
OysterNet: Enhanced Oyster Detection Using Simulation

Xiaomin Lin1, Nitin J. Sanket2, Nare Karapetyan1, Yiannis Aloimonos1

Abstract— Oysters play a pivotal role in the bay living
ecosystem and are considered the living filters for the
ocean. In recent years, oyster reefs have undergone major
devastation caused by commercial over-harvesting, requiring
preservation to maintain ecological balance. The foundation of
this preservation is to estimate the oyster density which requires
accurate oyster detection. However, systems for accurate oyster
detection require large datasets obtaining which is an expensive
and labor-intensive task in underwater environments.

To this end, we present a novel method to mathematically
model oysters and render images of oysters in simulation
to boost the detection performance with minimal real data.
Utilizing our synthetic data along with real data for oyster
detection, we obtain up to 35.1% boost in performance as
compared to using only real data with our OysterNet network.
We also improve the state-of-the-art by 12.7%. This shows
that using underlying geometrical properties of objects can
help to enhance recognition task accuracy on limited datasets
successfully and we hope more researchers adopt such a
strategy for hard-to-obtain datasets.

I. INTRODUCTION

Oyster reefs are filter feeders and they provide crucial
benefits for the benthic marine ecosystem(s) such as
increasingthe richness for a variety of species, providing
living habitat, food, and protection for numerous marine
species. However, the standing stocks for the oysters near
the Chesapeake Bay [1] and North Sea [2] have dropped
significantly due to over-fishing, global warming and the
effect of diseases across the 19th century. To tackle this
devastating ecological problem, massive efforts are being
carried out to restore oyster habitats across the United States
[3]–[6] and Europe [2].

One of the core challenges to advance, improve
and adapt the restoration process is monitoring of the
progress of oyster restorations effectively. Beck et al. [7]
proposed to standardize monitoring metrics, units, and
performance criteria for the evaluation of the oyster reefs.
A set of environmental variables including water salinity,
temperature, and dissolved oxygen are being monitored to
determine the well-being of oyster habits. For the oyster
reefs, universal parameters such as “reef areal dimensions,
reef height, oyster density, and oyster size-frequency
distribution” are monitored and reported in the literature
[2], [4]–[7]. However, these metrics rely on recognizing
and counting oysters, which is currently largely done by

This work was supported by USDA NIFA sustainable agriculture system
program under award number 20206801231805.

1Perception and Robotics Group, University of Maryland Institute for
Advanced Computer Studies, University of Maryland, College Park, MD
20742, USA. Emails: {xlin01, knare, jyaloimo}@umd.edu.

2Robotics Engineering, Worcester Polytechnic Institute, MA 01609,
USA. Email: nsanket@wpi.edu.

Fig. 1. Each row left to right: Input image, output of the network when
trained using only real data, output of the network (which we call OysterNet)
when trained using real data augmented with our synthetic data. Yellow
represents the oyster segmentation ground truth and the blue is the predicted
segmentation result. Notice how the number of false positives and false
negatives drop significantly when the training data is augmented with our
synthetic data, All the images in this paper are best seen in color on a
computer screen at 200% zoom.

expert manual labor. Such a process is slow, time-consuming,
and has poor scalability. Using such a manual approach,
the oyster reefs can only be monitored within a restricted
area with few samples, e.g., 100 oysters per sample site [5].
Furthermore, the material for the oyster’s surface is similar
to the seabed sediment (See Fig. 1a, Fig. 1d,). And it is
significantly different from the washed oysters in Fig. 3a,
which makes it very challenging to train new people or
algorithms to perform oyster counting.

To streamline the process of oyster mapping, the goal is to
utilize the advancements in robotics and artificial intelligence
that can enable us to gather images from underwater
Remotely Operated Vehicles (ROVs) and then automate the
oyster detection and density calculation. The central part of
this process is to build an oyster detection system. In this
work, we present a mathematical model to generate oyster
models and further use Generative Adversarial Networks to
enable sim-to-real transfer. To the best of our knowledge,
this is the first attempt to geometrically model oysters. The
contributions of this paper are as follows:
• We propose a novel mathematical model for the 3D

shape of oysters.
• We simplify the geometric model of an oyster for the

projection on the image plane which is used to generate
photorealistic synthetic oyster images. These images are
used to train a deep segmentation network OysterNet for
oysters that achieves the new state-of-the-art.

