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A negative imaginary theory-based time-varying group formation
tracking scheme for multi-robot systems: Applications to quadcopters

Yu-Hsiang Su, Parijat Bhowmick, Member, IEEE, and Alexander Lanzon, Senior Member, IEEE

Abstract— This paper proposes a new methodology to de-
velop a time-varying group formation tracking scheme for
a class of multi-agent systems (e.g. different types of multi-
robot systems) utilising Negative Imaginary (NI) theory. It
offers a two-loop control scheme in which the inner loop
deploys an appropriate feedback linearising control law to
transform the nonlinear dynamics of each agent into a double
integrator system, while the outer loop applies an NI-based
time-varying group formation control protocol on the linearised
agents. This approach offers greater flexibility in choosing a
controller, easy implementation and tuning, reduces the overall
complexity of the scheme, and uses only output feedback (hence
reduced sensing requirements) to achieve formation control in
contrast to the existing formation control schemes. The paper
has also provided lab-based experimental validation results
to demonstrate the feasibility and usefulness of the proposed
scheme. Two experiments were conducted on a group of small-
scale quadcopters connected via a network to test the time-
varying group formation tracking performance.

I. INTRODUCTION

Cooperative control of multi-robot systems has gained
significant attention from the robotics and control community
over the past two decades due to its potential applications
in solving a variety of complex and repetitive tasks. For
instance, localisation and mapping [1], search, rescue and
retrieval operations [2], multi-target enclosing and surveil-
lance [3], cooperative payload transportation [4], [5], etc.
The term cooperative control encompasses leader-following
consensus control, formation control, rendezvous control,
group formation tracking, etc. References [6] and [7] did pio-
neering work on developing consensus-based static formation
control schemes for multi-vehicle systems. Later, [8] and
[9] addressed the time-varying formation control problem
for different multi-agent systems. However, the formation
control strategies discussed so far require full state (i.e.
all states) feedback information, which may not always be
feasible in practice because of an inability to take sensor
measurements from all the states. Instead, an output feedback
cooperative control scheme can be a better option when all
states cannot be measured.
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Fig. 1. A typical quadcopter group formation tracking scenario that consists
of three subgroups. Each subgroup has attained its respective formation.

Negative Imaginary (NI) systems theory was introduced
in 2008 and was inspired by the ‘positive position feedback
control’ of highly resonant mechanical systems [10]. At
its inception, NI theory attracted interest of the control
community for offering specialised control techniques for
vibration attenuation of lightly-damped mechanical systems
with colocated input-output pairs (e.g. cantilever beam [10],
[11], robotic manipulators [12], etc.). Besides its most
renowned application in vibration control, NI theory has
also established its worth in solving a variety of engineering
problems, such as in nano-positioning applications [13],
in vehicle platooning [14], in control of networked multi-
agent systems [15], [16], [17], etc. NI theory has become
appealing also due to its simple internal stability condition1

that depends on the loop gain only at the zero frequency
and since it offers a stand-alone robust control analysis and
synthesis framework [10], [12].

Lately, the NI framework has been utilised as a suitable co-
operative control technique for multi-agent systems (MASs)
[15], [17], [20], [21]. NI theory is appealing in MAS research
because it directly captures the inertial dynamic or kinematic
relationships between force or reference velocity actuation
and the resulting position [10], [15], [16], [18]. The idea of
utilising the NI theory for developing a cooperative control
scheme has stemmed from the fact that a particular class
of robotic and mechatronic systems can be modelled as a
group of networked double/single integrator agents, which
inherently satisfies NI property with poles at the origin.
Hence, a distributed SNI controller can conveniently stabilise
such systems and achieves the desired consensus/formation.
Motivated by the applications above, this paper aims to
develop a simple yet effective time-varying group formation

1A necessary and sufficient condition for the internal stability of a positive
feedback interconnection of NI and SNI systems, say M(s) and N(s), is
λmax[N(0)M(0)] < 1 [10], [18], [19].
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tracking (TGFT) scheme for a class of multi-agent systems,
including multi-robot systems. A typical group formation
tracking scenario involving networked quadcopters has been
illustrated in Fig. 1. This paper introduces a new method-
ology (instead of the commonly used Lyapunov-based ap-
proach) to prove the asymptotic convergence of the group
formation tracking errors of networked agents by exploiting
the unique characteristics of the eigenvalue loci of networked
NI and SNI systems. In addition, the proposed NI-based
TGFT scheme only requires output feedback and therefore
minimises the requirement for sensors and estimators. The
feasibility and effectiveness of the proposed scheme are
demonstrated via real-time experiments (refer to Fig. 6 and
Fig. 8) conducted on a group of networked small-scale
quadcopters.

