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Abstract— Guidance robots that can guide people and avoid
various obstacles, could potentially be owned by more visually
impaired people at a fairly low cost. Most of the previous
guidance robots for the visually impaired ignored the human
response behavior and comfort, treating the human as an
appendage dragged by the robot, which can lead to imprecise
guidance of the human and sudden changes in the traction
force experienced by the human. In this paper, we propose
a novel quadruped guidance robot system with a comfort-
based concept. We design a controllable traction device that
can adjust the length and force between human and robot to
ensure comfort. To allow the human to be guided safely and
comfortably to the target position in complex environments,
our proposed human motion planner can plan the traction
force with the force-based human motion model. To track the
planned force, we also propose a robot motion planner that
can generate the specific robot motion command and design
the force control device. Our system has been deployed on
Unitree Laikago quadrupedal platform and validated in real-
world scenarios. (Video1)

I. INTRODUCTION

Guide dogs can lead the visually impaired to avoid ob-
stacles, assist them with their daily activities and improve
their quality of life. However, the number of guide dogs is
extremely limited due to the high cost of time and money
in training. In recent years, quadruped robots have displayed
the ability to achieve challenging dynamic motions, such as
jumping over obstacles [1] and navigating through uneven
terrain [2]. Compared to high-cost guide dogs, quadruped
robots are likely to be owned by more visually impaired
people because of their high reproducibility and agility.

In previous guidance robot studies, whether the human
and the robot were linked by a rigid arm [3]–[6] or an
inelastic leash [7], they did not take into account the human
comfort, leading to a wide variation in traction force. A re-
cent study [8] discusses perceived safety (including comfort)
affecting physical human-robot interaction (pHRI), noting
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Fig. 1: A blind-folded person is guided by Laikago to turn out and
cross the corridor. The person is guided by an elastic rope and a
force control device is used to control the force to ensure comfort.

that significant factors include robot speed, motion fluency
and predictability, and smooth contacts. Our goal in this
paper is to propose a quadruped guidance robot system that
can safely guide the human in a narrow indoor environment
while taking comfort into account. Human motion depends
on the traction force and the human’s current state. When
the traction force is appropriate, human comfort will be
significantly improved. Therefore, we seek to emphasize the
force in the traction device and to design the corresponding
comfort-based planning and control system.

A. Related Work

Guidance assistive technologies capable of guiding the
visually impaired are a long-term study. As early as 1980,
the guide dog robot MELDOG [9] successfully achieved
the guiding task through experimental hardware. Initially,
guidance robots mostly used wheeled platforms [10]–[13],
which had limitations in complex terrain. With the advance-
ment of robotic mobile platforms, legged robots [6], [7] and
drones [14], [15] are also used for guidance, exerting superior
motion performance. Despite this, drones have insufficient
load capacity for installing sensors, whereas legged robots
are more viable due to their strong load capacity and agility.

Guiding the human is a complicated pHRI task. Modalities
include haptic feedback-based guidance [16] and auditory
guidance [17], [18], as well as traction. However, haptic
feedback approaches may not guarantee comfort due to
vibration, and auditory-based methods may be susceptible to
noise disturbance and may cause uncertainty in movement.
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Currently, most studies are based on traction guidance,
including the use of a rigid connection [3], [4], [19] or
a flexible connection [7], [9], [14] between a human and
a robot. Rigid connections may result in large changes in
the traction force on a human when walking or stopping
suddenly. Using a leash connection is more flexible, and [7]
considers a hybrid system model that includes leash slack
and tightness, but the long planning time may cause anxiety,
as well as discomfort when the leash changes repeatedly
from slack to taut. Another critical aspect that necessitates
attention is the absence of proper planning and control of
traction force in previous research. Although [7] proposed
the force of constraint to enable the planning behavior to be
more comfortable, it ignores the real-time feedback control
of the traction force.

To address the above problems, we aim to establish a
guidance robot system with a comfort-based concept through
force interaction. To solve appropriate traction forces (magni-
tude and direction), we develop a force-based human motion
model considering human “standing-walking” motion pattern
with reference to the minimum-jerk theory [20] and apply it
in the human motion planner. A controllable traction device
is introduced to enable force control. Given the expected
forces, the robot motion planner generates the velocity
commands for the robot to physically guide the human. The
overall comfort-based system enables the visually impaired
to traverse cluttered spaces while reducing discomfort.

