N = |V1|+ |E1|, i.e., T1 = αN , because the total cost is a
sum over both node and edge costs. A large graph is likely
to generate a higher cost than a small one. The empirical
ratio α is set to be 0.1.
2. The matching pairs of subgraphs that satisfy criteria 1 are
filtered by RANSAC-based point cloud registration [31]. An
empirical threshold T2 = 0.9 is set for both precision and
recall of the registered point cloud of each pair of matched
nodes. If a pair of nodes does not meet this threshold, the
nodes will not be merged with other nodes in their respective
subgraphs, as shown in Fig. 4.
3. If an object is found to be isolated in a scene, which is
performed automatically, then other segments should not be
merged with this object. To achieve this, if a source graph
G1 = (V1, E1) is matched with a subgraph S of the target
graph G2, such that S = (V ′, E ′), |V1| = |V ′|, then any
matched subgraph Ŝ = (V̂, Ê) ⊆ G2 that contains all the
nodes of S as a proper subset, i.e., V ′ ⊂ V̂ , will be filtered.

Once the pruning is completed, the remaining nodes in
the matched graphs are merged. The merged segments are
considered objects and projected back to each frame of the
video as object masks for training. The training process for
the network φ2 is the same as in Sec. V-C.



VI. EXPERIMENTAL RESULTS

A. Dataset

Two video datasets are used for experiments and evalua-
tion, which mimic the behavior of a robot navigating around
a table with cluttered objects on top of it [32]. Some sample
frames are shown in Fig. 5. The first one is a physics-aware
photo-realistic video dataset generated by BlenderProc [33].
All 17 toys from the HomeBrewedDB dataset [34] are
selected to create random scenes in simulation. For each
scene, 12 unique toys are randomly selected and dropped on
a surface. A virtual camera captures a video of each scene by
rotating around it at a fluctuating height. In total, 36 videos
are collected with 800 frames each. The second dataset is col-
lected in real environments with 20 unique objects. Among
them, 13 objects are from the YCB dataset [35], and 7 objects
with more complicated geometries: “lamp”, “dumbbell”, “toy
dinosaur”, “toy duck”, “Clorox bottle”, “detergent”, and “toy
Charmander” are included. Each of these non-convex objects
contains several sub-parts of varying shapes. The real dataset
contains 30 videos with 10 unique objects and ∼1000 frames
each. The ground-truth segmentation for the real dataset is
manually annotated in 3D space for each scene and then
projected in 2D frames. Background removal in these scenes
is performed using RANSAC [31] for detection and removal
of the support plane.

Fig. 5: Datasets. (a) A photo-realistic synthetic dataset of 36 videos using all
toys from the HomebrewedDB dataset [34] rendered by BlenderProc [33].
(b) A manually collected real dataset with 30 videos and 20 unique objects.

B. Evaluation Metrics

Standard metrics for object segmentation are used, i.e.,
average precision, recall, and Intersection over Union (IoU).
The association of predicted and ground-truth segments is
performed by using the Hungarian algorithm [36] where the
cost of association is based on the IoU of two segments. To
remove the factor of imperfect foreground detection, ground-
truth foreground masks are provided for all methods, and
only the segmentation of foreground pixels is evaluated. The
segmentation results are tested on every 10 frames selected
from the testing videos since neighboring frames in a 30 FPS
video are very similar. The testing frames are selected from
videos that are different from the training ones.

C. Baseline Methods

A set of baseline methods are considered for comparison.
A. DeepLabV3+ [37] is a widely-used segmentation model
for RGB images. This baseline is trained with supervision,
which is considered an upper bound. The proposed method
also uses DeepLabV3+ as a backbone network φ for pixel-
wise feature extraction by removing its classification layer
and adding a 16-dimensional embedding layer. B. UOIS [21]
is an RGB-D object segmentation method designed for

unseen tabletop objects. RICE [22] is a follow-up work over
UOIS, which refines its segmentation results. These methods
are trained over a large amount of synthetic data with ground-
truth annotations. Since they can barely be finetuned on
datasets without ground-truth annotations, weights provided
by the authors are directly used for testing. C. LCCP [2]
does object segmentation based on local convexity. Unlike
its usage in the proposed method, which does segmentation
on the whole reconstructed point cloud, here it performs
segmentation on the point cloud that is converted from each
testing frame using the camera intrinsic matrix. D. SD-
MaskRCNN [23] is a method for unknown object segmen-
tation similar to UOIS. It is also trained with simulated data
with ground truth but only takes depth images as input.
E. PiCIE [24] is an unsupervised semantic segmentation
method using Invariance and Equivariance in Clustering. F.
STEGO [25] is another unsupervised segmentation method,
which distills correspondences between images into a set of
class labels using a contrastive loss. The proposed method,
PiCIE (E) and STEGO (F) are trained from scratch and tested
using 3-fold cross-validation on the unlabeled videos, where
background pixels are masked out.

Real Dataset Synthetic Dataset
Method Prec. Recall IoU Prec. Recall IoU
A. [37] 0.948 0.947 0.910 0.977 0.932 0.915

B. [21]+ [22] 0.859 0.753 0.711 0.963 0.854 0.838
C. [2] 0.882 0.749 0.706 0.993 0.815 0.820
D. [23] 0.782 0.773 0.662 0.812 0.751 0.663
E. [24] 0.427 0.342 0.230 0.361 0.326 0.158
F. [25] 0.318 0.343 0.162 0.325 0.337 0.142
Ours 0.925 0.911 0.870 0.938 0.925 0.880

TABLE I: Segmentation results for different methods. Method A is a
supervised solution provided as an upper bound of efficiency. The best
results among unsupervised methods are in bold.

