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Abstract— Estimating terrain traversability in off-road en-
vironments requires reasoning about complex interaction dy-
namics between the robot and these terrains. However, it is
challenging to create informative labels to learn a model in a
supervised manner for these interactions. We propose a method
that learns to predict traversability costmaps by combining
exteroceptive environmental information with proprioceptive
terrain interaction feedback in a self-supervised manner. Addi-
tionally, we propose a novel way of incorporating robot velocity
into the costmap prediction pipeline. We validate our method in
multiple short and large-scale navigation tasks on challenging
off-road terrains using two different large, all-terrain robots.
Our short-scale navigation results show that using our learned
costmaps leads to overall smoother navigation, and provides
the robot with a more fine-grained understanding of the robot-
terrain interactions. Our large-scale navigation trials show
that we can reduce the number of interventions by up to
57% compared to an occupancy-based navigation baseline in
challenging off-road courses ranging from 400 m to 3150 m.
Appendix and full experiment videos can be found in our
website: https://mateoguaman.github.io/hdif.

I. INTRODUCTION

Outdoor, unstructured environments are challenging for
robots to navigate. Rough interactions with terrain can result
in a number of undesirable effects, such as rider discomfort,
error in state estimation, or even failure of robot components.
Unfortunately, it can be challenging to predict these interac-
tions a priori from exteroceptive information alone. Certain
characteristics of the terrain, such as slope, irregularities
in height, the deformability of the ground surface, and the
compliance of the objects on the ground, affect the dynam-
ics of the robot as it traverses over these features. While
these terrain characteristics can be sensed by proprioceptive
sensors like Inertial Measurement Units (IMUs) and wheel
encoders, these modalities require direct contact with the
terrain itself. Additionally, the robot’s interaction with the
ground leads to dynamic forces which are proportional to
velocity and suspension characteristics. In order to feel what

*Research was sponsored by the Army Research Laboratory and was
accomplished under Cooperative Agreement number W911NF-21-2-0152.
The views and conclusions contained in this document are those of the
authors and should not be interpreted as representing the official policies,
either expressed or implied, of the Army Research Laboratory or the U.S.
Government. The U.S. Government is authorized to reproduce and distribute
reprints for Government purposes notwithstanding any copyright notation
herein.

1 Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, USA.
{mguamanc, striest,wenshanw,basti}@andrew.cmu.edu

2 DEVCOM Army Research Laboratory, Adelphi, MD, USA.
{jason.m.gregory1.civ, john.g.rogers59.civ}@army.mil

3Booz Allen Hamilton, McLean, VA 22102, USA
sanchez felix@bah.com

Fig. 1: We present a costmap learning method for off-road
navigation. We demonstrate the efficacy of our method on a
large ATV (left), and on a Warthog UGV robot (right).

navigating over some terrain at some velocity is like, we
argue that the robot must actually traverse over it.

Previous approaches for off-road traversability have fo-
cused on representing exteroceptive information as occu-
pancy maps [1,2], or learning semantic classifiers from
labeled data to map different terrains to different costs in
a costmap [3,4]. Yet, this abstracts away all the nuance of
the interactions between the robot and different terrain types.
Under an occupancy-based paradigm, concrete, sand, and
mud would be equally traversable, whereas tall rocks, grass,
and bushes would be equally non-traversable. In reality,
specific instances of a class may have varying degrees of
traversability (e.g. some bushes are traversable but not all).

Other approaches have characterized terrain roughness
directly from geometric features [5–7]. Yet, what we are
really interested in capturing is roughness as the vehicle
experienced it, rather than capturing the appearance or ge-
ometry of roughness. For instance, a point cloud of tall grass
might appear rough, but traversing over this grass could still
lead to smooth navigation if the terrain under the grass is
smooth. Finally, other learning-based methods learn predic-
tive models or direct control policies for off-road navigation
[8]. However, many of these do not take into account robot
dynamics, which are fundamental in scenarios where the
state of the robot, such as its velocity, can lead to a wide
range of behaviors. For instance, speeding up before driving
over a bump in the terrain can lead to jumping, whereas
slowing down will usually result in smoother navigation.

In this paper, we propose a self-supervised method that
predicts costmaps that reflect nuanced terrain interaction
properties relevant to ground navigation. Motivated by ex-
amples in legged locomotion [9], we approach this problem
by learning a mapping from rich exteroceptive information
and robot velocity to a continuous traversability cost derived
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from IMU data. We propose a learning architecture which
combines a CNN backbone to process high-dimensional
exteroceptive information with a feed-forward network that
takes in a Fourier parameterization of the low-dimensional
velocity information, inspired by recent advances in implicit
representation learning [10,11].

Our main contributions are: a) learning to aggregate vi-
sual, geometric, and velocity information directly into a
continuous-valued costmap, without human-annotated labels,
and b) demonstrating ease of integration into traditional
navigation stacks to improve navigation performance, due
to our choice of using a top-down metric representation. In
the rest of this paper, we present our contributions in more
detail as follows:
• We present an IMU-derived traversability cost that can be

used as a self-supervised pseudo ground-truth for training.
• We demonstrate a novel way to combine low-dimensional

dynamics information with high-dimensional visual fea-
tures through Fourier feature mapping [11].