II. PRELIMINARIES AND PROBLEM FORMULATION

A. Negative Imaginary systems theory

Definition 1: (NI systems) [12], [18]. Let M(s) be the
real, rational and proper transfer function of a square and
causal system without any poles in the open right-half plane
(RHP). M(s) is said to be Negative Imaginary (NI) if

• j [M(jω)−M(jω)∗] ≥ 0 for all ω ∈ (0,∞) except
the values of ω where s = jω is a pole of M(s);

• If s = jω0 with ω0 ∈ (0,∞) is a pole of M(s), then it
is at most a simple pole and the residue matrix
lim

s→jω0

(s − jω0)jM(s) is Hermitian and positive

semidefinite;
• If s = 0 is a pole of M(s), then the lim

s→0
skM(s) = 0

for all k ≥ 3 and lim
s→0

s2M(s) is Hermitian and positive
semidefinite.

Definition 2: (SNI systems) [10]. Let M(s) be the real,
rational and proper transfer function of a square and causal
system. M(s) is said to be Strictly Negative Imaginary
if M(s) has no poles in {s ∈ C : R[s] ≥ 0} and
j [M(jω)−M(jω)∗] ≥ 0 for all ω ∈ (0,∞).

B. Graph theory

A group of networked robots exchanges information with
each other via an interaction topology. In this work, we use
a weighted undirected graph G = {V ,E ,A } to describe
the interaction topology among each robot, where V =
{1, ...,m} is the node set, E ⊂ V × V is the edge set
and A = [aij ] ∈ Rm×m is the associated adjacency matrix
respectively. The edge eji = (vj , vi) ∈ E denotes the
information passes from node j to node i. aij represents the
weight of eji and aij > 0 if eji ∈ E . The in-degree matrix
is defined as D = diag{di} ∈ Rm×m with di =

∑m
j=1 aij .

The Laplacian matrix L ∈ Rm×m of G is defined as
L = D − A . If the ith robot is connected to the leader or
target (labelled as ‘k’), an edge eki is said to exist between
them with a pinning gain gi > 0.

C. Properties of networked NI and SNI systems

Below, we declare the properties of the interaction topol-
ogy of the networked agents considered in this paper.

Assumption 1: The interaction topology of m agents (in
the homogeneous case) is described by an undirected and
connected graph G . There always exists a root node (also
called the leader or target) which provides reference trajec-
tory to the follower agents (at least to one follower).
According to Assumption 1, we have (L + G) > 0 where
G = diag{g1, g2, · · · , gm} > 0 is the pinning-gain matrix.
The following lemma proves that a network of homogeneous
LTI systems that satisfies Assumption 1 exhibits stable NI
(resp. SNI) property if and only if each individual system of
the network is stable NI (resp. SNI).

Lemma 1: [21], [22]. Consider a network of N identical
stable NI (including SNI) agents that satisfies Assumption 1.
Then, M̄(s) = (L +G)⊗M(s) is stable NI (resp. SNI) if
and only if M(s) ∈ RH n×n

∞ is NI (resp. SNI).
Lemma 2 shows that a network of all homogeneous stable NI
(including SNI) systems retains the same sign definiteness
of its DC-gain matrix when the corresponding interaction
topology satisfies Assumption 1.

Lemma 2: [21], [22]. Consider a network of N identical
stable NI agents M(s) ∈ RH n×n

∞ satisfying Assumption 1.
Denote M̄(s) = (L+G)⊗M(s). Then, M̄(0) > 0 (resp. <
0) if and only if M(0) > 0 (resp. < 0).

D. Eigenvalue loci theory

Similar to a Nyquist plot, the eigenvalue loci ρi(s) for
i ∈ {1, 2, . . . , n} of a transfer function matrix G(s) is a
conformal mapping of the function det[G(s)] in a complex
plane, known as the eigenvalue loci plane, when s traverses
along the s-plane D-contour in the clockwise direction as
shown in Fig. 4a. For complete details of the eigenvalue loci
theory, please see [23], [24].

