
Benchmarking Potential Based Rewards
for Learning Humanoid Locomotion

Se Hwan Jeon1, Steve Heim1, Charles Khazoom1, and Sangbae Kim1

Abstract— The main challenge in developing effective rein-
forcement learning (RL) pipelines is often the design and tuning
the reward functions. Well-designed shaping reward can lead
to significantly faster learning. Naively formulated rewards,
however, can conflict with the desired behavior and result in
overfitting or even erratic performance if not properly tuned.
In theory, the broad class of potential based reward shaping
(PBRS) can help guide the learning process without affecting
the optimal policy. Although several studies have explored the
use of potential based reward shaping to accelerate learning
convergence, most have been limited to grid-worlds and low-
dimensional systems, and RL in robotics has predominantly
relied on standard forms of reward shaping.

In this paper, we benchmark standard forms of shaping
with PBRS for a humanoid robot. We find that in this
high-dimensional system, PBRS has only marginal benefits
in convergence speed. However, the PBRS reward terms are
significantly more robust to scaling than typical reward shaping
approaches, and thus easier to tune.

I. INTRODUCTION

Designing effective reward functions is an iterative process
in optimal control pipelines, both when using model-based
methods such as model-predictive control (MPC) or model-
free methods such as reinforcement learning (RL) [1], [2]. A
simple translation of the engineer’s intent into a computable
function, such as a quadratic error from the desired state
or a boolean on task success, often results in unexpected
and undesired behavior [3], [4], especially in RL. Even
when the chosen reward function would yield the desired
optimal controller, it can often result in slow convergence
and local minima. These challenges are typically addressed
with reward shaping: additional reward terms are added to
provide an informative signal of how “close” a trajectory
is to an optimal policy. However, defining what “close”
means in this context is often not intuitive. In practice, a
substantial amount of time is spent tuning these shaping
rewards to find an acceptable trade-off between convergence
and how closely it represents the desired behavior. Moreover,
the entire training process is sensitive to hyperparameters and
reward weights, obscuring the effects of a particular reward
term on the converged policy and making them challenging
to tune precisely [1], [5].

Ng, Harada, and Russell [6] discuss the special class of
potential-based reward shaping functions (PBRS) that, in
theory, do not affect the final policy. This theoretical property
is highly attractive since PBRS has the potential to decouple

1All authors are with the Biomimetic Robotics Lab, MIT {sehwan,
sheim, ckhaz, sangbae}@mit.edu.

This work was supported by Disney Research Imagineering, NSERC, and
the Swiss National Science Foundation (Grant No P2SKP2 194954).

Potential based Direct rewards Baseline

Fig. 1: The potential based (left), direct (middle), and base-
line (right) locomotion policies. The controller is capable of
forward velocities and yaw rates of approximately 3.5 m/s
and 1.5 rad/s, respectively.

the challenges of reward design, allowing the engineer to
use simple, task-based rewards to express intended behavior
and PBRS to aid convergence. Several subsequent studies
have investigated using PBRS in RL [7]–[10] and reported
faster convergence, though these studies are typically lim-
ited to grid-worlds or low-dimensional systems. In practice,
however, most successful cases of RL in robotics have relied
on simpler, direct reward shaping functions that do not enjoy
policy invariance properties [1], [11]–[14].

We present an empirical case study of deep RL for
running on a humanoid biped robot in 3D, and systematically
compare standard reward shaping and PBRS. Unlike many
previous studies, we find that the main advantage of the
PBRS is not in faster convergence, which we found to be
only marginal. The PBRS is, however, substantially more
robust than standard shaping, making tuning the reward
shaping functions much easier.

A. Related Work

A common approach to provide dense rewards is to
directly track references that are highly correlated with the
desired behavior. For example, Peng, Coumans, Zhang, Lee,
Tan, and Levine [15] use motion capture data from dogs
to generate reference motion for RL for a quadruped robot,
and Rai, Antonova, Song, Martin, Geyer, and Atkeson [12]
use clinical data of humans to obtain reference values such
as desired body height and orientation for a bipedal walking
robot. Green, Godse, Dao, Hatton, Fern, and Hurst [16] pre-
compute a library of reference trajectories for a simpler,
lower-dimensional system that is amenable to model-based

ar
X

iv
:2

30
7.