• We open-source our oyster generation model and dataset
associated with this work to accelerate further research.

The rest of this paper is organized as follows: First, we
place this work in the context of previous works in Sec. II.
Then, we describe the proposed geometric model of the
oyster which is used to create realistic images in Sec. III.We
then present extensive quantitative and qualitative evaluations

ar
X

iv
:2

20
9.

08
17

6v
1 

 [
cs

.C
V

] 
 1

6 
Se

p 
20

22



Sim to 
Real

Simulated Oyster Data Synthetic Oyster Data

Oyster Detection

Real Oyster Data

OysterNet

Oyster Modeling

Fig. 2. An overview of our approach: The proposed geometric model is used to generate synthetic images which are further fed into a Generative
Adversarial Network to enable sim-to-real transfer (domain adaptation) by generating photorealistic oyster images. We then combine the synthetic data
with real data to train a OysterNet for oyster detection.

of our approach in Sec. IV. Finally, we conclude the paper
in Sec. V with parting thoughts on future work.

II. RELATED WORK

Automation and robotics are becoming an integral part
of many applications, particularly in the marine domain
for environmental monitoring [8]–[10]. The marine domain
poses many additional challenges on top of the classical
ones faced by robotics. Some of the commonly encountered
problems are image visibility distortions caused by the
water or sediment, and the difficulty of acquiring data
for developing recognition or planning methods that are
driven by the information. This is especially true for oyster
monitoring.

Systematic monitoring of underwater ecosystem requires
reliable autonomous navigation. However, in underwater
environments, navigation is challenging not only due to the
dynamics of the systems but also due to a lack of adequate
spatial awareness. To overcome these challenges vision-only
based methods have been developed in the literature, that
use human-labeled data to learn navigation commands for
surveying coral reefs [11] and shipwrecks [12]. It is
important to point out that these methods heavily depend
on the quality of data and are hence require extensive data
collection for a high degree of robustness.

Sadrfaridpour et al. [13] recently collected an underwater
dataset and used Mask-R-CNN [14] for oyster detection.
However, this dataset is relatively small and is not collected
in the ocean/sea bed but rather on an oyster farm. The oysters
are stacked and are very dense in the dataset which lead
to poor detection results for oyster reefs in the real world.
There is a lack of variety of oysters and environment in
Sadrfaridpour’s dataset for a more robust detection result
when deployed in the wild.

Instead of collecting large datasets for detection tasks,
we follow the conceptual approach proposed by Sanket et
al. [15] which is to geometrically model the object under

consideration to generate an enormous amounts of data
synthetically. In particular, we model the 3D shape of oysters
to create an underwater dataset for oyster detection.

Alternatively, Generative Adversarial Networks (GANs)
has been also widely used to generate underwater datasets.
Joshi et al. [16] utilized a GAN to create images for pose
estimation of an autonomous underwater vehicle (AUV).
However, this method also required a large number of ground
truth data samples for generating all possible pose images.
To tackle the visibility distortions caused by the water or
sediment, Li et al. [17] proposed a system that restores
underwater images into in-air images. Moreover, Wang [18]
also proposed an approach for real-world underwater color
restoration and dehazing by utilizing GANs.

With the ultimate goal of developing an autonomous
information-driven oyster monitoring system, we
acknowledge the need of good oyster prediction methods.
Moreover due to the lack of large samples of oyster detests
and the lack of literature to address this problem we are
seeking an alternative path for generating a large oyster
dataset by looking into the mathematical model of oysters.
To the best of our knowledge, we are the first to propose a
geometric model of oysters and use that model to generate
synthetic data which is described next.