• We propose a system that produces continuous-valued
learned costmaps through a combination of visual and
geometric information, and robot velocity.

• We validate our method on outdoor navigation tasks using
two different ground robots.

II. RELATED WORK

There exists over a decade of work in learning methods
for off-road traversability [12–18], much of which can be
traced to the DARPA LAGR [19] and Grand Challenge
[20] programs. These methods learned lightweight terrain
traversability classifiers based on visual and geometric ap-
pearance [12–14,16–18]. Other approaches directly estimate
a terrain roughness score by analyzing planarity [6] or
eigenvalues of the terrain point cloud [5].

Much of the recent literature on learning for off-road
traversability estimation has focused on semantic segmen-
tation of visual data into discrete classes [3,21]. However,
it is not immediately obvious how to map human semantic
classes into costs that can be directly used for path planning
and control, which often results in hard-coded mappings.
More recent work by Shaban et al. [22] aims to alleviate the
need for explicit mappings from human semantic classes to
costs by directly learning discrete traversability classes, such
as low-cost and high-cost, in a metric space from geometric
data. Yet, these approaches require a large amount of labeled
semantic data for training, and lack expressiveness given the
limited number of traversability classes.

Recently, other works have looked into learning predictive
models, control policies, and risk-aware costmaps directly
from visual and multimodal inputs for navigation in challeng-
ing off-road environments. While BADGR-based methods
[8,23] learn a boolean predictor for whether a specific
sequence of actions will lead to a bumpy trajectory, we learn
a continuous value for traversability that is aggregated into
a costmap that can be used directly to optimize trajectories,
without the need to query the network for every sample of
our MPPI optimizer [24]. Triest et al. [25] learn a neural

network-based dynamics model for a large ATV vehicle and
explore the use of different types of multimodal data as input
to their neural network. Sivaprakasam et al. [26] learn a
dynamics model in simulation to derive a dynamics-aware
cost function for downstream planning tasks. Fan et al. [27]
learn a traversability risk costmap from lidar data, and Cai
et al. [28] learn a speed distribution map that is converted
into a costmap using a conditional value at risk (CVaR)
formulation. Triest et al. [29] learn CVaR-based uncertainty-
aware traversability costmaps from lidar data using inverse
reinforcement learning.

Most recently, traversability estimation for off-road robots
has shifted towards learning continuous costmaps in a self-
supervised manner with IMU signals as learning targets,
with these methods learning from RGB data [9,30,31], or
point clouds [32], and [30,32] conditioning on robot speed
similar to our approach. We use both RGB and point cloud
data in our approach to generate high-resolution, continuous
costmaps, and we demonstrate our approach in large-scale,
challenging off-road courses at much higher speeds on two
different large robot platforms.

III. COSTMAP LEARNING

We now introduce our self-supervised costmap learning
method, which associates a proprioception-derived cost to
high-dimensional visual and geometric data, and robot ve-
locity. In the following section, we will describe our costmap
learning pipeline (Figure 2), which consists of:
1) Derivation of a cost function from proprioception,
2) Extraction of a map-based representation from visual and

geometric data,
3) Representation of velocity as an input to our model, and
4) Training a neural network to predict traversability cost.

A. Pseudo-Ground Truth Traversability Cost

We aim to learn a continuous, normalized traversability
cost that describes the interactions between the ground and
the robot, and which can be directly used for path planning.
As shown in previous work [9,15,18], linear acceleration
in the z axis, as well as its frequency response, capture
traversability properties of the environment that not only
depend on the characteristics of the ground, but also on
the speed of the robot. To obtain a single scalar value that
generally describes traversability properties of the terrain,
such as the roughness, bumpiness, and deformability, we use
the bandpower of the IMU linear acceleration of the robot
in the z axis:

ĉ =

∫ fmax

fmin

SWaz (f) df, (1)

where ĉ is our estimated traversability cost, SWaz is the
power spectral density (PSD) of the linear acceleration az
in the z axis, calculated using Welch’s method [33], , and
fmin and fmax describe the frequency band used to compute
bandpower. We use a frequency range of 1-30 Hz, since
this range highly correlates with human-labeled roughness
scores, and normalize based on data statistics from recorded
trajectories, as detailed in the Appendix.



Fig. 2: System Overview: During training, the network takes in patches cropped from a top-down colored map and height
map along the driving trajectory, as well as the parameterized velocity corresponding to each patch. The network predicts
a traversability cost for each patch, supervised by a pseudo ground-truth cost generated from IMU data. During testing, the
whole map is subsampled into small patches, which are fed into the network to generate a dense, continuous costmap.

B. Mapping

We represent the exteroceptive information about the
environment in bird’s eye view (BEV), which allows us
to aggregate visual and geometric information in the same
space, which we refer to as the “local map.” We use a stereo
matching network [34] to obtain a disparity image, from
which we estimate the camera odometry using TartanVO
[35], a learning-based visual odometry algorithm. We use this
odometry and the RGB data to register and colorize a dense
point cloud which we then project into a BEV local map.
The local map consists of a stacked RGB map, containing the
average RGB value of each cell, and a height map, containing
the minimum, maximum, mean, and standard deviation of
the height of the points in each cell, ignoring all points 2
meters above the ground surface to deal with overhangs.
Additionally, we include a boolean mask that describes areas
in the local map for which we have no information, either
due to occlusions or limited field of view of the sensors.