10
14

2v
1

 [
cs

.R
O

]
 1

9
Ju

l 2
02

3

trajectory optimization, and use this library for reward shap-
ing in RL on a bipedal robot. In a similar fashion, Reda,
Ling, and Panne [17] solve for an optimal policy on a simpler
model using RL, and use these outputs as shaping rewards for
learning brachiation in a simulated 2D animation. In all these
examples, it is critical to carefully choose the references and
the weighting of the shaping rewards, as the policy can learn
to overfit to the references instead of the intended task.

In an attempt to side-step this problem, Ng, Harada, and
Russell [6] show policy invariance to PBRS (see eq. (4)),
and recommend using an approximation of the value func-
tion. Using a value function estimate in PBRS form can
be seen as performing credit assignment, redistributing the
value as instantaneous rewards throughout state-space [18,
Sec. 4]. This is particularly helpful if the baseline reward
is sparse, such as a boolean indicator of task-completion.
Indeed, Wiewiora [19] showed that PBRS is equivalent to
initializing Q-values. Since the optimal policy is greedy with
respect to the (true optimal) Q-value function, a well chosen
PBRS essentially allows the discount factor to be much
more myopic. Westenbroek, Castaneda, Agrawal, Sastry,
and Sreenath [10] leverage this property for sample-efficient
learning directly in hardware, using a discount factor of
zero. Though the reward-shaping is justified with control
Lyapunov functions, the main case study on a cartpole uses
the value function obtained in simulation and is directly
equivalent to PBRS with a value function. From ablation
studies, they also observed that if the value function used is
too inaccurate, it is necessary to increase the discount factor.

Harutyunyan, Devlin, Vrancx, and Nowe [8] and oth-
ers [7], [9], [20] have explored using PBRS in a more general
setting, and consistently find that PBRS greatly accelerates
convergence on simple problems such as gridworlds or
cartpole balancing. Malysheva, Kudenko, and Shpilman [7]
learn locomotion on a higher-dimensional biped constrained
to 2D using references similar to those discussed above,
but put in PBRS form. They also report faster convergence,
though this is strongly influenced by the quality of the
references used.

B. Outline

In Section II, we review concepts and terms necessary
to describe PBRS and its implications for reinforcement
learning. In Section III, we detail the system, observations,
and rewards we use for the locomotion task. In Section IV,
we compare the effects of PBRS and DRS for training and
on the converged policies. Lastly, in Section V, we present
our conclusions and outline future directions for using PBRS
in RL.

II. PRELIMINARIES AND PROBLEM STATEMENT

A. Markov Decision Processes and Reinforcement Learning

A Markov decision process (MDP) is a tuple M =
(S,A, T , r, γt), with state space S, action space A, transition
probabilities T (sk+1|sk, ak) describing the dynamics of the
system, reward function r and discount factor γt. The reward
function r takes the general form r : S ×A× S → R with

t2t1
sdes

Δt

s1, a1

s2

γΦ(s2) − Φ(s1)

Φ(s2)Φ(s1)

(PBRS)

(DRS) (DRS)

Fig. 2: A visualization of a tracking reward in both direct-
reward shaping and potential-based reward shaping form.
While DRS rewards return the instantaneous evaluation of
Φ, PBRS rewards give returns for improvement in Φ at the
next state.

r(sk, ak, sk+1) describing the reward received for transition-
ing to state sk+1 from sk with action ak.

For a given MDP, we wish to find a policy π : S → A
to maximize the discounted sum of all future rewards. For a
fixed policy, this quantity is represented as the optimal value
function, given as

V ∗(sk) = E

[∞∑
k

γk
t r(sk, π(sk), sk+1)

]
. (1)

B. Reward Shaping

Learning the value function is especially challenging when
long-term optimality differs strongly from short-term reward
signals, for example for sparse, task-based rewards. In these
cases, it is typically necessary to specify a discount factor
γ close to one, to emphasize the importance of actions on
long-term outcomes. It is more challenging because the agent
needs to deal with a more ambiguous credit assignment prob-
lem. A central theme to reward shaping is to provide a reward
signal that is more immediately informative about the current
action’s effect on the final outcome. This is typically done by
formulating dense rewards so that informative reward signals
are available throughout the trajectory.

We denote these shaping rewards as R(sk, ak, sk+1), and
the corresponding total reward r̂ and MDP Mshaped as

r̂(sk, ak, sk+1) = r(sk, ak, sk+1) +R(sk, ak, sk+1) (2)
Mshaped = (S,A, T , r̂, γ). (3)

When well chosen, shaping rewards can greatly help con-
vergence. However, it is important to note that adding
shaping terms fundamentally changes the MDP and can
have unintended effects on the desired behavior, as discussed
by Randløv and Alstrøm [3].