B. Contributions

This work offers the following contributions:
• A novel autonomous guidance robotic system is in-

troduced, featuring a controllable traction device and
a planning and control framework based on comfort.
This system enables precise control of traction force
and promotes smooth interaction.

• A force-based human motion model is developed to
describe the human “standing-walking” motion pattern
in a robotic guidance system, enabling traction force
planning. The model is validated with experimental data
and the parameter is adaptively estimated.

• A human motion planner and a robot motion planner
are proposed to achieve collision-free human guidance
during navigation to the goal location while considering
the planning and control of traction forces.

• The guiding system is deployed on the Unitree Laikago
quadruped platform and validated in the experiment
with real-world scenarios. Comparative experiments
quantitatively and qualitatively demonstrate that the
proposed system can significantly improve the comfort
of guidance.

II. SYSTEM DESIGN

A. Hardware System

The quadruped guidance robot, depicted in Fig. 2, com-
prises three main components:

1) Robotic Platform: Unitree Laikago is a quadruped
robotic platform, with a length of 0.65m, a width of 0.35m, a

Fig. 2: The guidance robot consists of the quadruped platform (Fig.
2(a)), the sensors module (Fig. 2(b)), and the force control device
module (Fig. 2(c)). Two high-performance computers and a high-
capacity battery are equipped to support stable operation (Fig. 2(a)).

height of 0.6m, a maximum load of 5kg and a walking speed
of -0.5∼0.8m/s. The platform’s robust load capacity enables
more equipment and complex mechanisms to be integrated
into the system.

2) Sensors: A 2D LiDAR is used for perception and
localization. An RGB-D camera is mounted on the 1-DoF
gimbal to detect the human’s position.

3) Traction Device: The traction device is mounted at the
rear of the robot. It consists of an elastic rope and a force
control device (FCD) containing a support base, DC gear
motor, acrylic string reel, thin string, force sensor, motor
PID controller Arduino MEGA2560. Based on Hooke’s Law
F = K∆l, where K is the stiffness coefficient and ∆l is
the elongation, the magnitude of the traction force depends
on the length of the elastic rope. As demonstrated in Fig.
3, when the distance between the human and the robot
remains constant, the overall length of the elastic rope and
the thin string is fixed. The motor rotation can retract or
release the string, thus adjusting the elastic rope’s length.
Since the speed of retracting and releasing the string is
much higher than the relative speed between human and
robot, it can be assumed that the change of elastic rope’s
length in any short time depends on the motor speed, that
is, motor speed determines the change in force magnitude.
The motor controller receives the desired force magnitude
from the computer and the feedback from the force sensor,
calculates the required motor speed, and controls the motor,
thereby controlling the length of the elastic rope and finally
achieving the desired force.

 

Fig. 3: Illustration of the traction device (top view). The motor
rotates and retracts the string, causing the elastic rope longer and
the traction force larger.

B. System Framework

As shown in Fig. 4, the guiding system can be divided
into four modules: mapping and localization system, state
estimation, planning system and control system.
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Fig. 4: Overview of system framework. The mapping and localization system obtains the system state. After state estimation, the estimated
state is passed to the planner. The planner uses the grid map and estimated state to solve for the reference force and control inputs.

In the mapping and localization system, the LiDAR is
used for mapping and robot localization. LiDAR, gimbal,
and RGB-D camera jointly measure the human position. To
reduce the error, the Unscented Kalman Filter is used for
state estimation, as detailed in Sec.III-D.

During guidance, the planning system utilizes the grid
map, point cloud and estimated state to perform path plan-
ning and motion planning successively, while continuously
updating and replanning. The path planner follows the
approach described in Sec.III-E to obtain a collision-free
human path and passes it to the motion planner.

Considering that the human step frequency is relatively
low (<5Hz) while the robot and motor can be both controlled
at a high frequency, we separate human motion planning
from robot motion planning. The desired forces (magnitude
and direction) are computed in the human motion plan-
ning described in Sec.III-C. Concurrently, the robot motion
planning is performed in a separate thread based on MPC
to control the force direction, while the motor controller
performs high-frequency PID control of the force magnitude.
Finally, the human moves along the desired trajectory under
the traction of the elastic rope controlled by the robot and
the force control device.

