
Deep Learning on Home Drone: Searching for the Optimal Architecture

Alaa Maalouf∗1, Yotam Gurfinkel∗1, Barak Diker1, Oren Gal1, Daniela Rus2, and Dan Feldman1

Abstract— We suggest the first system that runs real-time
semantic segmentation via deep learning on a weak micro-
computer such as the Raspberry Pi Zero v2 (whose price was
$15) attached to a toy-drone. In particular, since the Raspberry
Pi weighs less than 16 grams, and its size is half of a credit
card, we could easily attach it to the common commercial DJI
Tello toy-drone (<$100, <90 grams, 98 × 92.5× 41 mm). The
result is an autonomous drone (no laptop nor human in the
loop) that can detect and classify objects in real-time from a
video stream of an on-board monocular RGB camera (no GPS
or LIDAR sensors). The companion videos demonstrate how
this Tello drone scans the lab for people (e.g. for the use of
firefighters or security forces) and for an empty parking slot
outside the lab.

Existing deep learning solutions are either much too slow for
real-time computation on such IoT devices, or provide results of
impractical quality. Our main challenge was to design a system
that takes the best of all worlds among numerous combinations
of networks, deep learning platforms/frameworks, compression
techniques, and compression ratios. To this end, we provide
an efficient searching algorithm that aims to find the optimal
combination which results in the best tradeoff between the
network running time and its accuracy/performance.

I. BACKGROUND

Deep learning advancements in the previous decade have
sparked a flood of research into the use of deep artificial
neural networks in robotic systems. The main drawback is
that existing deep learning solutions usually require powerful
machines, such as strong servers and graphics (GPU) cards.
This is a problem when it comes to small robots due to the
following challenges:

(i) The weight of the computation machine might be too
much, especially for “flying robots" such as nano-
drones.

(ii) The large amount of required energy to operate power-
ful computers and graphics translates into large (heavy)
batteries and a shorter lifetime between charging, es-
pecially for moving robots.

(iii) The price in terms of money for these computations
machines, is relatively high, especially when it comes
to low-cost or Do-It-Yourself (DIY) robots.

It seems that most robotics applications that need to run
deep learning under such constraints use the powerful Nano-
Jetson machine of NVidia [Cass, 2020], [Süzen et al., 2020],
which was used in many robotic systems in recent
years such as [Jeon et al., 2021], [Süzen et al., 2020],
[An et al., 2021], [Rudolph et al., 2022]. However, while

1Robotics and Big Data Labs, Department of Computer Science, Univer-
sity of Haifa. 2CSAIL, MIT

∗Equal contributions
Corresponding author email: alaamalouf12@gmail.com

Fig. 1. A DJI’s Tello drone equipped with our Raspberry PI Zero ver
2 micro-computer, connected to an RGB camera. Our deep learning-based
systems are executed on this hardware.

much more powerful, NVIDIA’s nano-Jeton (nJeston) is far
behind micro-computers such as the recent Raspberry Pi Zero
Ver 2 (RPI0), with respect to constraints (i)–(iii) above: (i)
The nJetson weighs about 100 grams, and thus cannot be
carried by a small low-cost drone as in this paper. Such a
drone can easily carry the RPI0 which weighs 16 grams,
whereas the whole system weights less than 100 grams (the
RPI0 and the drone); see Fig. 1, (ii) The energy consumption
of nJetson is ∼ 5 watts at idle and ∼ 10 watts under
stress, which is about 18× times more than the RPI0 which
consumes ∼ 0.28 watts at idle and ∼ 0.58 watts under stress,
and (iii) Our nJetson costs ∼ $50, compared to the RPI0 that
we used in this paper which costs ∼ $15.