We note that in most RL in robotics studies [11], [16],
[21], [22], reward terms are typically restricted to functions
that can be computed as r(a), and r(s) or R(s). We will
slightly abuse notation and refer to R(s) as direct reward
shaping (DRS).

TABLE I: Agent Observations

Observation Dim. Noise Range

Joint positions q 10 0.005

Joint velocities q̇ 10 0.01

Body height zb 1 0.05

Body velocity vb 3 0.1

Body angular velocity ωb 3 0.05

Body frame gravity ĝ 3 0.05

Binary foot contact state bc 2 0.1

Commanded velocities


cx (forward)

cy (lateral)

cω (yaw)

3 0

Clock phase


sin(ϕ)

cos(ϕ)
sin(ϕ)

2
√

sin(ϕ)2+0.04
+ 0.5

3 0

C. Potential-based Shaping

The focus of this paper is potential-based shaping
of the reward function [6]. Consider a modified MDP,
Mpotential = (S,A, T , r̃, γ), defined with

P (sk, sk+1) = γΦ(sk+1)− Φ(sk) (4)
r̃(sk, ak, sk+1) = r(sk, ak, sk+1) + P (sk, sk+1), (5)

where Φ(·) is some scalar, real-valued function and P (·)
is the potential-based reward. As shown in Fig. 2, potential
based rewards are concerned with the change of the rewards
pushed through the dynamics, as opposed to their instanta-
neous values.

Note that any DRS term R(s) can trivially be used as a
potential function for PBRS, and for the rest of the paper
we will focus on comparisons where we use Φ(s) = R(s).
Ng, Harada, and Russell [6] presented theoretical results
demonstrating that even for arbitrary potential functions, the
optimal policy for the original MDP M is invariant to this
class of potential-based shaping rewards. Furthermore, the
advantage function and policy gradients are also unaffected
by the addition of P (sk, sk+1) to the original set of re-
wards [18]. This means that, in theory, an agent trained on
the shaped MDP Mshaped should converge to a policy that
is also optimal for the original MDP M.

In practice, however, RL algorithms are affected by a
myriad of hyperparameters, such as function approximation
choices and exploration heuristics, that prevent the agent
from converging to the true optimal policy in reasonable
time. We focus on comparing the performance of shaping
with DRS and PBRS in a practical setting for training a
humanoid robot to run.

III. HUMANOID LOCOMOTION CASE STUDY

To empirically test the effectiveness of PBRS for con-
tinuous, high-dimensional robot control, we benchmark a
learning pipeline for running with the MIT Humanoid robot.
We start with a minimal set of baseline rewards and then
benchmark a set of commonly used DRS reward terms and

TABLE II: Training rewards

Baseline Weight Function

Linear velocity 10 exp(−|vx,y − cx,y |2/σxy)

Angular velocity 5 exp(−(ωz − cω)2/σω)

1st order action rate -1e-3 |(qkπ − qk−1
π)/∆t|2

2nd order action rate -1e-4 |(qkπ − 2qk−1
π + qk−2

π)/∆t|2

Torques -1e-4 |τ |2

Torque limits -0.01 max(|τ | − βττmax, 0)

Joint limits -10 max(|τ | − βqτmax, 0)

Termination -100



1, |vb| ≥ 10 [m/s],
1, |ωb| ≥ 5 [rad/s],
1, ĝx, ĝy ≥ 0.7,

1, self-collision,

0, otherwise .

Direct Shaping Weight Function

Orientation Rori 5.0 exp(−(ĝ2x + ĝ2y)/σθ)

Height Rh 2.0 exp(−(zb − zdes)
2/σh)

Joint regularization Rj 1.0 exp(−(qLa − qRa)2/σq)

+ exp(−(qLp − qRp)2/σq)

+ exp(−(qLy)2/σq)

+ exp(−(qRy)2/σq)

Potential Shaping Weight Function

Orientation 1.0 γRori(sk+1)−Rori(sk)

Height 1.0 γRh(sk+1)−Rh(sk)

Joint regularization 1.0 γRj(sk+1)−Rj(sk)

the same set of shaping rewards reformulated as PBRS
reward terms.

A. System Overview

The MIT Humanoid is an 18 degree-of-freedom robotic
platform designed by the Biomimetic Robotics Lab [23]. For
learning running locomotion, we fix the arm joints at nominal
angles and reduce control of the system to only the legs, a
total of 10 degrees of freedom.