III. METHODS

A. System Formulation

The guiding system consists of a human and a quadruped
robot connected by the traction device, as shown in Fig. 5(a).
To facilitate the analysis, we model the system in the 2D
plane. We define system state as x =

(
xh⊤,xd⊤, θ

)⊤ ∈
R5 in the world frame, where xh =

(
xh, yh

)⊤
and xd =(

xd, yd
)⊤

are the positions of human and robot respectively,
and θ is the yaw angle of the robot. In addition, several key
points are set on the robot. As shown in Fig. 5(b), xf =
xd − dcfeθ(eθ = (cos θ, sin θ)

⊤
) is the fixed point of the

traction device, where dcf is the distance between the fixed
point and the robot center. Furthermore, xdc1 , xdc2 are the

centers of the expansion circles for obstacle avoidance, and
the vector from the human to the rear of the robot is defined
as l = xf −xh = lel (ea for the unit direction vector of a).

 

Fig. 5: Configuration of the guiding system. Human is guided by
the traction device. System state is described by

(
xh, yh, xd, yd, θ

)
(Fig. 5(a)). Four key points xd, xf , xdc1 , xdc2 are set on the robot
(Fig. 5(b)).

B. Force-Based Human Motion Model

Previous study [7] did not quantitatively consider the
forces in the model because the forces could not be controlled
in real time. Benefiting from the robot’s agile movement and
the controllable traction device, we give priority to ensuring a
more comfortable force when guiding. Therefore, we do not
pay attention to the robot kinematics first, but consider the
movement trend of a human under a certain magnitude and
direction of force during walking. The force F = FeF ∈ R2

acting on the person is the focus of the analysis of human
motion. Obviously, the force is in the same direction as the
elastic rope, i.e., eF = el.

The human gait is discrete and can be represented by
xh
k+1 = xh

k +sk , where sk denotes one step. We determine
the human velocity by taking the ratio of the average step
size to the time interval, resulting in vh = s̄/T . Thus,
the discrete-time state equation of human can be written as
xh
k+1 = xh

k+vh
kT. When guided, the human’s motion can be

categorized into two states: standing and walking, denoted
as qs and qw, respectively.



1) Standing State: When the human is standing still, we
have vh = 0. The robot position can be computed by

xd = fd

(
xh,F , l, θ

)
= xh + leF + dcfeθ, (1)

as shown in Fig. 5
2) Walking State: When the human is walking, their

movement direction aligns with the force direction, and the
step size depends on the force magnitude. The experiment
in Sec.IV-A illustrates the relationship between the velocity
of the human moving along the rope direction and the force
as vhl = vh · el = αF + β(α, β ∈ R). The robot’s position
can still be computed by (1).

3) State Transfer Condition: A human switches from
standing to walking depending on the rate of change of
the applied force. According to the minimum-jerk theory
[20], when a sudden change in force is acted on to the
human’s arm, human tends to minimize jerk (derivative of
acceleration). Therefore, the human starts to walk in the force
direction. To keep walking, the magnitude of the force needs
to be greater than a certain threshold Fth, otherwise the
human will stop. Fig. 6 depicts the above state transitions.

 

Fig. 6: The human standing and walking state transition diagram,
the transition is determined by the human’s current state and force.

We define qs = 0, qw = 1, and change in force in time
interval T as ∆Fk = Fk+1 − Fk. The discretized state
transition equation is
qk+1 = δ (qk, Fk+1, Fk)

=


0, if (qk = 0 ∧ (∆Fk < δF · T ∧ Fk < Fth))

∨ (qk = 1 ∧ (∆Fk < −δF · T ∨ Fk < Fth))

1, if (qk = 0 ∧ (∆Fk ⩾ δF · T ∨ Fk ⩾ Fth))

∨ (qk = 1 ∧ (∆Fk ⩾ −δF · T ∧ Fk ⩾ Fth))

.

(2)

Thus, the human state equation is given by

xh
k+1 = fh

(
xh
k ,Fk, qk

)
= xh

k + qkv
hl
k eFk

T. (3)

4) Adaptive Parameter Estimation: We design an adaptive
identification module to obtain the parameters in the F −vhl

relationship of the first-time user. The module allows the
robot to perform uniformly accelerated linear motion with
force control device disabled and guides the human. By mea-
suring the actual velocity and force, after low-pass filtering
to reduce noise, the least-squares estimation is performed to
obtain the model parameters.