III. SYNTHETIC OYSTER GENERATION

In this work, we propose a novel method for modeling
oysters which are then used to generate a large dataset
of oyster reef images. In this section, we will talk about
our proposed method (which is summarised in Fig. 2).
First, we will describe the process of modeling oysters.
Next, we will talk about how this model can be used
to generate photorealistic images of oyster reefs using
domain adaptation. Last but not least, we train a semantic
segmentation model using the OysterNet for detecting the
oysters in the real world. We present each sub-part in the
following sub-sections.



a b d ec f g

Fig. 3. Steps in the geometric modelling of an oyster: (a) Sample image of a real oyster shell, (b) 3D scan of a real oyster, (c) Splines fit to the oyster’s
bottom layer to model it (each color represents a single spline), (d) Simplified model of one stratified layer of the oyster (single layer of spline curve
S(t)), (e) all layers of Sα(t), (f) generated 3D model of oyster, (g) final generated 3D model of oyster with added real oyster texture.

A. Geometric Modelling Of Oysters

In order to model the geometry of an oyster, we first 3D
scanned ten washed oysters (sample image example shown
in 3a and scanned model shown in 3b) which were used to
build a mathematical model. Furthermore, the parameters in
the proposed mathematical model can be adjusted to generate
models of various oysters. We will describe the mathematical
model next.

It is important to note that the geometrical shape of an
oyster is extremely complex, with each one having a different
shape and thickness. Oysters grow following a general oyster
shape but expand somewhat randomly along their margins.
In the first step, we will model our oysters in 3D. Each oyster
can be approximated as a series of mathematical functions in
a stratified manner (akin to the way a 3D printer prints). We
start with each ‘horizontal’ layer (slice of the cross-section of
the oyster) by looking at the top view of our scanner oysters.
We call this the perimeter of the oyster. We noticed that the
perimeter can be easily modeled using two cubic B-splines.
Let the n + 1 control points for the splines be {c0, ..., cn}
and m+1 knot vectors be {t0, ..., tm}, then the spline curve
S(t) of degree k is given by

S(t) =

n∑
i=0

ciBi,k(t) = 1, (1)

where, Bi,k(t) denotes the basic function of degree k and is
computed recursively as

Bi,0(t) =

{
1 if ti+1 ≥ t ≥ ti
0, otherwise,

(2)

Bi,k(t) =
t− ti

ti+k − ti
Bi,k−1(t) +

ti+k+1 − t
ti+k+1 − ti+1

Bi+1,k−1(t).

(3)
In our case here, m = n+ k + 1 and we selected k = 3 for
a cubic spline. Particularly, we utilize two cubic B-splines:
one for the top half of the shell, and one for the bottom of
the shell (See Figs. 3c and 3d). We will call this perimeter
model (Eqs. 1, 2 and 3) as the 2D model since it models
only a single layer of the oyster.

Now, we want to extend the 2D model to 3D in the
stratified manner we described before. However, having a
high resolution in depth is computationally prohibitive due
to all the nooks and crannies (high-frequency edges) on the
oyster shell (See Fig. 3b). In order to make this computation
tractable, we simplify the shape of the oyster by assuming
that it is smooth since the variation on the shell is much

smaller than the distance to the oyster. It is important to
highlight that the visual changes these high-frequency edges
created are approximated by the visual textures we place on
our generated oysters. The 3D model of the oyster (Fig. 3e)
follows the same perimeter model from before but also adds
changes to depth. Let cα0 , ..., c

α
n denote the control points for

α-th layer of the 3D oyster. And the knot vectors for the
α-th layer be{tα0 , ..., tαm}. We define the cαn ,tαm as follows

cαn = cn +X1 (4)

tαm = tm +X2 (5)

where X1 and X2 are the Gaussian Noise used to model
the high frequency edges of the oyster’s perimeter. Formally,
X1 ∼ N (µ1, σ

2
1) and X2 ∼ N (µ2, σ

2
2).