Theorem 1: [23], [24]. The negative feedback intercon-
nection of a plant M(s) and a controller N(s) is asymptot-
ically stable if and only if the net sum of the critical point
(−1+ j0) encirclements of all the eigenvalue loci ρi(jw) of
the loop transfer function M(s)N(s) for i ∈ {1, 2, . . . , n}
is counter-clockwise and equal to the number of RHP zeros
of the open-loop characteristic polynomial. For open-loop
stable cases, none of ρi(jw) should encircle the critical point
(−1 + j0).

E. Problem formulation

Given a multi-robot system that can be modelled as or
transformed into a group of networked double integrator
agents, the control objective is to first split the agents into
several subgroups depending on the locations/positions of
the targets (or the leaders) and then design an NI-based
time-varying group formation tracking scheme such that
each individual subgroup attains the desired static/time-
varying formation and keep tracking the static/moving targets
assigned to each subgroup.

III. AN NI-BASED TIME-VARYING GROUP FORMATION
TRACKING SCHEME FOR MULTI-ROBOT SYSTEMS

This section lays down the main contribution of this
paper, which is developing a time-varying group formation



tracking scheme for a class of multi-agent systems (e.g. a
class of multi-robot systems) whose dynamics/kinematics
can be approximated by a group of double integrator agents
connected via an undirected graph. Note that some subgroups
may have multiple targets assigned to them, and the targets
may also be time-varying. The proposed TGFT scheme is
shown in Fig. 2.
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Fig. 2. An NI-based time-varying group formation tracking (TGFT) scheme
for a class of multi-agent systems with multiple targets to track.

Consider m agents having transfer function M(s) and
τ targets (or leaders). Let the agents be distributed into p
subgroups where p ≥ 1. The node set corresponding to
each subgroup is represented by Vī for ī ∈ {1, 2, . . . , p}.
Therefore, the total node set V =

⋃p
ī=1

Vī. We assume
Vī ̸= ∅ for any ī and Vk∩Vl = ∅ for any k, l ∈ {1, 2, . . . , p}
and k ̸= l. Each subgroup Vī represents a part of the whole
graph G , designated by Gī. Suppose the īth subgroup Vī has
mī agents (i.e. nodes in terms of graph theory) satisfying∑p

ī=1
mī = m and it has τī ≥ 1 targets (or leaders)

assigned to it such that
∑p

ī=1
τī = τ . The Laplacian matrix

of the whole network is given by L =

[
Lf Lτ

0 0

]
where

Lf ∈ Rm×m is the Laplacian matrix of the follower agents
and Lτ ∈ Rm×τ is the Laplacian matrix that connects the
target nodes (or the leaders) to the follower agents. Below,
we declare some important assumptions to be satisfied by
the networked multi-agent systems considered in this paper.

Assumption 2: The node subsets {V1,V2, · · · ,Vp} do not
form any cycle among them. This ensures that the intergroup
communication will be directed, that is, no cycle will exist
among the subgroups.
This assumption results in a particular structure of Lf as

Lf =


L11 0 · · · 0
L21 L22 · · · 0

...
...

. . .
...

Lp1 Lp2 · · · Lpp

 . (1)

For an undirected graph, Lī̄i > 0 and for directed cases, Lī̄i

satisfies the properties of an M -matrix when each subgroup
contains a spanning tree.

Assumption 3: The row-sum of each of the rows of the
sub-Laplacian matrices Līj̄ where ī, j̄ ∈ {1, 2, . . . , p} is zero
when ī > j̄.

Lemma 3: [25] For an undirected or directed graph satis-
fying Assumptions 2 and 3, as described before,

−L −1
f Lτ = diag

{
η1,η2, · · · ,ηp

}
(2)

where ηī = 1mī

[
g
(̄i)
1 , g

(̄i)
2 , · · · , g(̄i)τī

]
/
∑τī

k=1 g
(̄i)
k . g(̄i)k de-

notes the weights of the edges that connect the target nodes
(or the leaders) to the follower agents belonging to the īth

subgroup for ī ∈ {1, 2, . . . , p}.
Theorem 2: Consider a homogeneous multi-agent system

consisting of m agents and τ targets. The model of the
agent has been feedback-linearised into or approximated by
M(s) = 1

s2 . Suppose the agents are split into p (p ≥ 1)
subgroups {V1,V2, · · · ,Vp}, each of which contains mī

agents and has been assigned τī targets (or leaders) to track.
Let Assumption 1 hold for each subgroup Vī along with
Assumptions 2 and 3. Choose an SNI transfer function
N(s) ∈ RH ∞ with N(0) < 0. Then, the network of
linearised double integrator agents achieves time-varying
group formation tracking by the following output feedback
distributed SNI control law (according to the scheme shown
in Fig. 2)

ui = σN(s)