For comparison, the Tello drone (as in Fig. 1) could not
even carry the nJetson, not to mention its huge battery. A
useful feature that we discovered regarding the RPI0 is that,
due to its low voltage, it can use the same battery as its
carrying drone (Tello in this paper). On the contrary, even
a more powerful version of RPI (such as RPI3) needs an
additional battery which that drone can barely lift stably and
drains its battery more quickly.

a) Vision: The motivation for this paper was to turn a
remote-controlled commercial toy-drone into an autonomous
drone that is able to run deep neural networks efficiently, and
thus gain all of their benefits for indoor applications. All of
this should be done using only a single RGB camera and an
on-board micro-computer, without a laptop or human in the
loop. Firefighters may use it for searching for people, such
as survivors in a building on fire, the police can use it to look
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Fig. 2. Searching for the optimal network: (1) sample a combination of network, framework, and compression technique (with its hyper-parameters), (2)
Compress the sampled network on the sampled framework via the sampled compression method, and check the running-time and error on the required
machine (RPI0 in our case), (3) Update the table of results, and (4) Run PAIRCHECKER to update the sampling options, and go back to (1).

for suspicious objects (e.g., in a subway), and the army may
use it for rescue or traps. Besides security forces, it may be
used in the industry for counting people (e.g. in a mall) for
sales optimization or counting objects in a warehouse.

b) Selected drone: To accomplish this goal, we choose
the common commercial Tello DJI drone since it is small
enough to be lawful, low-cost, and safe for indoor ap-
plications. The other options were: (1) the Mavic mini-
combo [Combo, 2022] which weighs nearly 250 grams,
costs 10× times, and was too big for our building, and (2)
the Crazyflie [Giernacki et al., 2017] which is smaller than
the Tello and open-sourced but could not carry our mini-
computer.

c) Semantic Segmentation: A common requirement for
the mentioned applications above is to associate each pixel
of an image (or frame in a video) with a class label (such as a
wall, person, road, table, or car). This task is called semantic
segmentation [Garcia-Garcia et al., 2017]; see Fig. 3 for
example. Since this task is considered among the hardest in
computer vision, most image segmentation systems require
a high-power machine or an internet connection to transfer
photos to a cloud server that can run huge deep learning
models. However, the safe legal toy-done will not be able
to carry the high-power machine (as the nJeston above),
and the cloud connection may impose extra restrictions on
the applications of the semantic segmentation such as (high)
extra charges and latency.

Hence, once we are able to efficiently apply semantic
segmentation on a small micro-computer placed on a tiny
drone, we can safely use our drone for the mentioned
security, civil, and commercial applications.

d) Open problems: While a navigation system
was recently suggested for our hardware setup above
in [Jubran et al., 2022], we could not decide which network
is considered an efficient real-time network that can apply
semantic segmentation in a sufficiently fast time on our
specific hardware. The open problems and main challenges
for this paper are:

(i) Can we run semantic segmentation in real-time on
a weak device such as the Raspberry-Pi Zero v2?

(ii) How to find (search for) the desired efficient net-
work?

(iii) Can we use it for onboard object/people detection
for an indoor drone?

A. Our Contribution

We answer these questions affirmably by providing the
following results:

(i) Searching for the optimal network. We suggest
a searching algorithm to identify efficient networks
concerning the trade-off between accuracy and speed.
This is by searching for the optimal combination be-
tween an efficient deep learning framework (platform,
e.g., PyTorch), an efficient and robust deep learning
model, and newly suggested compression techniques;
See Fig. 2 and Section II-A. In our case, we test our
algorithm on the semantic segmentation task which
runs on RPI0. We provide a table that compares a
variety of such combinations, towards finding the best
fit; See Section II and Table I.

(ii) Low-cost system. We provide a low-cost (and low en-
ergy) system for safely running indoor applications us-



Fig. 3. Left: The original video seen by the drone. Right: The semantic
segmentation for detecting empty parking spots

ing a small Tello drone that carries RPI0 (as in Fig. 1),
which runs deep learning on-board. We demonstrate
the uses of this system by implementing and providing
videos for the following three semantic segmentation
tasks: finding people, identifying an empty parking
spot, and detecting objects; see Section III.

(iii) Open source code. Full open source code, of all of
the tested and compressed networks, on different deep
learning frameworks, with a comparison table between
them is provided1 for future research and extensions.

II. THE SEARCH

Our goal is to suggest a neural network for Semantic Seg-
mentation that would be efficient enough to enable real-time
applications on a weak micro-computer such as the RPI0.
Existing networks have a high quality of segmentation but
require strong computation power, much more than our RPI0.
The required power is determined by several parameters,
such as the network architecture and the framework which
was used to implement (e.g., Pytorch). For example, using
the DeepLab v3 network with the backbone of MobileNet V3
implemented above Pytorch to apply semantic segmentation
on an input image of 513 × 513 × 3 (on RPI0) took more
than 10 seconds per frame, which is far too slow for a real-
time system or a flying drone. Other networks frameworks
combinations may take 30 or 40 seconds to run a single
frame from the RPI’s streamed video.