We can then substitute cn, tm with cαn, t
α
m in Eqs. 1 to 3

to get the spline curve Sα(t) for every single layer.
For each spline curve Sα(t), we can use [x′α, y′α]T to

represent spline curve points as follows:

[xα, yα]T = [x′α, y
′
α]T rα (6)

where r is the in-growth rate as a fixed number.
Finally, the growth rate of the oyster is defined as follows:

zα = αd, (7)

where d is the depth at a fixed number here.
Now we can use all the α layers with [xα, yα, zα]T

points to generate 3D model (Fig. 3f) by using pyvista [19]
data visualizer. By varying the parameters Θ =
{σ1, σ2, µ1, µ2, α} we obtain different oyster shapes (Fig. 7).
Further, we use image textures from real oysters collected in
the Chesapeake Bay to be warped on the generated 3D model
(See Fig. 3g).

In the next section, we will talk about how the actual
images are rendered from the 3D models we just constructed.

B. Synthetic Image Generation

1) Simulation Image Rendering: A 3D model is not
sufficient for creating images for oyster segmentation. We
utilized the BlenderTM [20] game engine to simulate the
oysters on a seabed. We rendered 13K synthetic oysters
with different 3D models (we will just call it the synthetic
model for simplicity) by varying parameters Θ as described
in Sec. III. Then we used these synthetic 3D models for
synthetic data generation. First, we employed 14 real oyster
texture images and applied them randomly to all the synthetic
models (Fig. 4a). A sample of the synthetic model with



applied texture image can be seen in Fig. 4b. To generate
an simulated oyster reef image, we placed the oysters with
random poses onto a flat surface with the seabed textures as
shown in Fig 4c. Images of the oyster reef are then rendered
in BlenderTM along with segmentation masks (Fig. 4d).

However, Fig. 4c is not photorealistic and does not look
like a real underwater image which will lead to a poor
detection performance when deployed. We describe how we
use a Generative Adversarial Network (GAN) to perform
sim-to-real domain adaptation such that our images are
photorealistic such that they can generalize to the real world
after being trained in simulation.

2) Domain Adaptation: To render a realistic oyster image,
we employ contrastive unpaired translation (CUT) [21] for
unpaired image-to-image translation by learning functions
to map from the BlenderTM [20] domain R to the target
domain T . The overall loss function consists of three parts:
GAN loss, PatchNCE loss, and ExternalNCE loss which are
described next.

GAN Loss: Generators G and F are used to transfer
domains: G : R → T and F : T → R. In order to

a b

c d

Fig. 4. (a) One of the synthetic models generated from Sec. III-A), (b)
Synthetic model with real oyster texture added, (c) image of an oyster farm
with 50 synthetic oysters generated in BlenderTM, (d) masks for oysters in
(c).

Tr
ai

ni
ng

𝐺: 𝑅 → 𝑇

𝐹: 𝑇 → 𝑅

a b

Si
m

-2
-R

ea
l 𝐺: 𝑅 → 𝑇c d

Fig. 5. Domain Adaptation to perform sim-to-real transfer. (a) A single
sample of the simulated oyster, (b) A single sample of the real oyster, (c)
Simulated oyster farm, (d) Synthetic oyster farm domain adapted to real
world for photorealism.

improve image-to-image translation in CUT, ensuring the
reconstructed images F (G(R)) ≈ R is necessary. Thus,
we want to minimize the adversarial loss. Adversarial loss
is defined by the following two components: discriminator
loss and generator loss. Where discriminator loss is
to minimize the loss from misclassification between
real and fake samples. As for the generator loss, the goal
is to maximize the discriminator’s probabilities of being real.

PatchNCE loss: We first break the function
G into two parts, one encoder, and one decoder.
T̂ = G(R) = Gdec(Genc(R)). Genc is used for image
translation. Therefore, a patch of the input images can
be represented as the feature stack of each layer, and
the spatial location of the feature stack from the encoder
Genc. We want to ensure the cross-entropy between these
feature stacks from different layers and spatial locations is
minimized. Then the PatchNCE loss is introduced where
NCE represents Noise Contrastive Estimation.