C. Velocity Parameterization

At high speeds, rough terrain leads to higher shock sensed
by the vehicle, proportional to its speed, as explored in [18].
We obtain velocity-conditioned costmaps by including robot
velocity as an input to our network.

In order to balance the high-dimensional local map input
and the low-dimensional velocity input, we use Fourier fea-
ture mapping [11] on the robot’s velocity. Recent advances
in implicit neural representations have shown that mapping
a low-dimensional vector (or scalar) to a higher dimen-
sional representation using Fourier features can modulate
the spectral bias of MLPs (which is usually biased towards
low-frequency functions [36]) towards higher frequencies by
adjusting the scale of the Fourier frequencies. Intuitively,
we hypothesize that this parameterization lets the netwrok
learn a function that more readily adjusts to subtle changes
in velocity input, and prevents the network’s predictions from
being dominated by the high-dimensional 2D inputs. We use

the following parameterization:

γ(v) =


cos(2πb1v)
sin(2πb1v)

...
cos(2πbmv)
sin(2πbmv)

 (2)

In Equation 2, v corresponds to the norm of the 3D
velocity vector, bi ∼ N (0, σ2) are sampled from a Gaussian
distribution with tunable scale σ, and m corresponds to the
number of frequencies used to map the scalar velocity value
into a 2m dimensional vector.

D. Costmap Learning

Our costmap learning pipeline consists of three parts:
a) obtaining local map patches from robot trajectories, b)
training a network to predict traversability costs from a set
of patches and associated pseudo ground-truth labels, and c)
populating a cost map using the trained network at test time.

Local Map Patches: We extract 2x2 meter patches
(roughly the robot footprint) of the local map corresponding
to the parts of the environment that the robot traversed over
during the dataset generation. Since the patch under the robot
is not observable from a front-facing view, we first register
all the local maps into an aggregated map. We use the robot
odometry to locate and extract the patch in the global map
at a given 2D position and orientation. At each of these
positions, we use a sliding window of the last one second
of IMU linear acceleration data to obtain a pseudo ground-
truth traversability cost as described in Section III-A. We
also record the velocity at these positions for training.

Cost Learning: We train a deep neural network fθ(P, v)
parameterized by weights θ, as shown in Figure 2, that takes
in as input local map terrain patches P ∈ P and corre-
sponding Fourier-parameterized velocities γ(v), γ : R+ →
R2m, and predicts the traversability cost of each patch ĉ =
fθ(P, γ), fθ : P × R2m → R+. We use a ResNet18 [37]



backbone to extract features from the patches, and a 3-layer
MLP to extract features from the parameterized velocity.
Finally, we concatenate these features and pass them through
a fully-connected layer with sigmoid activation to obtain a
normalized scalar value representing the learned traversabil-
ity cost. We train this network using a Mean Squared Error
(MSE) loss between the predicted costs and the pseudo
ground-truth values using the Adam [38] optimizer.

Costmap Prediction: We produce costmaps at test time
by taking the current local map in front of the robot, extract-
ing patches at uniformly sampled positions (with the same
orientation as the robot’s current orientation), and passing
them into the network. We then reshape each of the cost
predictions into a costmap that corresponds to the original
local map. We find that it is important to add a stride in the
sampling process to allow the patch cost querying through
the network to run in real time. In our experiments, we
subsample the local map with a stride of 0.2m, and upsample
the reshaped predicted cost values back to the shape of the
local map, which allows us to produce costmaps at 7-8 Hz
on an onboard NVIDIA GeForce RTX 3080 Laptop GPU.

IV. EXPERIMENTAL RESULTS

A. Training Data

To train our network, we use TartanDrive [25], a large-
scale off-road dataset containing roughly 5 hours of rough
terrain traversal using a commercial ATV with a sensor suite.
We use the stereo images in the dataset to obtain dense
point clouds using TartanVO [35] (section III-B), as well
as the IMU and odometry data to obtain traversability costs
and velocities, respectively. In order to effectively train our
network, we find it necessary to augment and balance the
data with respect to the pseudo ground-truth traversability
cost. We enforce a 2:1 ratio of high to low cost frames,
resulting in 15K training frames, and 3K validation frames.
Additionally, we fine-tune the base model with 9.5K training
frames and 1.3K validation frames collected on the Warthog
platform for our Warthog experiments.