C. Motion Planning

Motion planning is essential for ensuring the safety and
comfort of human locomotion. Our guiding system employs
a two-stage approach to plan both human and robot mo-
tions. In the first stage, the human motion planner will
be performed using the force-based human motion model

introduced in Sec.III-B to obtain reference forces and pass it
to the force control device. In addition, the optimized values
from the first stage are passed to the robot motion planner
to solve the robot control inputs by applying MPC-based
trajectory tracking.

1) Human Motion Planning: The force-based human mo-
tion model is used to plan for the magnitude and direction
of the force that can guide the human comfortably along
the reference path. The robot position constraint needs to be
considered in the planning because the robot position deter-
mines the force direction and the robot obstacle avoidance is
a fairly strong constraint. We achieve force planning optimal
control by formulating the following MPC problem with an
N -step horizon:

min
{Fk,lk,θk}

∥∥xh
N − xh

target

∥∥2
Qh

t

+

N−1∑
k=0

(
∥∥xh

k − xh∗
k

∥∥2
Qh

+ ∥Fk+1 − Fk∥2QF
+ w∆θ (1− cos (θk+1 − θk))

+wl (K (lk+1 − lk)− (Fk+1 − Fk))
2
) (4a)

s.t. x0 = xcurr, q0 = qcurr (4b)

xh
k+1 = fh

(
xh
k ,Fk, qk

)
(4c)

xd
k+1 = fd

(
xh
k+1,Fk, lk, θk

)
(4d)

qk+1 = δ (qk, Fk+1, Fk) (4e)
Fmin ⩽ ∥Fk∥ ⩽ Fmax (4f)
lmin ⩽ lk ⩽ lmax (4g)〈
eFk+1

, eFk

〉
⩾ cos (φF ) (4h)

⟨eFk
, eθk⟩ ⩾ cos (φθ) (4i)∥∥xh

k − xobs
j

∥∥ ⩾ ds + rh + robs (4j)∥∥∥xdci
k − xobs

j

∥∥∥ ⩾ ds + rd + robs (i = 1, 2) (4k)

where ∥x∥Q :=
√
x⊤Qx. Qh

t , Qh, QF ∈ R2×2 are positive

definite, wl, w∆θ, wθ0 ∈ R are weights.
{
xh∗
k

}N

k=0
is the

reference human path, ds is the safety margin, rh, rd, robs
are the expansion radii of human, robot and obstacle, re-
spectively. φF is the upper bound of the force direction angle
change, and φθ is the upper bound of the difference between
the yaw angle and the force direction angle.

In the cost function,
∥∥xh

k − xh∗
k

∥∥2
Qh tracks the ref-

erence path and
∥∥xh

N − xh
target

∥∥2
Qh

t

is the terminal

cost. The term ∥Fk+1 − Fk∥2QF
smooths the force,

and w∆θ (1− cos (θk+1 − θk)) minimizes the changes in
yaw angle, which implies kinematic constraints. Further
more, wl (K (lk+1 − lk)− (Fk+1 − Fk))

2 ensures that force
changes are provided as far as possible by the deformation of
the elastic rope caused by the relative movement of human
and robot, minimizing motor rotation.

In the constraints, the human motion model is used to
compute the system state. In addition, the upper and lower
bounds of force and the length, the change of the force di-
rection, the angle between yaw angle and the force direction
are constrained in (4f), (4g), (4h), (4i), respectively. We use
one circle to cover the human and two circles to cover the
robot as shown in Fig. 5 to avoid obstacles by (4j) and (4k).