[
m∑
j=1

aij
(
(yi − hi)− (yj − hj)

)
+

τ∑
k=1

aik(yi − hi − rk)

]
(3)

∀i ∈ {1, 2, . . . ,m} and for any σ ∈ (0,∞).
Proof. We will now introduce a set of notations that will

be used in this proof. Let r̄ī(t) and h̄ī(t) denote respectively
the formation reference and formation configuration vectors
for the īth subgroup where ī ∈ {1, 2, . . . , p}. It can be readily
shown that r(t) = [r1, r2, · · · , rm]⊤ = [̄r⊤1 , r̄

⊤
2 , · · · r̄⊤p ]⊤

and h(t) = [h1, h2, · · · , hm]⊤ = [h̄⊤
1 , h̄

⊤
2 , · · · h̄⊤

p ]
⊤. The

output vector of each subgroup is denoted by ȳ̄i and
hence, the global output vector y = [y1, y2, · · · , ym]⊤ =
[ȳ⊤

1 , ȳ
⊤
2 , · · · ȳ⊤

p ]
⊤.

The proof has been divided into two parts. Part I estab-
lishes the asymptotic stability of the entire networked closed-
loop system shown in Fig. 2, and Part II shows that the
group formation tracking error for each agent asymptotically
decays to zero.

The control law ui given in (3) can be rearranged to
express the group-wise control law vector

ūī = σN(s)
[
Lī̄i(ȳī − h̄ī) + Līj̄(ȳj̄ − h̄j̄)− Lτī r̄ī

]
(4)

where ī, j̄ ∈ {1, 2, . . . , p}. Following (4), Fig. 2 has been
redrawn in Fig. 3 that shows the formation tracking module
for each subgroup.
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Fig. 3. The underlying formation tracking scheme for each subgroup. All
such subgroups together form the complete TGFT scheme shown in Fig. 2.



Now the stability of the entire closed-loop networked
system shown in Fig. 2 can be guaranteed if each subgroup
(shown in Fig. 3) remains asymptotically stable on noting
that both r̄ī ∈ L mī∞ and h̄ī ∈ L mī∞ are smooth signals.

Part I – Closed-loop stability of each subgroup: In this
part, the notation ρ̄i(s), for i ∈ {1, 2, . . . ,mī}, denotes the
eigenvalue loci of the loop transfer function matrix of the īth

subgroup [Lī̄i ⊗ 1
s2N(s)]. For convenience, we will define

the following three sets of the complex variable s along the
s-plane D-contour shown in Fig. 4a:

Ω0 = {s| s = εejθ, ε ∈ R>0, ε→ 0+, −
π

2
≤ θ ≤ π

2
},

Ω±j = {s| s = jω, ω ∈ (−∞, 0) ∪ (0,∞)},

ΩR = {s| s = Rejθ, R ∈ R>0, R→ +∞, −π
2
≤ θ ≤ π

2
}.

The positive feedback interconnection of [Lī̄i ⊗ N(s)] and(
Imī

⊗ σ

s2

)
, as shown in Fig. 3, remains asymptotically

stable for all σ ∈ (0,∞) if none of the eigenvalue loci ρ̄i(jω)
encircles the critical point ( 1σ + j0) via Theorem 1.

Case I: When s ∈ Ω0 The eigenvalue loci ρ̄i(s) can approx-
imately be expressed as

ρ̄i(s)|s∈Ω0 ≃ λi [Lī̄i ⊗N(0)]
1

ε2
e−j2θ (6)

∀i ∈ {1, 2, . . . ,mī}, which can be further simplified as
ρ̄i(s)|s∈Ω0 ≃ ci

ε2 e
j(ϕi−2θ) on setting λi [Lī̄i ⊗N(0)] =

cie
jϕi where ϕi = −π ∀i as N(0) < 0 and Lī̄i > 0.