Due to their quality, instead of retraining a new network
from scratch, our strategy was to compress an existing (pre-
trained) network. The main challenge was to find a suffi-
ciently good combination among the following parameters,
in order to obtain the desired network that should have high
quality and fast running time:

Type of platform/framework. There are three com-
mon frameworks to implement deep learning applica-
tions: Pytorch [Paszke et al., 2019], TensorFlow and its
light version TensorFlow Light [Abadi et al., 2016], and
TVM [Chen et al., 2018]. Each of these frameworks may
be preferable (in terms of efficiency) in some scenarios,
and worst in others. It depends basically on the machine
(hardware) architecture that the network will be executed
on, the architecture of the network we wish to use, and the
number of optimizations done by the users who wrote the
code.

1https://github.com/YotamGurfinkel/
DeepLearningOnDevice

The used model. The network architecture itself deter-
mines the number of parameters and the floating point oper-
ations that needs to be done, which consequently determines
the time that is required to process a single input. Further-
more, some architectures (or layers) might be optimized on
some deep learning frameworks more than others.

The compression method. The networks from the pre-
vious bullet are sometimes too big to apply a real-time
semantic segmentation, so we need to compress them via
one of the following existing compression approaches:
(i) quantization [Wu et al., 2016], [Rastegari et al., 2016],
where weights are represented using fewer bits, (ii) knowl-
edge distillation [Park et al., 2019], [Hinton et al., 2015],
where a small network is trained to imitate a large
one, (iii) weight and neuron pruning [Han et al., 2015],
[Liebenwein et al., 2019], [Tukan et al., 2022], where indi-
vidual weights or structures of the network are removed,
and (iv) low-rank decomposition [Maalouf et al., 2021],
[Tukan et al., 2021], [Lebedev et al., 2015], where a tensor
representing some layer is decomposed into more than one
representing several layers. Each of these techniques has its
advantages and disadvantages.

A. The Choice of Networks and Compression Methods

In this section, we described our search space concerning
the networks and compression methods.

Which Deep Neural Networks to use? We chose two
different Semantic Segmentation heads for our comparison.
The first is DeepLabV3 [Chen et al., 2017], a very well-
known head for semantic segmentation, which is relatively
well known, but (apparently) not ideal for video (streaming).
The second head is LRASPP [Howard et al., 2019], which is
a pretty new architecture for a semantic segmentation head.
While DeepLabV3’s accuracy is better, LRASPP seemed to
be specifically suitable for video, which is very important
in our test cases (this is also LRASPP’s purpose in its
paper). For the backbone, we use two versions of MobileNet
V2 [Sandler et al., 2018] and V3 [Howard et al., 2019],
which are both known to have a fast inference time on edge
devices.

Depth Multiplier. For the backbone of MobileNet-V2,
we can use the parameter “depth multiplier” (also known
as width multiplier in the MobileNet-V2 paper), which
decreases the number of filters in each of its layers by its
given value. Hence, we can use this as a given compression
technique. We test the network with a depth multiplier of 0.5
(since its corresponding trained network exists). This makes
the network faster, but of course, hurts accuracy (as reported
in our comparison table; see Table I).

Which compression methods to use? Weight pruning
generates sparse models (not smaller ones) requiring special-
ized hardware and software in order to speed up inference.
Hence, we aim to avoid it. Neuron pruning usually requires
expensive retraining cycles to achieve comparable results to
other approaches [Pietron and Wielgosz, 2020], and knowl-
edge distillation requires a full training procedure. Since
we wish to test many networks, these approaches are too

https://github.com/YotamGurfinkel/DeepLearningOnDevice
https://github.com/YotamGurfinkel/DeepLearningOnDevice
https://github.com/YotamGurfinkel/DeepLearningOnDevice
https://github.com/YotamGurfinkel/DeepLearningOnDevice


TABLE I
COMPARISON TABLE. THIS TABLE COMPARES (I) THE MIOU (MEAN INTERSECTION OVER UNION) OF APPLYING A SEMANTIC SEGMENTATION ON THE

PASCAL VOC 2012 VALIDATION SET AND (II) THE TIME OF PROCESSING A SINGLE FRAME ON RPI0, WITH RESPECT TO DIFFERENT NETWORKS,
COMPRESSION METHODS, AND DEEP LEARNING PLATFORMS.