D. Quantitative Results

Quantitative results of the proposed and baseline meth-
ods are shown in Table I. The proposed method works
well on both real and synthetic datasets. It outperforms all
baseline methods in terms of mean IoU except A, which
was trained with supervision. B and D work well given
that they are designed for unknown object segmentation
and are only trained in simulation, but they can barely be
improved without manual annotation on the test dataset. It
is surprising that the unsupervised semantic segmentation
methods E and F performed poorly on this task. This may
be due to the lack of careful tuning of hyperparameters
(default is used) and the lack of inductive bias provided for
segmenting object instances. The work argues that learning
based on geometric inductive bias and object reappearance
across different scenes is effective for segmenting previously
seen objects when deploying a robot in real environments.

E. Intermediate 3D Segmentation Results

To assess the advantage of using graph matching for object
pseudo-label generation, intermediate point cloud segmenta-
tion results are provided. The proposed method is compared
against LCCP [2] and SymSeg [3] on the reconstructed



Fig. 6: Intermediate Qualitative 3D Segmentation Results (a) Recon-
structed object point clouds in their original color. (b) Segmentation results
from LCCP + SymSeg. (c) Object pseudo labels after graph matching and
pruning given over-segmentation results as inputs. A failure case of over-
segmentation is shown in the last row, where part of the ”pitcher” and ”cup”
are not separated and the ”cup” is segmented into inconsistent pieces. This
cannot be addressed during graph matching.

object point cloud of each video. Intermediate quantitative
and qualitative point cloud segmentation results are provided
in Table II and Fig. 6 respectively. The benefits of combining
LCCP with SymSeg are not entirely shown in numbers, as
SymSeg sometimes can introduce object-level segmentation
errors, such as over-segmenting a round cup and its handle.
Nevertheless, it makes the 3D over-segmentation more con-
sistent for cases like in Fig. 3. The over-segmented objects,
however, can be recovered by the graph-matching algorithm
if an object pattern is found across scenes. The improvement
brought by graph matching is even more pronounced over the
more challenging geometries present in the synthetic dataset.

Real Dataset Synthetic Dataset
Prec. Recall IoU Prec. Recall IoU

[2] 0.969 0.858 0.831 0.984 0.771 0.761
[2] & [3] 0.967 0.861 0.833 0.987 0.768 0.758

Ours 0.957 0.964 0.923 0.978 0.966 0.950

TABLE II: Point Cloud Segmentation Results. ”Ours” here corresponds to
the object segmentation results achieved after graph matching given the
input of over-segmentation from [2] & [3]. Best results in bold.

F. Ablation Study

The results of an ablation study are shown in Ta-
ble III. All the alternatives use the same feature extractor
(DeepLabV3+ [37]) and clustering method (MeanShift [7]).
The ablations use different object pseudo-labels for training
and are tested given ground truth foreground masks similar
to Table I. V1. The first one is trained on the COCO

dataset [38]. Its final prediction layer is removed and 256-
dim pixel features are used directly for clustering. It has the
lowest performance. V2. The second one is trained using
the output of LCCP [2] without graph matching. Its perfor-
mance is similar to that of LCCP-based 3D segmentation as
expected. V3. The third one is trained using pseudo-labels
with graph matching but without pruning. The performance
is better than not using graph matching, but it’s not as good
as the proposed approach since nodes can be incorrectly
merged, which results in erroneous object pseudo-labels. V4.
The last alternative tries to exhaustively register point clouds
of connected components without using the candidates from
graph matching. If the precision, recall, and feature cosine
similarity of two registered nodes are greater than 0.9, then
these two nodes are considered a match. This underperforms
the proposed method since point cloud registration is more
likely to fail due to clutter, and takes significantly more time
to find object patterns.

Real Dataset Synthetic Dataset
Ablation Prec. Recall IoU Prec. Recall IoU

V1. 0.716 0.665 0.547 0.806 0.775 0.665
V2. 0.915 0.815 0.776 0.935 0.746 0.711
V3. 0.904 0.832 0.790 0.934 0.800 0.762
V4. 0.915 0.883 0.842 0.931 0.823 0.782
Ours 0.925 0.911 0.870 0.938 0.925 0.880

TABLE III: Ablation results. Best results in bold.

G. Running Time

Binary linear programming (BLP) is an NP-hard problem.
In practice, however, solutions can be acquired very fast
given advanced solvers, such as Gurobi [39], which is used in
companion implementation. The processes of graph matching
(Sec.V-D) and pruning (Sec.V-E) between two scenes can be
done in about 2s and pairwise matching across 30 scenes can
be done within 10 minutes on an AMD Ryzen 5900 CPU.

VII. CONCLUSION AND LIMITATIONS

This work proposes a self-supervised learning pipeline
given unlabeled RGB-D videos captured with a moving
camera observing static scenes, which is a common scenario
for household mobile robots. A graph-matching algorithm is
adapted to find object patterns across videos and generate
object pseudo-labels for learning. The proposed method
achieves better results in object segmentation than existing
unsupervised segmentation methods and methods that used
simulation data for supervised training.

One limitation of the proposed approach is that it relies on
the initial object over-segmentation to be consistent across
different scenes. Despite using the synergy of LCCP and
SymSeg, consistent over-segmentation may not always be
achieved when reconstruction noise is large and when objects
are not able to be separated using geometric features. This
can potentially be addressed with more data that cover
multiple over-segmentation patterns and future improvements
on the matching algorithm that considers the operation of
splitting a node when under-segmentation happens. Another
limitation is that the proposed method cannot handle de-
formable objects in general, since it requires matched objects
to be identical in both texture and geometry.
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