ExternalNCE loss: Not only do we want to minimize
PatchNCE loss, but we can also use the image patches from
the rest of the dataset while training. A random negative
image from the dataset is encoded and is used to define
externalNCE loss.

We refer the readers to [21] for a detailed description of
the Loss function and network. In our proposed system, the
target domain is the realistic environment Treal.

3) Details of Training the CUT: We want the CUT
network to be able to capture the synthetic oyster to real
oyster translation. So, we extract 8959 images of single
oysters from the synthetic data that we generated as R and
we also extract 957 samples of single oysters from the real
underwater images as Treal. In the training phase, we learn
two mapping functions: G : R → T and F : T → R. Once
the CUT is learned, we perform inference on our synthetic
images to make them look photorealistic (See Fig. 5) by
performing domain transfer which is further used to train
our oyster detection network OysterNet. In this work, we
train CUT for 153 epochs to obtain our generator G.

IV. EXPERIMENTS AND RESULTS

First, we describe the datasets used in this section. To
validate our generated oyster model, we then compare the
results obtained by two different segmentation networks
and two different datasets. Lastly, we experiment with how
different values of the oyster model parameters affect the
segmentation results.

A. Description of Datasets

Rendered/Synthetic Dataset: contains images obtained
by randomly rendering generated 3D oyster models on the
seabed using BlenderTM. Rather than just laying the oysters
on the seabed, we simulate the randomization pose of the
oysters in various realistic positions. This randomness in
oyster pose makes the neural network more robust for
recognizing the oyster in different poses. After the images



Fig. 6. BlueROV collecting data for our real dataset. The inset shows a
sample image captured which is a part of our real dataset.

are generated from BlenderTM, we used CUT, as described
in Sec. III-B, to create photo-realistic images. The rendered
dataset contains 4800 images.

Real Dataset: contains images from Harris Creek taken by
Chesapeake Bay Foundation by driving a BlueROV as shown
in Fig. 6. We labeled the images by hand. We have 29925
images of size 256×256. There are over 3900 oysters labeled
in the dataset. Unlike some other datasets for underwater
object detection, oysters are really hard to recognize, even
for humans. So, we worked with experts at the Chesapeake
Bay Foundation to obtain this dataset.

B. Experimental Results

OysterNet adapts UNet [22] as its backbone. We trained
OysterNet with a learning rate of 0.001 with decay. We
use Adam optimizer coupled to the Jaccard loss [23] loss
function. We used a batch size is 32 and trained the network
for 100 epochs.

We want to verify our hypothesis that the synthetic oyster
data we generated can help improve the oyster semantic
segmentation.

[13] obtained the best results for oyster detection using the
FPN [24] network. This is the model we use which we denote
as the DCO (Detecting and Counting Oysters) method. In our
observation UNet [22] architecture performed better using
our approach which refer to it as OysterNet (“Ours”) in Table
I.

We want to use the minimal amount of real data for
training as they are hard to obtain, expensive, and labor
intensive. To this end, we use only 25% of the real dataset
we used as training which we will denote as Oreal. We test
our method on the remaining 75% of the real dataset that
we call O in the Test Data. We denote all the images in
our generated synthetic dataset as Osyn which will be used
for training with/without real data. Formally, Osyn and real
is the combination of Oreal and Osyn.

In this experiment, we perform training on Oreal (our
real dataset) and test it on the O (our held-out real dataset)
with both OysterNet and DCO methods. The Intersection
over Union (IoU) scores are 18.16% and 18.88% respectively
which serves as the baseline for oyster segmentation results
for our dataset. Both the methods perform similarly in this

TABLE I
COMPARISON OF SEMANTIC SEGMENTATION RESULTS WITH THE

STATE-OF-THE-ART.