2) Robot Motion Planning: The robot motion planning
aims to obtain robot high-level velocity input. The optimal
reference {F ∗

k , l
∗
k, θ

∗
k} obtained from the previous stage is

applied to robot motion planning. Knowing F ∗
k and the

current state of the human, we can obtain the expected
position and the human state

(
xh∗
k ,qh∗

k

)
by (2) and (3).

xd∗
k can be computed by (1) using (l∗k, θ

∗
k). Moreover, robot

position can be calculated by
x̃d
k+1 = x̃d

k +DRz,kukT where x̃d =
(
xd, yd, θ

)⊤
, and

u = (vx, vy, ω)
⊤ represents robot’s control input. D ∈ R3×3

is the velocity discount coefficient matrix caused by being
pulled (identity matrix when in standing state), Rz ∈ R3×3

is the rotation matrix. Based on an MPC problem with a
horizon of M steps, we minimize the cost function

J (u) =

M−1∑
k=0

(∥∥x̃d
k − x̃d∗

k

∥∥2
Qd + ∥uk∥2Rd

)
, (5)

where Qd,Rd ∈ R3×3 are positive definite. The constraints
(4j) and (4k) are used for obstacle avoidance. We formulate
these two motion planning problems in CasADi [21] and
solve them by IPOPT [22].

D. State Observation and Estimation

Cartographer [23] is used for real-time mapping and robot
localization, and DNN-based Face Detection and Recogni-
tion [24] is used to get the human position. The camera is
mounted on a gimbal with coordinates xd, providing rotation
to maintain the face at the center of the image. We denote the
average depth of facial feature points as Df , gimbal’s yaw
as ϕ, and the horizontal distance between human and camera
as lc = Df/ cosφ − (H − hc) tanφ, where H is human’s
height and φ, hc are the camera’s fixed inclination angle and
height, respectively. Then human position xh = xd− lceθ+ϕ

can be obtained.
Unscented Kalman Filter (UKF) is used for state esti-

mation. The weight of the center point is set to be ω0 =
k/ (n+ k), and the weight of the remaining points is ωi =
1/2(n + k). When the human is walking, the system state
can be computed by

x+ = x+

([
αI2 0
0 DRz

] [
F
u

]
+

[
βeF
0

])
T+w (6)

and when human is standing, the state can be computed by

x+ = x+ (0,RzuT )
⊤
+w (7)

where w is process noise. The covariance of w is Q =

diag
(
σ2
F,xh , σ

2
F,yh , σ

2
x, σ

2
y, σ

2
θ

)
, where σ2

x, σ2
y , σ2

θ are the
variances of x, y, θ, respectively, generated by the uncer-
tainty in the motion of the quadruped robot, and σ2

F,xh , σ2
F,yh

are the error, generated by fitting F − vhl relationship. For
each measurement, observation equation is as follows:

ẑ =
(
l̂, ϕ̂, x̂d, ŷd, θ̂

)⊤
=

(
l, θh − θ, xd, yd, θ

)⊤
+ v (8)

where v is is process noise. And its covariance is R =

diag
(
σ2
l , σ

2
ϕ, σ

2
s,x, σ

2
s,y, σ

2
s,θ

)
, introduced by human position

measurement and Cartographer, respectively.

E. Path Planning

We use a heap-based A* planner over the grid map to
generate a collision-free set of human waypoints. The human
coordinate is extended to x̃h =

(
xh, yh, θh

)⊤ ∈ R3. The
transition between nodes representing one step of a human
is defined as

(
∆L,∆θh

)
, where ∆L =

√
(∆xh)2 + (∆yh)2

represents the human’s step size and ∆θh represents the dif-
ference in the direction angle of the step. By limiting the size
of ∆θh, the direction of human movement can not be greatly
changed. The node cost g(x̃h

n) =
∑n

i=1

∥∥x̃h
i − x̃h

i−1

∥∥
2

and
the heuristic cost h(x̃h

n) =
∥∥x̃h

n − x̃h
target

∥∥
2
. We assume

that human always move in the direction of force. Since
eF = el, robot’s position can be calculated from θh and
the rope’s length. We use breadth-first search to determine
whether there is a continuous collision-free trajectory for the
robot to go from xd

n−1 to xd
n, in order to judge whether the

human can transfer from x̃h
n−1 to x̃h

n.

IV. EXPERIMENTS

A. Relationship Between Traction Force and Human Velocity

To develop the human motion model, we studied the
relationship between human walking velocity and force.
Measurements from different subjects reveal that the velocity
of a human moving in the direction of the rope is roughly
linearly related to the traction force and can be described as
a linear function of slope α and intercept β.

Fig. 7 shows the different responses to force and the
parameters of adaptation for two different subjects.