Therefore, ρ̄i(j0+) ≃ ci
ε2 e

−j2π → +∞∠−2π as ε→ 0+ and
when θ = π

2 . It is essential to note2 here that ∠ρ̄i(j0+) ⪈
−2π since ∠γ(j0+) ⪈ −π. Similarly, ρ̄i(j0−) → +∞∠0
with ∠ρ̄i(j0−) ⪇ 0. This implies −2π ⪇ ∠ρ̄i(jω) ⪇ 0
when s ∈ Ω0. Hence, no infinite crossover takes place on
the positive real axis when each eigenvalue locus ρ̄i(jω)
encloses the zero-frequency points ρ̄i(j0−) and ρ̄i(j0+) via
a semicircular arc of infinite radius in the clockwise direction
as illustrated in Fig. 4b.

Case II: When s ∈ Ω±j Let λi [Lī̄i ⊗N(jω)] = cie
jϕi at

each ω ∈ (0,∞) and for all i ∈ {1, 2, . . . ,mī}. Since
N(s) is SNI, ϕi(ω) ∈ (−π, 0) ∀ω ∈ (0,∞) and hence,
∠ρ̄i(jω) = (ϕi − π) ∈ (−2π,−π] ∀ω ∈ (0,∞) and
∀i. Similarly, for all ω ∈ (−∞, 0), ∠ρ̄i(jω) ∈ [−π, 0).
Therefore, when s ∈ Ω±j , all ρ̄i(jω) stay within the Green
coloured region (shown in Fig. 4b) of the eigenvalue loci
plane without touching anywhere on the positive real axis.

Case III: When s ∈ ΩR For s ∈ ΩR, the eigenvalue loci
ρ̄i(s) where i ∈ {1, 2, . . . ,mī} can be expressed as

ρ̄i(s)|s∈ΩR
≃ λi [Lī̄i ⊗N(∞)]

e−j2θ

R2
=

ci
R2

ej(ϕi−2θ)

upon denoting λi [Lī̄i ⊗N(∞)] = cie
jϕi . Note that ϕi =

−π for all i as N(∞) < 0 owing to N(s) being SNI with

2γk(s) denotes the eigenvalue loci of N(s) for each k ∈ {1, 2, . . . ,mī}.
When N(s) is SNI with N(0) < 0, ∠γk(j0+) ⪈ −π for all k since
lim
ω→0

d
dω

∠γk(jω) < 0 for all k. The symbols ⪈ and ⪇ denote respectively
the relational operations ‘slightly greater than’ and ‘slightly lesser than’.
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Fig. 4. (a) Nyquist D-contour in the s-plane; and (b) All the eigenvalue
loci ρ̄i(jω) of Lī̄i ⊗ 1

s2
N(s) remain confined within the Green coloured

region ∀ω ∈ R ∪ {∞} when N(s) is SNI having N(0) < 0.

N(0) < 0. Therefore, ρ̄i(+j∞) ≃ ci
R2 e

−j 3π
2 → 0∠ − 3π

2
and ρ̄i(−j∞) → 0∠ − π

2 . This then follows that each
ρ̄i(jω) encloses the points ρ̄i(+j∞) and ρ̄i(−j∞) through
a semicircular arc (i.e. the Orange coloured arc around the
origin shown in Fig. 4b) of infinitesimal radius in the counter-
clockwise direction.

Cases I, II and III together prove that all the eigenvalue
loci ρ̄i(s) remain within the Green coloured region shown
in Fig. 4b and hence, none of ρ̄i(s) encircles the critical
point ( 1σ + j0) for any σ ∈ (0,∞). This proves asymptotic
stability of the īth subgroup for all ī exploiting Theorem 1.
Applying this result, we can conclude that all subgroups are
asymptotically stable, which ultimately implies asymptotic
stability of the scheme shown in Fig. 2.