Method Train Data Test Data IoU Score(%)
DCO [13] Osyn O 6.47
DCO [13] Oreal O 18.88
DCO [13] Osyn and real O 21.76
OysterNet (Ours) Osyn O 7.45
OysterNet (Ours) Oreal O 18.16
OysterNet (Ours) Osyn and real O 24.54

case.Then we want to observe the results when trained only
on the generated synthetic dataset (Osyn). We train on Osyn
and test on O with both methods. The IoU score is 7.45%
and 6.47% respectively which is lower than our baseline. The
network has learned to recognize oysters in the synthetic
domain but the sim-to-real domain transfer is still not as
desired. To this end, we add a small amount of real data
to the synthetic data and use it for training (Osyn and real).
We achieve a state-of-the-art IoU Score of 24.54% against
the expert human labeled ground truth which is 35.1% better
than just using real dataset for training and 12.7% better than
DCO when trained on synthetic augmented real data.

The results are tabulated in Table I. It shows that with the
added synthetic dataset, we achieve a significant ∼35.1%
accuracy improvement over just using the real dataset for
training. As we can see from Figs. 1b and 1e, the network
predicts mostly sediments as oysters when trained using
only real data. This leads to a lot of false positives and
false negatives. However, when the network is trained using
real data augmented with our synthetic data (which we call
OysterNet), there is a significant decrease in false predictions
as we can see from Figs. 1c and 1f.

Since the generated dataset affects accuracy significantly,
we ablate on how different parameters in our proposed
geometric model affect performance in the next section.

C. Ablation Studies

We varied the parameters Θ that controlled amount of
high-frequency components and the number of layers to
generate oyster models. We also varied the size of the oyster
when rendering it in the simulation. When not specified, the
parameters are set as µ1 = 150, µ2 = 150, σ1 = 150,
σ2 = 15, α ∈ [15, 20], and Scale ∈ [25, 30]. Only one
parameter is varied at a time while keeping others fixed to
the values specified. No two oysters are the same with respect
to size and height, therefore we chose different ranges for α
and Scale. We see from Table IIa that IoU Score increases
with mean of the noise and then decreases.

This is because the noise increases, and the variety of the
oysters increases which would benefit the detection of the
oysters. However, when the noise is too large (µ1 > 150),
the oyster generated no longer looks like an oyster (See Fig.
7). The IoU Score drops significantly when µ1 = 250. A
similar trend is observed with µ2 and σ1 with the IoU Score
peaking around 150 (Table IIb and IIc ). We also observe that



TABLE II
ABLATION STUDIES OF THE PROPOSED OYSTER GEOMETRIC MODEL (ALSO SEE FIG. 7).

Scenario a Scenario b
µ1 50 100 150 200 250 µ2 50 100 150 200 250
IoU(%) 21.70 23.10 24.54 23.21 17.67 IoU(%) 24.19 21.23 24.54 22.34 19.57

Scenario c Scenario d
σ1 50 100 150 200 250 σ2 15 30 60 120 240
IoU(%) 19.37 22.07 24.54 23.64 20.67 IoU(%) 24.54 21.53 23.64 22.42 22.95

Scenario e Scenario f
α 5-10 10-15 15-20 20-25 25-30 Scale(%) 10-15 15-20 20-25 25-30 30-35
IoU(%) 22.76 22.88 24.54 22.63 22.66 IoU(%) 18.97 23.21 24.36 24.54 21.20

Fig. 7. Qualitative demonstration of how different parameters of our oyster model affect the shape of the oyster. The parameters are in the same order
as the experiments in Table II.

with increase in standard deviation (σ2) for X2 (Table IId),
the detection accuracy drop slightly. By varying the number
of layers (α) for the oysters, we notice that the change in
the IoU Score is relatively minimal. Since the image that we
generated is in 2D, the parameter for layers (α) does not
have a significant effect (Table IIe) as we mostly observe
oysters from far away and in mostly top view.

In Table IIf, we observe that the scale of the oyster has to
match the size of the oyster in the image to get the optimal
result. The accuracy drops when the scale of the oyster
is either too large or too small. The IoU Score difference
between the scale values in the ranges of 20−25 and 25−30
is only 0.18% (Tables IIf).