Fig. 7: F −vhl curves of two test subjects H1, H2. The parameters
of the least-squares fit are: α1 = 0.0105, β1 = −0.0290; α2 =
0.0278, β2 = 0.0444.

B. Robot Guiding Human Experiments

We conducted experiments in several real-world scenarios
as shown in Fig. 8. Using UKF on the observations, we
represented the uncertainty in the human’s location as a
gray ellipse in Fig. 9(a). As the robot began to move, the
observation data was continuously updated, leading to a
gradual decrease and stabilization of uncertainty for both the
human and robot positions.

Due to the long length of the system configuration, acci-
dents may occur if a rigid arm or an inelastic rope is used for
guidance. For example, the robot may repeatedly adjust and
try to pull the human through, which will cause the person
to repeatedly walk and stop many times in a short period
and increase anxiety leading to discomfort. In contrast, our
approach can guide the human with more appropriate force
and fewer pauses. During 61∼64s and 76∼83s shown in Fig.
9(c), it was difficult for the human and robot to move and
pass through the narrow bend at the same time. The human



(a) (b) (c) (d)
 

Fig. 8: Snapshots of the guiding experiment in a real-world scenario. Laikago guided a blind-folded person from the elevator lobby,
through two doors and two corridors, to the target position in the laboratory. The door closer to the starting point is 1.1m in width while
the other is 1.3m in width, and the two corridor widths are 1.5m and 1m.

(a) Human trajectory with uncer-
tainty and planned forces.

(b) Curves of the force magnitude for
different methods at the same turn.

(c) Force magnitude and direction (the initial angle is set to 0).

Fig. 9: Experimental data of the guiding process. Fig. 9(a) is the
intercepted portion of the human trajectory (with 95% confidence
interval) and the planned force. Fig. 9(b) depicts the force magni-
tude for the comparison experiment in the identical bend. Fig. 9(c)
shows the magnitude and direction of the planned and actual force.

motion planner therefore caused the force to drop, and the
human stopped after feeling it. At this point, the robot was
free to move and the motor released the string to reduce the
force ensuring that the human stands still without taking a
step. After the robot had been adjusted to a position suitable
for traction, the motor retracted the string and the elastic
rope started to pull the human along. It can be seen that the
human did not walk and stop due to repeated changes in
force, resulting in uncertainty and discomfort.

We evaluate the comfort of different guiding approaches in
the identical scenario using (i) inelastic rope (without FCD,
e.g., [7]), (ii) elastic rope (without FCD), and (iii) elastic
rope with FCD (our approach) for experiments. To assess
comfort, we define four metrics and calculate the relative
comfort index (RCI) using TOPSIS [25] shown in Table
I. Ḟrms and θ̇hrms reflect human linear and angular accel-
eration, respectively, which are proxies for motion fluency
and contact smoothness; tF>Fmax is the duration of force

exceeding the specified maximum value, characterizing the
appropriate traction force and walking velocity, with smaller
values relieving fear; Nch. is the number of state changes,
fewer state transitions can reduce anxiety, ensure the fluency
and predictability of motion. RCI is a weighted evaluation
of the above four metrics.

TABLE I: Results of Comfort Metrics for Different Approaches

Methods Ḟrms θ̇hrms tF>Fmax Nch. RCI
Inelas. 16.700 0.110 17.166 20 0.1082
Elas. 7.187 0.117 3.478 14 0.5905

Elas.+FCD (Ours) 6.390 0.104 0.483 6 0.8820

Planned 5.681 0.097 0 6 1

Table I demonstrates that the comfort-based planning
approach results in more appropriate force and reduces the
number of state changes, outperforming (i) in all metrics.
So Planned has the best RCI, while (i) exhibits the worst.
By comparing (i) and (ii), it can be found that the elastic
rope can act as a shock absorber against the change in force
magnitude, thus significantly reducing Ḟrms, tF>Fmax , Nch.

and improving RCI. With the addition of FCD, the traction
force on the elastic rope can be controlled. Therefore the
force of (iii) is closer to the planned value and the metrics
and RCI of (iii) are further improved compared to (ii). These
conclusions can also be seen qualitatively in Fig.9(b).