B. Navigation Stack

We validate our learned costmaps in off-road navigation
tasks, where the goal is to navigate to a target location.
For state estimation, we use Super Odometry [39] on the
commercial ATV and a pose graph-based SLAM system on
the Warthog [40]. For path planning and control, we use
model predictive path integral control (MPPI) [24]. We plan
through a kinematic bicycle model with actuator limits on
both the ATV and the Warthog. In order to obtain costs
that can be used for the MPPI optimization objective, we
query the learned costmap via Equation 3. This cost function
queries the costmap for each state-action pair in the trajectory
τ and sums it with a weighted Euclidean distance between
the final state and the goal g (where p(s) extracts the x-y
position of state s). Since our learned costmap only learns
costs for parts of the terrain it has driven over, it will not
know what cost to assign to obstacles that the robot is
incapable of traversing over. We alleviate this by composing

Fig. 3: Learned Traversability Costmaps: a), b), and c) show
the robot’s front-facing view, the corresponding RGB map,
and the predicted costmap respectively. d), e), and f) show
a manually annotated version of a), b), and c) for easier
visualization of the different traversability properties that our
costmap captures. We set the unknown regions to have a cost
of 0.5 as shown in c), which we mask out in f).

our learned costmap with a lethal height costmap for obstacle
avoidance (with a high threshold), resulting in costmap Jmap.
Kg is found empirically.

J(τ) =

T∑
t=0

[Jmap(st, at)] +Kg||(p(sT )− g)||2 (3)

C. Robot Platforms

We demonstrate our system on two different ground
robots autonomously operating at 3 m/s: a large all-terrain
autonomous commercial vehicle (ATV), and a Clearpath
Warthog robot [41], a large unmanned ground vehicle
(UGV). For more hardware details, please see our Appendix.

D. Results

In our experiments, we are interested in answering the
following questions:
1) Do our learned costmaps capture more nuance than the

baseline lethal-height costmaps?
2) How much of an effect does velocity have in our predicted

costmaps?
3) Do we obtain more intuitive behaviors and better navi-

gation performance using learned costmaps inside a full
navigation stack?

4) How well does our method transfer to other robots?
Do learned costmaps show more nuance? To observe

trends in the learned costmap, we tele-operated the ATV
around our test site and visually analyzed the predicted
costmaps in different environments. We observe that our
learned costmaps are able to estimate different costs for
terrains of the same height but with different traversability
properties. In Figure 3, we show a scenario with gravel,
smooth dirt, and vegetation, where our costmap predicts
different costs for these different terrains.

We notice some particular trends in our experiments.
Transitions in texture from one terrain to another are usually
discernible in our costmaps. Terrains covered in grass exhibit



Roughness Estimator Val. Loss (×10−2)
σz [42] + v 6.08

σz [42] + RGB + v 5.92
Ours 4.82

TABLE I: Comparison to other appearance-based roughness
estimators. Our method outperforms both a geometric, as
well as a geometric and visual roughness estimators.

a higher cost than smooth dirt paths. Finally, terrains with
higher frequency textures, such as large patches of gravel,
are predicted to have higher costs than smooth terrains.

Does velocity affect the predicted costmaps? We eval-
uate whether adding velocity as an input to our network
improves the loss achieved in the validation set. We analyze
three different models:
1) patch-model: just the ResNet backbone for patch feature

extraction.
2) patch-vel-model: combines the ResNet backbone with an

MLP to processes normalized velocity.
3) patch-Fourier-vel-model: combines the ResNet back-

bone with an MLP that processes Fourier-parameterized
normalized velocity.

Training results for all three models and ablations are
shown for five random seeds in the Appendix. We find
that adding velocity as an input to the network leads to
better performance than using local map patches alone, and
that the patch-Fourier-vel-model performs best as
measured by the validation loss. Our ablations show that
using both RGB and height statistics performs slightly better
than using just RGB, and that the scale and number of
frequencies used for Fourier parameter mapping of velocity
do not make much of a difference.

We compare our method with two appearance-based
roughness baselines to evaluate whether our network cap-
tures more accurately the robot-terrain interactions. The first
baseline characterizes roughness as the standard deviation of
height in a given patch [42]. We extend this metric with the
average RGB values in a patch for our second baseline. For
a fair comparison, we add normalized velocity as an input to
both baselines. We learn the weights for a linear combination
of these inputs through logistic regression. We compare with
our best learned model in the validation set (Table I).

We also evaluate the effect of robot speed in the predicted
costmaps in a real-robot experiment. In this experiment,
we command the ATV different velocities and aggregate
the average predicted cost over a straight 200 m trail with
similar terrain characteristics throughout. Additionally, we
integrate the sum of costs of the entire costmap (energy)
along the trajectory. We summarize the results in Table II,
and show the resulting costmaps in the Appendix. We find
that traversability cost and overall costmap energy generally
increase as robot speed increases.

Do learned costmaps improve short-scale navigation?
We deploy our learned costmaps within a full navigation
stack in two different navigation tasks, and compare the
performance against a navigation stack which uses just a
baseline geometric occupancy-based costmap. When using
our learned costmaps, we compose them with the occupancy-

Velocity Pred. Traj. Cost GT Traj. Cost Costmap Energy
3 m/s 0.093 0.038 0.185
5 m/s 0.163 0.055 0.250
7 m/s 0.201 0.084 0.289

10 m/s 0.195 0.106 0.266

TABLE II: Effect of velocity on the predicted costmap in
a real-robot experiment. Higher speeds generally result in
higher costs, both on the robot’s trajectory and the costmap
as a whole. Note that while the IMU-based ground truth cost
increases monotonically as velocity increases, the predicted
cost stops increasing after 7 m/s likely due to lack of enough
training data at higher speeds.