V. CONCLUSIONS

In this work, we first model the geometry of oyster
shells and render the oyster images in a game engine.
Then we perform an image-to-image transformation from
the simulation domain to the real-world domain. With the
help of the generated synthetic dataset, when augmented to
the real dataset we showed an improvement in the semantic
segmentation IoU score for the oysters by 35.1% over just
using real data for training and 12.7% over the current
state-of-the-art. These results highlight that for data-critical
applications when collecting real images is challenging,

it is possible to model the images using the underlying
geometry of the object to create photorealistic images that
will improve object detection drastically. To the best of our
knowledge, this is the first attempt to model 3D structure
of oysters. Being the first work in this field, there are many
directions and possible improvements that can be made to our
OysterNet framework to increase the accuracy of semantic
segmentation. One possible improvement will be to model
both shells of the oysters instead of a single shell. As for the
detection phase, new network architectures can be explored
to tackle this problem. Finally, more models of the oysters
along with additional shape noise could be utilized in the
future for a more robust detection.

ACKNOWLEDGMENT

We would like to thank to Patrick Beall and Doug Myers
from Chesapeake Bay Foundation for annotation some of
the images for us. We would also like to thank Allen Pattillo
and Chahat Deep Singh from University of Maryland for
proofreading our manuscript.

REFERENCES

[1] R. I. Newell, “Ecological changes in chesapeake bay: are they the
result of overharvesting the american oyster, crassostrea virginica,”
Understanding the estuary: advances in Chesapeake Bay research,
vol. 129, pp. 536–546, 1988.



[2] B. Pogoda, “Current status of european oyster decline and restoration
in germany,” Humanities, vol. 8, no. 1, p. 9, 2019.

[3] L. P. Baggett, S. P. Powers, R. D. Brumbaugh, L. D. Coen, B. M.
DeAngelis, J. K. Greene, B. T. Hancock, S. M. Morlock, B. L. Allen,
D. L. Breitburg, et al., “Guidelines for evaluating performance of
oyster habitat restoration,” Restoration Ecology, vol. 23, no. 6, pp.
737–745, 2015.

[4] B. N. Blomberg, T. A. Palmer, P. A. Montagna, and J. B. Pollack,
“Habitat assessment of a restored oyster reef in south texas,”
Ecological Engineering, vol. 122, pp. 48–61, 2018.

[5] K. McFarland and M. P. Hare, “Restoring oysters to urban estuaries:
Redefining habitat quality for eastern oyster performance near new
york city,” PloS one, vol. 13, no. 11, p. e0207368, 2018.

[6] S. J. Theuerkauf, D. B. Eggleston, and B. J. Puckett, “Integrating
ecosystem services considerations within a gis-based habitat suitability
index for oyster restoration,” PloS one, vol. 14, no. 1, p. e0210936,
2019.

[7] M. W. Beck, R. D. Brumbaugh, L. Airoldi, A. Carranza, L. D.
Coen, C. Crawford, O. Defeo, G. J. Edgar, B. Hancock, M. C. Kay,
et al., “Oyster reefs at risk and recommendations for conservation,
restoration, and management,” Bioscience, vol. 61, no. 2, pp. 107–116,
2011.

[8] S. Manjanna, N. Kakodkar, M. Meghjani, and G. Dudek, “Efficient
terrain driven coral coverage using gaussian processes for mosaic
synthesis,” in 2016 13th Conference on Computer and Robot Vision
(CRV). IEEE, 2016, pp. 448–455.

[9] J. Hansen, S. Manjanna, A. Q. Li, I. Rekleitis, and G. Dudek,
“Autonomous marine sampling enhanced by strategically deployed
drifters in marine flow fields,” in OCEANS 2018 MTS/IEEE
Charleston. IEEE, 2018, pp. 1–7.