Network (model) Framework Compression Inference Time [sec] mIoU
The input image size is 513× 513× 3

DeepLabV3-MobileNetV2 Tensorflow Lite NA 3.18 67.7%
DeepLabV3-MobileNetV2 Tensorflow Lite Quantization-int8 1.63 61.2%
DeepLabV3-MobileNetV2 Tensorflow Lite Depth Multiplier = 0.5 1.37 60.6%
DeepLabV3-MobileNetV2 Tensorflow Lite Depth Multiplier = 0.5 & Quantization-float16 0.79 60.6%
DeepLabV3-MobileNetV2 Tensorflow Lite Depth Multiplier = 0.5 & Quantization-int8 0.92 54.7%

LRASPP-MobileNetV3-Large Apache TVM NA 1.02 65%
LRASPP-MobileNetV3-Large Apache TVM 32% Compression by ALDS 0.7 55.4%
LRASPP-MobileNetV3-Large Apache TVM 45% Compression by ALDS 0.6 56.39%
LRASPP-MobileNetV3-Small Apache TVM NA 0.39 61%

DeepLabV3-MobileNetV3-Large PyTorch NA 37 67.4%
LRASPP-MobileNetV3-Large PyTorch NA 30 65%
LRASPP-MobileNetV3-Small Pytorch NA 1.25 61%

The input image size is 284× 284× 3
LRASPP-MobileNetV3-Large Apache TVM NA 0.29 64.9%
LRASPP-MobileNetV3-Large Apache TVM 32% Compression by ALDS 0.2 53%
LRASPP-MobileNetV3-Large Apache TVM 45% Compression by ALDS 0.18 53.7%
LRASPP-MobileNetV3-Small Apache TVM NA 0.1 58.48%

time consuming. Hence, we used only efficient methods
which approximate the original network efficiently without
requiring many retraining cycles or any special hardware.
Instead, we use low-rank decomposition and quantization.

The ALDS algorithm. For applying such a compression
via low-rank decomposition, we used the newly suggested
approach of [Liebenwein et al., 2021], namely ALDS: Au-
tomatic Layer-wise Decomposition Selector. Given a specific
compression ratio and a large neural network we wish to
compress, ALDS aims at finding the optimal small (decom-
posed) architecture, by automatically identifying the optimal
per-layer compression ratio, while simultaneously obtaining
the desired overall compression. We utilize this approach in
order to save time in searching for many hyper-parameters,
such as the per-layer compression ratio.

B. The Searching Algorithm

To find the optimal combination between the defined
options above, we apply an efficient search algorithm, which
we call “automatic compressed network finder” (ACNF).

ACNF(N ,F , C, k). The input to our pipeline is (i) a set
N of candidate pre-trained models (networks), (ii) a set F
of candidate deep learning frameworks to use, (iii) a set C
of candidate model compression methods, and (iv) an integer
k ≥ 1, denoting the number of iterations.

Initialization Step. First, our algorithm initializes the
following: a uniform sampling probability vector u of size
|F||N ||C|, where every entry in this vector corresponds
to the probability of sampling a specific combination of a
network, framework, and compression method. It also defines
a table T of |F||N ||C| rows and 5 columns.

Iterative execution. Our Algorithm operates as follows
during a period of k iterations.

(i) Sample a combination of a network N , a framework F ,
and a compression method C, based on the distribution

vector u.
(ii) Construct the network N on the framework F .

(iii) Compress the network N via method C.
(iv) Compute the accuracy (denoted by acc) or other re-

quired quality measure of the network and compute its
running time on a single frame (denoted by time) on
the desired edge device (RPI0 in our case).

(v) Save the tuple (N,F,C, acc, time) in the global table
T .