The policy network consists of a single neural network
that outputs joint position targets a ∈ R10 to the system,
similar to prior work [11], [24]. The torques are calculated
as

τ = Kp(a− q) +Kd(q̇), (6)

where Kp = 30 Nm/rad and Kd = 5 Nms/rad are fixed
proportional and damping gains respectively, and q are the
joint angles.

The observations s ∈ R38 are listed in Table I, and are
affected by uniformly sampled noise. The phase ϕ is a simple
clock with constant growth at one Hz, which we found
helpful for the policy to settle into a periodic gait, although
the final gaits observed are not limited to this frequency.

TABLE III: Training Environment Hyperparameters

Hyperparameter Value

Value loss coefficient 1.0
Clipping ϵ 0.2
Entropy coefficient 0.1
Learning rate 1e-5 (adaptive)
Discount factor 0.99
λ 0.95
Steps/env 24
Policy network size [256, 256, 256]
Critic network size [256, 256, 256]
Activation ELU

B. Baseline Rewards

For general locomotion, we define a set of baseline
rewards as in Table II. The first two, linear velocity and
angular velocity tracking, are the only task-related rewards;
all other terms are generic regularization terms to encourage
smoothness, efficiency, and discourage joint limit violations.

For the baseline rewards, ∆t is the controller timestep,
σ = 0.5 is a scaling parameter, βτ = 0.8 and βq = 0.9 act as
soft-stop limits to discourage reaching the joint and actuator
constraints, and τmax and qmax are torque and joint limits
of the system respectively.

C. Shaping Rewards

We choose three shaping rewards commonly used as costs
in the humanoid locomotion literature [12], [25], [26]: we
regularize the orientation (Rori), height (Rh), and joints
(Rj), with their respective reward terms defined in Table II.
A nominal desired height zdes = 0.6 m is a hand-chosen
height target, ĝx, ĝy are the components of the gravity vector
in the body frame, and qji is the ith joint type on leg j.
The subscript denotes the specific joint, with qa, qp, and qy
representing the abduction/adduction, pitch, and yaw joints
specifically, and the superscript refers to the leg (left/right)
the joint is part of. The reward Rjoint serves to regularize the
yaw joints about zero and encourage symmetry between the
ab/ad and pitch joints of the legs. We use squared-exponential
functions to define our reward functions, as is common in
RL literature [11], [15], [22], [24].

We can put these ”direct” shaping rewards in their poten-
tial based forms trivially as

Ps(sk, sk+1) = γRs(sk+1)−Rs(sk), (7)

for some arbitrary shaping reward Rs and potential discount-
ing γ.

D. Implementation Details

The locomotion policy is trained in the NVIDIA Isaac-
Gym framework open-sourced by Rudin, Hoeller, Reist,
and Hutter [21] with the PPO-Clip algorithm [27] and the
hyperparameters shown in Table III. The agents are trained
on a computer equipped with an Intel i9-10850K processor
and NVIDIA RTX 3060 GPU. The simulation is run at 1000
Hz, with a control frequency of 100 Hz. Each training run

0 200 400 600 800 1000
Steps

-2

0

2

4

6

8

10

12

B
as

el
in

e
re

w
ar

d

Direct
Potential based
Baseline

Fig. 3: Values for the total baseline rewards during training
for the PBRS, DRS, and baseline policies.

includes 4096 agents and is run for 1000 policy iterations,
and we see convergence within around 30 minutes of wall-
clock time.

IV. RESULTS

We present here a benchmark with three cases: baseline
rewards only, baseline rewards with DRS terms, and baseline
rewards with PBRS terms, with accompanying video results
and code12. We first tune the baseline reward weights until
reasonable running performance is achieved (see Table II),
then keep those weights fixed for all experiments. The
weights of the DRS and PBRS rewards are then tuned until
a reasonable locomotion policy is found, with the weights
set to the tuned values in Table II. Cases are compared
with accumulated baseline rewards and not the total rewards,
such that the comparisons are not affected by the scaling of
shaping rewards. We also visually inspect policies to evaluate
the resulting behavior for qualitative differences.

Trajectories are collected over 24 timesteps, equating to
roughly 0.2 s of simulation time, and the agents are subjected
to randomized impulses, friction, and velocity commands
during training.

A. Discounting of Potential-Based Rewards

We find that in practice, using discounting for PBRS in (4)
can lead to learning instability [28]. To overcome this issue,
we set γ = 1 in the calculation of (4) (though not in
calculating the advantage for PPO). While policy invariance
is technically sacrificed by doing so, we find that training
converges far more stably and quickly with this modification.
We do not discuss it further as our findings to this regard
closely match those of Grzes and Kudenko [28], who studied
in detail how the discount factor in potential-based rewards
can affect both the magnitude and sign of the returned value.
We confirm their finding, as other studies on PBRS do not
report any modifications of the discounting [7], [9], [20],
yet we found this to make a significant difference in the
effectiveness of PBRS terms.