V. CONCLUSION AND FUTURE WORK

This work proposes a comfort-based quadruped guidance
robot system for planning and controlling traction for the
visually impaired. A force-based human motion model is
developed to solve the appropriate magnitude and direction
of traction forces in a human motion planner. A traction
device, including a force control device and an elastic rope,
is designed to ensure force magnitude. A robot motion
planner is used to solve the robot velocity input, which
ensures the force direction. The proposed approach was
deployed and validated on Unitree Laikago to guide blind-
folded people in narrow corridors. Experiments comparing
different guidance approaches supported the effectiveness of
our system in improving comfort. Future work will focus
on more complex applications in large-scale scenarios, such
as cross-floor guidance tasks and safe sidewalk navigation
considering dynamic obstacles.
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mobile robot: Robotic guide dog for aid of visual disabilities in urban
environments,” in 2019 Latin American Robotics Symposium (LARS),
2019 Brazilian Symposium on Robotics (SBR) and 2019 Workshop on
Robotics in Education (WRE). IEEE, 2019, pp. 104–108.

[14] E. Folmer, “Exploring the use of an aerial robot to guide blind
runners,” ACM SIGACCESS accessibility and computing, no. 112, pp.
3–7, 2015.

[15] H. Tan, C. Chen, X. Luo, J. Zhang, C. Seibold, K. Yang, and
R. Stiefelhagen, “Flying guide dog: Walkable path discovery for the
visually impaired utilizing drones and transformer-based semantic
segmentation,” 2021 IEEE International Conference on Robotics and
Biomimetics (ROBIO), pp. 1123–1128, 2021.

[16] R. K. Katzschmann, B. Araki, and D. Rus, “Safe local navigation
for visually impaired users with a time-of-flight and haptic feedback
device,” IEEE Transactions on Neural Systems and Rehabilitation
Engineering, vol. 26, no. 3, pp. 583–593, 2018.

[17] S. Kalpana, S. Rajagopalan, R. Ranjith, and R. Gomathi, “Voice
recognition based multi robot for blind people using lidar sensor,” in
2020 International Conference on System, Computation, Automation
and Networking (ICSCAN). IEEE, 2020, pp. 1–6.

[18] L. Yang, I. Herzi, A. Zakhor, A. Hiremath, S. Bazargan, and R. Tames-
Gadam, “Indoor query system for the visually impaired,” in Interna-

tional Conference on Computers Helping People with Special Needs.
Springer, 2020, pp. 517–525.

[19] C. Ye, S. Hong, X. Qian, and W. Wu, “Co-robotic cane: A new robotic
navigation aid for the visually impaired,” IEEE Systems, Man, and
Cybernetics Magazine, vol. 2, no. 2, pp. 33–42, 2016.

[20] T. Flush, “The coordination of arm movements: an experimentally
confirmed mathematical model.” J. neurosciences, vol. 5, 1987.

[21] J. A. Andersson, J. Gillis, G. Horn, J. B. Rawlings, and M. Diehl,
“Casadi: a software framework for nonlinear optimization and optimal
control,” Mathematical Programming Computation, vol. 11, no. 1, pp.
1–36, 2019.

[22] L. T. Biegler and V. M. Zavala, “Large-scale nonlinear programming
using ipopt: An integrating framework for enterprise-wide dynamic
optimization,” Computers and Chemical Engineering, vol. 33, no. 3,
pp. 575–582, 2009.

[23] W. Hess, D. Kohler, H. Rapp, and D. Andor, “Real-time loop closure
in 2d lidar slam,” in 2016 IEEE International Conference on Robotics
and Automation (ICRA), 2016, pp. 1271–1278.

[24] G. Bradski and A. Kaehler, Learning OpenCV: Computer vision with
the OpenCV library. ” O’Reilly Media, Inc.”, 2008.

[25] C.-L. Hwang and K. Yoon, “Methods for multiple attribute decision
making,” in Multiple attribute decision making. Springer, 1981, pp.
58–191.


	Introduction
	Related Work
	Contributions

	System Design
	Hardware System
	System Framework

	Methods
	System Formulation
	Force-Based Human Motion Model
	Motion Planning
	State Observation and Estimation
	Path Planning

	Experiments
	Relationship Between Traction Force and Human Velocity
	Robot Guiding Human Experiments

	Conclusion and Future Work
	References