[10] N. Karapetyan, J. Moulton, and I. Rekleitis, “Meander-based river
coverage by an autonomous surface vehicle,” in Field and Service
Robotics. Springer, 2021, pp. 353–364.

[11] T. Manderson, J. C. G. Higuera, R. Cheng, and G. Dudek,
“Vision-based autonomous underwater swimming in dense coral for
combined collision avoidance and target selection,” in 2018 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS).
IEEE, 2018, pp. 1885–1891.

[12] N. Karapetyan, J. V. Johnson, and I. Rekleitis, “Human diver-inspired
visual navigation: Towards coverage path planning of shipwrecks,”
Marine Technology Society Journal, vol. 55, no. 4, pp. 24–32, 2021.

[13] B. Sadrfaridpour, Y. Aloimonos, M. Yu, Y. Tao, and D. Webster,
“Detecting and counting oysters,” in 2021 IEEE International

Conference on Robotics and Automation (ICRA). IEEE, 2021, pp.
2156–2162.

[14] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask r-cnn,” in
Proceedings of the IEEE international conference on computer vision,
2017, pp. 2961–2969.

[15] N. J. Sanket, C. D. Singh, C. M. Parameshwara, C. Fermüller,
G. C. de Croon, and Y. Aloimonos, “Evpropnet: Detecting drones by
finding propellers for mid-air landing and following,” arXiv preprint
arXiv:2106.15045, 2021.

[16] B. Joshi, M. Modasshir, T. Manderson, H. Damron, M. Xanthidis,
A. Q. Li, I. Rekleitis, and G. Dudek, “Deepurl: Deep pose estimation
framework for underwater relative localization,” in 2020 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS).
IEEE, 2020, pp. 1777–1784.

[17] J. Li, K. A. Skinner, R. M. Eustice, and M. Johnson-Roberson,
“Watergan: Unsupervised generative network to enable real-time color
correction of monocular underwater images,” IEEE Robotics and
Automation letters, vol. 3, no. 1, pp. 387–394, 2017.

[18] N. Wang, Y. Zhou, F. Han, H. Zhu, and J. Yao, “Uwgan: underwater
gan for real-world underwater color restoration and dehazing,” arXiv
preprint arXiv:1912.10269, 2019.

[19] C. Sullivan and A. Kaszynski, “Pyvista: 3d plotting and mesh analysis
through a streamlined interface for the visualization toolkit (vtk),”
Journal of Open Source Software, vol. 4, no. 37, p. 1450, 2019.

[20] B. O. Community, Blender - a 3D modelling and rendering package,
Blender Foundation, Stichting Blender Foundation, Amsterdam, 2018.
[Online]. Available: http://www.blender.org

[21] T. Park, A. A. Efros, R. Zhang, and J.-Y. Zhu, “Contrastive learning
for unpaired image-to-image translation,” in European Conference on
Computer Vision. Springer, 2020, pp. 319–345.

[22] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional
networks for biomedical image segmentation,” in International
Conference on Medical image computing and computer-assisted
intervention. Springer, 2015, pp. 234–241.

[23] J. Bertels, T. Eelbode, M. Berman, D. Vandermeulen, F. Maes,
R. Bisschops, and M. B. Blaschko, “Optimizing the dice score
and jaccard index for medical image segmentation: Theory and
practice,” in International conference on medical image computing
and computer-assisted intervention. Springer, 2019, pp. 92–100.

[24] T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and S. Belongie,
“Feature pyramid networks for object detection,” in Proceedings of the
IEEE conference on computer vision and pattern recognition, 2017,
pp. 2117–2125.

http://www.blender.org

	I INTRODUCTION
	II RELATED WORK
	III Synthetic Oyster Generation
	III-A Geometric Modelling Of Oysters
	III-B Synthetic Image Generation
	III-B.1 Simulation Image Rendering
	III-B.2 Domain Adaptation
	III-B.3 Details of Training the CUT


	IV Experiments And Results
	IV-A Description of Datasets
	IV-B Experimental Results
	IV-C Ablation Studies

	V CONCLUSIONS
	References