(vi) PAIRCHECKER(N,F,C): We now wish to learn from
the results we obtained and not waste another iteration
on an irrelevant sampled combination that will not yield
improved results. In other words, if we observed that
a pair from the tuple (N,F,C) is repeatedly giving
“bad” results, we exclude it from the sampling options
(or at least reduce the probability of it being sampled).
Bad results, in this case, can be defined according to the
measure m = acc/time, where low values are bad, and
high values are good. We thus set a threshold α, and for
all the entries in u that correspond to a pair from the
tuple (F,N,C), we multiply them by m/alpha. Note
that, if m is higher than the threshold we increase the
probability of sampling each pair from (N,F,C), while
if m is smaller than the threshold we reduce the same
probability. Indeed we normalize the vector u again to
sum to 1.

Observation. Our algorithm significantly reduced the
number of combinations we should check, as the probability
of sampling a bad combination gets close to zero very fast.
A clear example of that was the combination of the ALDS
algorithm (see Section II-A) with the Tensorflow Light
framework that was excluded very quickly from the sampling
options, and we explain it as follows. The ALDS approach
returns a compressed model, which has grouped convolution
layers. This kind of layer (convolution) enables substantial



memory savings (in terms of the number of parameters) with
minimal loss of accuracy. Basically, it is done using a set of
convolutions, i.e., multiple (parallel) kernels in a single layer
- resulting in multiple channel outputs per layer, which leads
to broader networks with the ability to learn a varied set of
low-level and high-level features. However, these layers are a
very good example of how the choice of platform/framework
and compression method must be synced, where these layers
are highly optimized in TVM [Gibson et al., 2020], but their
implementations in other modern deep learning frameworks
are far from performing optimally in terms of speed. Thus
our algorithm quickly excluded the combination of the ALDS
algorithm with the Tensorflow Light framework from our
search.

C. Comparison Table

We now provide a table that compares different famous
neural networks implemented above different deep learning
platforms/frameworks and compressed by different methods.
For each such combination, we report both the running time
and the mean intersection over the Union (mIoU) metric,
which is the ratio between the area of overlap and the area
of union between the ground truth and the predicted areas
(averaged across all images). This metric is known to be the
best for measuring semantic segmentation quality. We ran
our searching algorithm on images of size 513 × 513 × 3,
and once the algorithm is done, we tested some of the good
combinations on images of size 284 × 284 × 3. The results
are given in Table I.

We note that in some cases, the compression adds to the
running time instead of reducing it. This is due to the fact
that compression may result in a new layer architecture such
ass grouped convolutions, such layers may not be optimized
on different frameworks. These cases were not added to our
table as they do not run faster nor more accurate than the
original uncompressed model version.

III. OUR LOW-COST SYSTEM

Being able to have a fast inference time semantic seg-
mentation network, allows us to suggest several complicated
systems that run efficiently on weak and cheap hardware
devices. In this section, we give our suggested system with
three different applications (many others can be added). Our
systems are based on the following setup.

Hardware. The setup of the system consists of a DJI’s
Tello drone that carries a micro-computer (the Raspberry Pi
Zero) that we connected on board via hot glue; see Figure 1.
The Raspberry Pi gets energy from the same battery of
the Tello, which is one of the reasons that we used RPI0
and not the versions of RPI with higher computation power
that requires a separate battery due to voltage issues. The
Raspberry Pi is connected to a monocular RGB Pi Camera,
which is the standard camera of the RPI. The Raspberry
Pi controls the Tello via WIFI commands that imitate the
remote controller of the Tello.

Software. We used the official software library (SDK)
to control the Tello from the Rpi in real-time. Our code

Fig. 4. Left: The original video seen by the drone. Right: The semantic
segmentation results to detect people

is written in Python 3.8 [Van Rossum and Drake, 2009],
and after testing the packages PyTorch [Paszke et al., 2019]
TVM [Chen et al., 2018], TensorFlow
Lite [Abadi et al., 2016], with several networks and
several compressions; see Table I, we choose to use the
LRASPP-MobileNetV3-Large with a 45% Compression
using the ALDS Algorithm, implemented on top of the
Apache TVM framework, as it is among the most efficient
solutions for our system with a reasonable accuracy/mIoU
(mean intersection over union).

Swap. One of the main limitations of the Raspberry Pi
Zero V2 is its very small RAM memory size, where it only
has 512MB of SDRAM memory, and for that reason, some
more resource-demanding neural networks or frameworks,
simply can not run due to insufficient memory capacity.
Hence, we used a swap file of 2048MB in addition to the
SDRAM memory, which is obviously much slower than
the SDRAM on-board, but makes it possible to run these
networks which we could not use without it.