Fig. 4: Short-scale navigation experiment (ATV-Warehouse).
When using our costmap, the robot deviates from the straight
path to the goal and chooses the smoother dirt path (e) over
the patch of vegetation (d) to get to the goal. a) Sketch of the
trajectories taken when using the baseline stack (blue) and
our stack (red). The green square is the start position, and
the pink cross is the goal position. One trajectory ends in
an intervention (triangle) due to the robot taking an equally-
smooth dirt path to avoid the grass. b), d), and e) show front-
facing views at those points in the trajectory. c) shows all
trajectories, as well as the direct path to the goal (black).

Fig. 5: Overview of large-scale navigation experiments. The
leftmost figure shows a satellite view of the three courses:
red, blue, and green. The top row shows sample aerial views
of the courses, while the bottom row shows sample first-
person robot images. The color of the rectangle around the
picture denotes the course.

based costmap to provide basic obstacle avoidance capabil-
ities. We set the lethal height to be 1.5 m and all unknown
regions to have a cost of 0.5 for all experiments.

We set up two navigation courses for the ATV, ATV-
Warehouse (Figure 4) and ATV-Turnpike, where the task is
to simply move 400m and 200m straight ahead, respectively.
We design these controlled courses such that a straight path
would lead the robot to go over rougher terrain or patches
of vegetation, but reasoning about the terrain would lead the
robot to take a detour to stay on smoother trails. For ATV-
Warehouse, we run five trials with our learned costmap and
five trials with the baseline costmap, and for ATV-Turnpike,



Course Nav. Stack Avg. CTE (m)
ATV-Warehouse Baseline 1.29± 1.02
ATV-Warehouse HDIF (Ours) 3.39± 0.94

ATV-Pole Baseline 2.44± 2.25
ATV-Pole HDIF (Ours) 2.68± 0.41

TABLE III: Avg. Cross-track error (CTE) between planned
paths and the shortest path to goal. Learned costmaps re-
sulted in trajectories that deviated more from the shortest
path to avoid areas of higher cost, e.g. grass or gravel.

we run three trials for each costmap.
The baseline costmap leads the robot to navigate in a

straight line (with some noise), which leads straight into the
patch of vegetation. Additionally, this baseline stack leads to
less consistent navigation, which occurs because most of the
terrain in front of the robot appears to be “traversable,” since
there are no obstacles above the 1.5 m lethal height, which
leads to many different “optimal” paths. On the other hand,
our learned costmaps cause the robot to consistently navigate
around the patch, staying on marked paths, and even moving
away from parts of the path with gravel towards smoother
sections of the trail.

We measure the cross-track error (CTE) as a way of
measuring the deviation of the chosen path from a naı̈ve,
straight path to the goal. In this case, lower is not necessarily
better, since the experiment is explicitly designed for the
robot to deviate from the straight path to find the smoother
trails if it is able to reason about different terrains. We show
the preferred paths in Figure 4, and numerical results in Table
III. ATV-Turnpike experiment details are in the Appendix.

Do learned costmaps improve large-scale navigation?
To provide a direct measurement of navigation performance,
we set up three large scale navigation experiments in three
challenging off-road courses, with waypoints every 50 m,
and measure our navigation performance using number of
interventions, as is common practice [6,43]. The safety driver
was directed to only intervene when either: a) the robot
missed a waypoint by over 4 m, or b) a collision with a non-
traversable obstacle was imminent. These courses (Figure 5)
include flat and hilly terrain, loose material ranging from fine
gravel to large cobbles, and vegetation of various dimensions.
For both navigation stacks, we set the target speed to 3.5 m/s,
lethal height to 0.5 m and fill unknown values of our costmap
to 0.5. We observe that in all three courses, our navigation
stack with learned costmaps outperforms the baseline stack
in terms of number of interventions, as detailed in Table IV.
Our learned costmaps lead the robot to stay on smoother
paths and avoid vegetation if possible, which leads to an
overall decrease in intervention events. In practice, this leads
to the robot taking wider turns, staying on clear paths, and
avoiding rough features that lead to bumpy navigation, such
as large cobbles.

How well does our method transfer to other robots?
We set up two additional short-scale navigation experi-

ments using the Warthog, with a fine-tuned model as detailed
in Section IV-A. We used a separate geometry-based auton-
omy stack [44] as the baseline, and for our stack we simply
composed their lidar-based binary costmap with our learned

Navigation Stack Course Interventions Course Length (m)
Baseline Red 7 400

HDIF (Ours) Red 3 400
Baseline Blue 9 3150

HDIF (Ours) Blue 6 3150
Baseline Green 11 950

HDIF (Ours) Green 7 950

TABLE IV: Number of interventions (lower is better) in
three large-scale navigation courses with varying degrees
of difficulty and different types of environment features,
such as slopes, vegetation, and tight turns. Our How Does
It Feel (HDIF) navigation stack achieves lower number of
interventions in all courses compared to the baseline stack.

costmap. Despite the Warthog being a skid-steer robot, we
treat it as if it had an Ackermann steering geometry, similar
to the ATV, since its cameras only face forward.