Part II – Group formation tracking: The global group
formation tracking error vector can be constructed from (3)
as Ξ = [ξ1, ξ2, · · · , ξm]⊤ = Lf (y − h) + Lτr. Since the
networked system is asymptotically stable, lim

t→∞
Ξ(t) = 0. It

implies lim
t→∞

(
y(t)−h(t)−L −1

f Lτr(t)
)
= 0 which in turn

implies lim
t→∞

(
y(t) − h(t) − diag

{
η1,η2, · · · ,ηp

}
r(t)

)
=

0 via Lemma 3. The last expression is equivalent to

lim
t→∞


ȳ1(t)− h̄1(t)− η1r̄1(t)
ȳ2(t)− h̄2(t)− η2r̄2(t)

...
ȳp(t)− h̄p(t)− ηpr̄p(t)

 = 0. This can be rear-

ranged into the following elegant expression

lim
t→∞

[
ȳī(t)− h̄ī(t)− 1mī

τī∑
k=1

g
(̄i)
k∑τī

j=1 g
(̄i)
j

rk(t)

]
= 0 (7)

for all ī ∈ {1, 2, . . . , p}. This hence proves that
each subgroup will asymptotically attain the desired sub-
formation specified by h̄ī. It is crucial here to note that∑τī

k=1

g
(̄i)
k∑τī

j=1 g
(̄i)
j

= 1, which implies that each subgroup

formation assembly keeps tracking a convex combination of
the targets (or leaders). ■
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Fig. 5. (a) The proposed two-loop hardware control configuration for quadcopters to achieve time-varying group formation tracking; (b) Topology 1 connects
a group of four quadcopters; (c) Topology 2 shows two subgroups, each of which contains three quadcopters. Dotted red nodes represent virtual targets.

IV. EXPERIMENTAL VALIDATION RESULTS

To validate the feasibility and effectiveness of the proposed
NI-based time-varying group formation tracking scheme, we
implemented it on a group of Crazyflie 2.1 nano quadcopters
[26] connected via a network and conducted two real-time
flight experiments. The experiments demonstrate two poten-
tial applications: multi-target surveillance and multi-target
enclosing tasks with dynamically-varying targets (or leaders).
The Loco Positioning system [26] provides the absolute
position of each quadcopter with an accuracy of 0.1m.
Fig. 5a presents the two-loop hardware control configuration
used in the real-time flight experiments. The inner loop
deploys two embedded PID controllers designed such that the
closed-loop translational dynamics of a quadcopter become a
double integrator. While the distributed SNI controller acts as
the outer-loop control scheme and operates on the inner-loop
double integrator dynamics. The position information of each
quadcopter agent is transmitted to the base station, and the
control command is generated through the base station and
sent to each agent via Crazyradio dongles [26]. However,
the base station can be removed if each quadcopter can
sense the relative positions of the neighbouring agents or
directly share them via Bluetooth or Wi-fi since the proposed
control scheme is fully distributed. The recorded video clips
of two real-time flight experiments can be found in the
Supplementary Material.

A. Modelling of the quadcopter UAVs

Let p = [x, y, z]⊤, ω = [p, q, r]⊤ and η = [ϕ, θ, ψ]⊤ be
the position vector in the earth frame, the angular velocity
vector in the body frame and the Euler angles respectively.
m and I denote the centre of mass of the quadcopter UAV
and the inertia matrix. According to Newton-Euler equations,
the dynamics of a quadcopter UAV are{

mp̈ = −mgez +Rb
e(η)Fb,

Iω̇ = −ω × Iω + τ b,
(8)

where g is the gravity constant, ez = [0, 0, 1]⊤ is the unit
vector w.r.t. the earth frame, Rb

e(η) is the rotation matrix
from the body frame to the earth frame, Fb is the total force
(w.r.t. the body frame) from the rotors and τ b is the total
drag torque (w.r.t. the body frame) produced by the rotors.

Remark 1: Since the attitude dynamics of a quadcopter
UAV are much faster than the translational dynamics, hov-
ering and manoeuvring can be controlled together by a two-
loop control scheme shown in Fig. 5a (see [27] and refer-
ences therein). The outer-loop cooperative control law drives
the quadcopters to achieve the desired formations and keep
tracking the targets, while the inner-loop control stabilises the
attitude dynamics. As a result, the closed-loop translational
dynamics of a quadcopter UAV can be approximated by a
double integrator system p̈i = ui, where pi = [xi, yi, zi]

⊤

and ui = [uxi, uyi, uzi]
⊤ denote respectively the position

and control input vectors (i.e. the desired acceleration) of
the ith quadcopter UAV. For more details on the quadcopter
UAV modelling part, the article [28] may be referred.