Led light. Another feature that we added to our system,
is a LED light that is connected to the Raspberry Pi. Users
can use it generally for debug purposes, e.g., when one
wants to make sure that an object they wanted to detect is
properly detected. The light turns on when the desired object
is detected by the network; See Figure 5.

A. System #1: Searching for people

In this application, we aim at suggesting a semantic
segmentation-based low-cost system for detecting people.
It can be use for helping firefighters detect survivors in a
building on fire, to be able to find them quickly and thus
save their life.

We use the setup defined at the beginning of Section III
Navigation. For simplicity, when the system is turned on,

the drone begins to navigate in a pre-defined path. Recent
result [Jubran et al., 2022] suggests SLAM (Simultaneous
Localization and Mapping) for the Tello’s drone, which may
easily be combined with our system in future versions.

Workflow. During the drone navigation, the camera
streams video to the Raspberry Pi, and our code process it at
an average rate of ∼ 5 frames per second for a resolution of
284× 284 RGB pixels. We also tested the system on frames
with about doubled resolution of 513 × 513 with a speed
trade-off of 2 frames per second.

Each frame is provided as input to our compressed net-
work for semantic segmentation. The output is a matrix,
which contains the predicted class number for each pixel in
this frame. The class can be one of the pre-defined classes



that the network was trained for, or “unknown" if none of the
classes was detected. For example, the companion network
for this paper detects 20 classes, including: “person", “table”,
“cat", “dog" and “sofa".

We refer the reader to Fig. 4 for illustration, and to the
video in the supplemental material which has a fully running
example. We also note that such a system can be used
in many other applications such as detecting a thief in a
building.

Note that we could use the LRASPP-MobileNetV3-Small
to obtain an average rate of ∼ 10 frames per second for a
resolution of 284×284 RGB pixels, or a compressed version
of it to make it even faster, however, we aim to show that
even the used network (which is even not the best we found)
is sufficient enough for these applications.

B. System #2: Low-cost Parking Spot Detector

Here we use the semantic segmentation to identifty cars
and empty parking spots. It could be used to scan a parking
place via a tiny drone to find an empty parking spot. Our
vision is that each user that comes to the parking area, presses
on a bottom that invokes a drone that starts searching for a
parking spot, once it finds one, the drone notifies the system
and reserves this spot for the user who asked for it. For other
users that come after, another drone is invoked, to scan the
same path. Thus whoever comes first receives his parking
spot first.

Workflow. The drone begins to navigate and scan a pre-
defined path, passing frames of images of size m × m for
candidate parking spot places to our efficient network (m ∈
{284, 513}). The network process these images, and returns
its output semantic segmentation matrix (per-pixel detected
object). This matrix is then passed into an algorithm, which
identifies based on the space which does not have a "car"
label if there is a car that is parking in the spot or if it is
empty; see Figure 3 for illustration, and the example video
in the supplemental material.

C. System #3: Suspicious Objects

Here we aim at detecting a suspicious object reported
by someone or a bomb. The drone scans the reported area
searching for this object as previously done. See Figure 5
for illustration, and the example video in the supplemental
material. In the video and the Figure, we tread the bottle as
a suspicious object or a bomb.

IV. CONCLUSIONS

We presented the first system that runs real-time semantic
segmentation via deep-learning on very weak, low-cost, low-
weight, and low-powered IoT micro-computers such as the
RPi0. The main challenge was to design the very specific
right combination of networks, platforms, and compression
techniques. We solved this by suggesting a searching algo-
rithm that samples wisely a given combination to test.

As an example application, we attached the RPi0 to a Tello
DJI toy-drone that turned it into an autonomous drone that

Fig. 5. Left: Illustration of our system. Right: The applied detection.

detects people, objects (indoor), or parking lots (outdoor) in
real-time.

We expect that the provided open source and instructions
will open the door for many future applications in robotics
and IoT. Example of future work includes applying the
system on: wearable devices, face recognition, simultaneous
localization and mapping (SLAM), real-world products for
security forces, firefighters, and commercial applications
such as malls and deliveries.
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