In the first experiment, the goal is to drive 50 m to a
goal located straight ahead, where the straight path goes
through grass, but there is a smooth concrete path available
surrounding this patch of vegetation. Similar to what we
observe in the ATV experiments, our costmaps allow the
Warthog to reason about the traversability properties of the
smooth concrete and the vegetation, and the robot chooses
to take the smooth path around the grass to reach the goal.

In the second experiment, we artificially create two differ-
ent paths at a fork in a forest trail. We litter the path on the
left with small logs, fallen leaves, and small rocks, while we
clear the path on the right of all obstacles. We observe that
with the baseline stack, the robot uniformly chooses either
of the paths to get to a goal at the other end of the fork in
the trail. On the other hand, with our costmaps, the robot
consistently chooses the clear path on the right to get to the
other side of the trail. Note that a visual semantic classifier
would label both of these trails as belonging to the same
class, but the subtle differences in the features of the trails
cause different amounts of roughness.

In both experiments, it is clear that our costmaps lead
the robot to choose smoother paths by reasoning about the
different traversability properties of different terrains. We
urge the reader to visit our website for experiment videos,
and our Appendix for more experiment details.

V. CONCLUSION AND FUTURE WORK

In this work we present a costmap prediction system that
predicts what the interactions between the ground and the
robot feel like based on environmental characteristics and
robot dynamics. To achieve this, we train a network that
combines exteroception and information about the robot’s
velocity to predict a traversability cost derived directly from
robot proprioception. We demonstrate that our costmaps
enable for more nuanced and diverse navigation behaviors
compared to a common baseline. Future work includes online
adaptation for better generalization, uncertainty estimation,
as well as improved representations for exteroceptive data to
overcome our current perception limitations.
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APPENDIX

A. Traversability Cost Analysis

To decide the best frequency band for our traversability
cost, we collect an evaluation set of 220 5-second trajec-
tories on our robot, spanning smooth, bumpy, sloped, and
grassy trails at different speeds. Each of these trajectories
is annotated by three human labelers with a score of 1-
5 as to how traversable they were, with 5 meaning most
difficult to traverse. We calculate the correlation between the
average human score and different frequency ranges to tune
the frequency range used in our cost function. We found the
best frequency range to be 1-30 Hz, which had a Pearson
correlation coefficient of 0.66, as shown in Figure 6. Finally,
we use the evaluation set to obtain statistics that we use to
normalize the traversability cost function between 0 and 1.

B. Mapping

Our method relies on having a dense, colorized point
cloud from which we can extract corresponding color and
height information about the environment. We experiment
with two different setups. When the robot contains a lidar
which produces dense point clouds, we can simply colorize
these points using the RGB information from a calibrated
monocular camera. When the robot is not outfitted with
a lidar, or the lidar produces only sparse point clouds in
the near-range, we use a stereo matching network [34]
to obtain a disparirty image, from which we estimate the
camera odometry using TartanVO [35], a learning-based

visual odometry algorithm. We use this odometry and the
RGB data to register and colorize a dense point cloud which
we then project into a top-down view.

In our setup, we use a 12 × 12 meter local map with a
resolution of 0.02 meters. This results in a 600 × 600 cell
local map consisting of eight channels: three channels for
RGB information, four channels containing the minimum,
maximum, mean, and standard deviation of the height of the
points in each cell, and a channel describing whether each
cell in the local map is unknown. The dimensions of the
local map match the dimensions of the learned costmap that
will be used directly for path planning.

C. Robot Platform

We perform experiments on two different ground robots: a
large, Yamaha Viking side-by-side all-terrain vehicle (ATV)
modified for autonomous driving by Mai et al. [45], and
a Clearpath Robotics Warthog unmanned ground vehicle
(UGV). The ATV contains a front-facing Carnegie Robotics
Multisense S21 stereo camera, a Velodyne Ultra Puck lidar,
a NovAtel PROPAK-V3-RT2i GNSS unit providing IMU
data and global pose estimates, as well as an onboard
computer with an NVIDIA Geforce RTX3080 Laptop GPU.
The Warthog UGV has two FLIR Blackfly S cameras pro-
viding a stereo pair with an approximately 53cm baseline,
an Ouster OS1-64 LiDAR, a Microstrain 3DM-GX5-35 IMU
which provides linear acceleration data and robot odometry
measurements, and two Neousys Nuvo 7166GC onboard
computers, each with an Intel i9 CPU and NVidia Tesla T4
GPU.

D. Navigation Stack

The kinematic bicycle model for the ATV vehicle and the
Warthog UGV is shown in Algorithm 1.