B. Experiment 1: Time-varying formation tracking mission
In Experiment 1, four Crazyflie quadcopters are used

to perform a time-varying formation tracking mission. In
the first 25 s, four quadcopters are expected to achieve a
time-varying circular formation surrounding the static virtual
target. After 25 s, four quadcopters should track the moving
virtual target while maintaining the time-varying circular
formation. Fig. 5b describes the interaction topology between
all quadcopters and the virtual target. The time-varying
circular formation in the X and Y directions for the four
quadcopters is given by

hi(t) =

[
cos

(
0.02t+ 2(i−1)π

4

)
sin

(
0.02t+ 2(i−1)π

4

)] ∀i ∈ {1, 2, ..., 4}.

In addition, we chose an SNI controller N(s) = − s+1
s+10 , and

σ = 20 for the experiment.
Fig. 6 indicates that four quadcopters achieve the time-

varying circular formation while tracking the static/moving
virtual target. In addition, Fig. 7a plots the trajectories of all
quadcopters and the virtual target, and Fig. 7b shows that the
2-norm of the formation error of each quadcopter converges
to nearly zero after a few seconds. The results validate
that four quadcopters achieved the time-varying formation
tracking mission via the proposed NI-based TGFT scheme.

C. Experiment 2: Time-varying group formation mission
In Experiment 2, six Crazyflie quadcopters are used to

perform a time-varying group formation mission. We assume



(a) t = 15 s (b) t = 35 s (c) t = 40 s

Fig. 6. Snapshots of Experiment 1 at time instants t = 15 s, t = 35 s and t = 40 s. The red stars mark the positions of the virtual target. (a) At t = 15 s,
all quadcopters achieve a time-varying circular formation surrounding the static virtual target; (b) At t = 35 s, all quadcopters maintain a time-varying
circular formation while tracking the moving virtual target; (c) At t = 40 s, all quadcopters reach the final positions, and the mission is complete.
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Fig. 7. (a) Trajectories of all quadcopters in the X-Y plane of Experiment 1.
The circles mark the initial positions, and the triangles mark the final
positions of all quadcopters, respectively. The red star marks the final
position of the moving virtual target; (b) The 2-norm of the formation error
∥ξi(t)∥ of each quadcopter of Experiment 1.

that there are three virtual targets to be monitored. Fig. 5c
describes the interaction topology between all quadcopters
and three virtual targets. Six quadcopters are divided into
two subgroups depending on their relative positions to the
virtual targets to form an individual sub-formation around
each virtual target. One subgroup is expected to build a
time-varying circular formation around two virtual targets,
while the other should surround one virtual target. The time-
varying circular formation in the X and Y directions for the
six quadcopters is given by

hi(t) =

[
cos

(
0.02t+ 2(i−1)π

3

)
sin

(
0.02t+ 2(i−1)π

3

)] ∀i ∈ {1, 2, ..., 6}.

Here, we chose the same SNI controller N(s) = − s+1
s+10 , and

σ = 20 as experiment 1.

Fig. 8. A snapshot of the time-varying group formation mission during
Experiment 2. The red stars mark the positions of three virtual targets.

Fig. 8 indicates that the subgroup on the left achieves
the circular time-varying formation surrounding two virtual
targets, and the subgroup on the right achieves the circular
time-varying formation surrounding one virtual target. In
addition, Fig. 9a plots the trajectories of all quadcopters and
the positions of three virtual targets, while Fig. 9b shows
that the 2-norm of the formation error of each quadcopter
converges to nearly zero after a few seconds. The results
validate that six quadcopters achieved the time-varying group
formation mission via the proposed NI-based TGFT scheme.
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Fig. 9. (a) Trajectories of all quadcopters in the X-Y plane of Experiment 2.
The circles mark the initial positions, and the triangles mark the final
positions of all quadcopters, respectively. The red stars mark the positions
of three virtual targets; (b) The 2-norm of the formation error ∥ξi(t)∥ of
each quadcopter of Experiment 2.

V. CONCLUSIONS

This paper has exploited NI theory to propose a novel
time-varying group formation tracking scheme for multi-
robot systems that can be modelled as or transformed into
a group of networked double integrator agents. Compared
to conventional formation controllers that use full state
feedback information and the Lyapunov stability approach,
the proposed methodology only requires output feedback
(hence a reduced number of sensors), and the asymptotic
convergence of the group formation tracking error is proven
by the eigenvalue loci technique. Finally, two real-time flight
experiments were conducted on small-scale quadcopters to
validate the effectiveness and feasibility of the proposed NI-
based time-varying group formation tracking scheme and
showcase its usefulness in practice.
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