E. Training results

We compared three models with different inputs: patch,
patch-vel, and patch-Fourier-vel. All of these
models used the Torchvision [46] implementation of
ResNet18 [37], and were trained using the Adam optimizer

Fig. 6: Correlation between the average of three human-
labeled traversability scores (1-5) and our IMU traversability
cost function. There is a strong correlation between the two
scores, with a Pearson correlation coefficient of 0.66.

https://clearpathrobotics.com/warthog-unmanned-ground-vehicle-robot/
https://clearpathrobotics.com/warthog-unmanned-ground-vehicle-robot/
https://www.arl.army.mil/business/collaborative-alliances/current-cras/sara-cra/sara-overview/
https://www.arl.army.mil/business/collaborative-alliances/current-cras/sara-cra/sara-overview/


Algorithm 1: Kinematic Bicycle Model
Input: Current state s = [x, y, θ, v, δ] (position,

orientation, velocity and steering angle),
Control a = [vdes, δdes] (velocity and steering
setpoints), Hyperparameters L (wheelbase),
Kv (velocity gain), Kδ (steer angle gain)

Output: Time derivative of state ṡ = f(s, a)
1

ṡ =


ẋ
ẏ

θ̇
v̇

δ̇

 =


vcos(θ)
vsin(θ)
vtan(δ)

L
Kv(vdes − v)
Kδ(δdes − δ)

 (4)

Model Train Loss (×10−2) Val. Loss (×10−2)
Random 22.0± 0.14 22.0± 0.14

Patch 4.0± 0.059 5.7± 0.43
Patch-vel 3.9± 0.074 5.2± 0.15

Patch-Fourier-vel 3.8± 0.09 5.0± 0.11

TABLE V: Training and validation losses for three different
models with different inputs. All models were trained with
five random seeds. Adding velocity as an input improves
training results, and the model which includes Fourier-
parameterized velocity performs best (lower is better).

[38]. The results are shown in Table V. The training hyper-
parameters for all three models are specified in Table VI.

We performed an ablation on the inputs to the network to
verify whether adding height information improved perfor-
mance over using just RGB data. As shown in Table VII,
adding height statistics results in significant improvement
at training time, but similar performance at test time. We
performed an additional ablation over the parameters for our
Fourier frequency parameterization and found that varying
the scale of Fourier frequencies does not change performance
significantly, and neither did varying the number of sampled
frequencies m, as reported in Table VIII.

Hyperparameter Value Model
Epochs 50 all

Learning Rate 3× 10−4 all
γ (Learning Rate Decay) 0.99 all

MLP Num. Layers 3 all
MLP Num. Units 512 all

CNN Embedding Size 512 all
m (Number of Frequencies) 16 patch-Fourier-vel

σ (Frequency Scale) 10 patch-Fourier-vel

TABLE VI: Hyperparameters used in training three models:
patch, patch-vel, and patch-Fourier-vel.

Model Train Loss (×10−2) Val. Loss (×10−2)
RGB-Fourier-vel 4.0± 0.083 4.9± 0.06
Patch-Fourier-vel 3.8± 0.09 5.0± 0.11

TABLE VII: Ablation over model inputs. RGB-Fourier-vel
uses only the RGB local map information, whereas Patch-
Fourier-vel uses RGB and height statistics extracted from
the point cloud. Using both RGB and height information
results in slightly better performance in the training set, but
comparable performance in the test set.

Hyperparameter Value Train Loss (×10−2) Val. Loss (×10−2)
σ 1 3.8± 0.09 4.9± 0.06
σ 10 3.8± 0.09 5.0± 0.11
σ 100 3.7± 0.09 5.2± 0.17

m 8 3.8± 0.04 5.0± 0.24
m 16 3.8± 0.09 5.0± 0.11
m 32 3.8± 0.06 5.2± 0.37

TABLE VIII: Ablation over Fourier parameterization pa-
rameters. Each hyperparameter choice was evaluated for 5
random seeds. Changing the scale of either the sampled
frequencies σ or the number of frequencies samlpled m did
not significantly affect performance.

F. Velocity Experiments

We include costmaps predicted at different velocities in
Figure 8.

G. Navigation Experiments

1) Short-Scale Navigation Experiments:: We ran two
experiments using the ATV robot (ATV-Warehouse shown
in Figure 9 and ATV-Pole shown in Figure 10), and two
experiments using the Warthog UGV robot (UGV-Hill-Base-
Right shown in Figure 11 and UGV-Forest-Fork shown in
Figure 13). In this section, we describe the experiments in
more detail. Since the experiments are better observed from
video, we urge the reader to watch the video in our website.

ATV-Warehouse: In this experiment, there was a patch
of grass directly in front of the robot, and there were two
smoother dirt paths at each side. As seen in Figure 9a, in
most cases, the robot running our learned costmaps took the
dirt path to the right of the patch of grass. In one occasion,
the robot took the path to the left. While at first this avoided
the patch of grass, eventually the robot needed to cut into the
patch to get to the goal. This run was stopped early due to an
intervention to prevent damaging the robot. When using the
baseline costmap, the robot consistently drove straight over
the patch of grass. We ran the navigation course five times
for each costmap. As observed from the cross track error
in Figure 9b, the robot consistently takes a path that strays
away from the nominal path to go over smoother terrain.

ATV-Pole: In this experiment, there was also a patch of
grass in between the robot and its goal, with two dirt paths
surrounding it. However, the dirt paths were also bordered
with loose gravel. As seen in the supplemental video, the
robot identifies both the grass and the loose gravel as having



higher cost than the smooth dirt path, which leads the robot to
avoid it. Figure 10a shows the paths that the robot took. One
of the baseline runs was stopped early to prevent damage to
the robot. We ran the navigation course three times for each
costmap.

UGV-Hill-Base-Right: In this experiment (Figure 11),
the Warthog robot was given a GPS waypoint as a goal
about 50 m diagonally to the right. This goal was located
along a concrete path that surrounds a patch of vegetation.
The baseline navigation stack immediately starts turning and
navigates straight to the goal, going over the vegetation,
since it does not reason about the difference in traversability
properties between the smooth concrete and the grass. We ran
a single trial using the baseline, and five using our learned
costmaps. As seen in Figure 12, in all five runs with our
costmaps, the robot takes a longer path that deviates from
the nominal straight line path, avoiding the grass and instead
taking instead the smoother concrete path to the goal.

UGV-Forest-Fork: In this experiment (Figure 13), the
Warthog is placed before a fork in a forest trail, where both
sides of the fork lead to the same spot. We artificially litter
the left path of the fork with tree branches, rocks, and fallen
leaves. On the other hand, we clear the path on the right of all
obstacles to make it as smooth and possible. Note that none
of the small obstacles on the left path would be registered as
lethal obstacles using a geometry-based lethal-height binary
costmap. Similarly, it is likely that these two trails would
belong to the same semantic class using a visual semantic
classifier. Therefore, reasoning about fine-grained features in
the trails is required for the robot to choose the smoother
path. We ran three trials with the baseline stack, and three
trials with our costmap. With the baseline stack, the robot
takes the left path two times, and the right path once. When
using our costmaps, we first move the robot left-to-right in-
place manually to fill in the RGB map (since the visual range
is shorter than that of the lidar-based baseline stack). We
observe that in all three runs, the robot prefers the smoother
path to reach the goal. The trajectories are shown in Figure
14.

2) Large-Scale Navigation Experiments:: We ran exper-
iments on three large courses to compare the performance
between the baseline navigation stack (which uses only a
lethal height costmap) and our navigation stack (which com-
bines the lethal height costmap with our learned costmaps).
In this section, we describe the courses and experiments in
more detail. We urge the reader to watch the videos for these
experiments in our supplemental material.

Red Course: The red course consists of flat forest trails of
finer gravel, with vegetation on the sides of the trails. One of
the main challenges of this 400 m trail is that it has a couple
of tight turns, which are challenging for both the baseline
and our proposed navigation stack.

Blue Course: This 3150 m course consists of flat and hilly
terrain, which ranges from smooth gravel to large pebbles,

notably in the sloped sections. Additionally, part of the
course is covered in vegetation about 1 m tall.

Green Course: The main challenge of this 900 m trail is
that about half the trail is covered in tall vegetation.

H. High-Resolution Examples

In this section, we show two high-resolution exam-
ples comparing the top-down RGB map and the predicted
costmap side-by-side, in Figures 15 and 16.



(a) Training loss curves.

(b) Validation loss curves.

Fig. 7: Training and validation curves for the patch,
patch-vel, and patch-Fourier-vel models. Includ-
ing velocity as an input improves both training and validation
loss, and including Fourier-parameterized velocity achieves
the best results.



Fig. 8: Costmaps at different velocities, as predicted by the patch-Fourier-vel model. The left block shows front-
facing image, lethal-height costmap, and a top-down RGB map. The right block shows four costmaps of the same scenario at
increasing speeds. Brighter means higher cost. Higher cost at the top of the costmaps is produced by artifacts in registration,
as explained further in the Limitations section of this Appendix.

(a) Paths taken by the robots. Nominal trajectory (black)
represents the straight path between the origin and the goal.

(b) Average cross-track error between the nominal trajectory
and each of the paths taken by the robot over time.

Fig. 9: ATV-Warehouse experiment.

(a) Paths taken by the robots. Nominal trajectory (black)
represents the straight path between the origin and the goal.

(b) Average cross-track error between the nominal trajectory
and each of the paths taken by the robot over time.

Fig. 10: ATV-Pole experiment.



Fig. 11: UGV-Hill-Base-Right experiment, where the goal is
about 50 m diagonally to the right.

Fig. 12: Paths taken by the Warthog robot. Nominal trajec-
tory (black) represents the straight path between the origin
and the goal.

Fig. 13: UGV-Forest-Fork experiment, where the goal is
straight ahead.

Fig. 14: Paths taken by the Warthog robot. Nominal trajec-
tory (black) represents the straight path between the origin
and the goal.

Fig. 15: Side-by-side comparison of front-facing view (top
row), RGB map (bottom left) and our predicted costmap
(bottom right), with approximate hand-annotations separating
the different types of terrain. The white lines enclose the
invalid regions, the green lines enclose the regions with
vegetation, and the blue lines enclose areas with gravel in
the terrain. The predicted costmap predicts a higher cost for
grass and gravel. Notice that gravel appears as a higher-
frequency texture in the RGB map.



Fig. 16: Side-by-side comparison of front-facing view (top
row), RGB map (bottom left) and our predicted costmap
(bottom right), with approximate hand-annotations separating
the different types of terrain. The white lines enclose the
invalid regions, the green lines enclose the regions with
vegetation, and the blue lines enclose areas with gravel in
the terrain. The predicted costmap predicts a higher cost for
grass and gravel. Notice that gravel appears as a higher-
frequency texture in the RGB map.
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