1Video: https://youtu.be/Qvacov9kujQ
2Code: https://github.com/se-hwan/pbrs-humanoid

−0.10 −0.05 0.00 0.05 0.10 0.15 0.20
0.00

0.02

0.04

0.06

0.08

0.10
base rewards
DRS terms

R
ew

ar
d

de
ns

ity

Reward value

(a) Distribution at iteration 500

−0.10 −0.05 0.00 0.05 0.10 0.15 0.20
0.00

0.02

0.04

0.06

0.08

0.10

R
ew

ar
d

de
ns

ity

base rewards
PBRS terms

Reward value

(b) Distribution at iteration 500

Fig. 4: Distribution of rewards during an iteration at iteration 500 (well converged). Although the distributions of rewards
begins rather spread out, agents tend to quickly fit to dense DRS terms (4a), whereas the distribution of PBRS terms
remains centered around zero and with a relatively wide distribution throughout training (4b). See accompanying video for
the evolution of this distribution during training.

0 2 4 6 8 10
Steps

0

1

2

3

4

Fo
rw

ar
d

ve
lo

ci
ty

 (
m

/s
)

Direct
Potential based
Baseline

0 2 4 6 8 10
Steps

-2

-1

0

1

2

A
ng

ul
ar

 v
el

oc
ity

 (
ra

d/
s)

Fig. 5: Velocity tracking plots for the PBRS, DRS, and
baseline policies over 50 runs. The dotted line indicates
the commanded forward velocity (top) and yaw angular rate
(bottom), respectively.

B. Training Benchmark

We run the three cases (baseline, DRS, and PBRS) ten
times each with the tuned, nominal weights for all rewards.
All three cases converge to behaviors with similar perfor-
mance within 1000 iterations, as seen in the learning curves
shown in Fig. 3. The agent with PBRS terms converges to
a policy with slightly higher return, slightly more quickly,
though this improvement is relativey marginal. The variance
between the ten learning runs, however, is significantly lower,
finishing at 0.946, compared to 1.905 when using DRS terms,
and 2.025 when using baseline rewards only.

Agents trained with DRS terms converge to policies with
slightly lower returns than the baseline; however, when
inspecting the policies, we find that baseline policies tend
to have abnormal gaits, with legs turned inward. The most

likely explanation for this is the greater mediolateral stability
it provides, which assists with avoiding termination early on
in training. This behavior persists and appears detrimental
when turning at high velocities, as shown in Figs. 1 and 5.
Both DRS and PBRS terms rectify this issue by regularizing
the yaw joints around zero.

In the case of DRS, however, the agent appears to strongly
prioritize maximizing the shaping reward terms, which likely
conflicts with maximizing the baseline reward. This can be
seen when inspecting the reward distribution during training,
shown in Fig. 4: the PBRS terms remain centered around
0 and maintain a relatively large spread, even halfway
through training, whereas the DRS terms are very quickly
maximized, which suggests the agent prioritizes maximizing
the shaping rewards. This empirical observation supports the
theory behind the policy invariance of PBRS. Because PBRS
terms become zero-mean centered as training progresses,
their influence on the optimizer decreases, allowing greater
returns on the baseline rewards.

Another interesting result is the emergence of natural heel-
toe transitions for the trained policies. While none of the
rewards explicitly specify this behavior, the touchdown and
push-off phases of stance are quite clear. It is possible that
the relatively low Kp gains on the joints force the robot
into this pattern, but isolating the rewards and environment
configurations that can reproduce this behavior is beyond the
scope of this work. We present these details as examples of
how desirable policies can be both difficult to express and
sometimes counterintuitive.

To evaluate the policy itself, we compare the linear and
angular velocity tracking performance of the three policies
at the limits of the commands, as shown in Fig. 5. We find
no significant difference in command tracking on average
between the DRS and PBRS policies, but observed that
the baseline policy often terminates during the turns, which
accounts for the large standard deviation in angular velocity

0 200 400 600 800 1000
Steps

0

2

4

6

8

10

B
as

el
in

e
re

w
ar

d

Height

Sh
ap

in
g

re
w

ar
ds

0.1x
0.5x
1.0x
2.0x
5.0x
10.0x

0 200 400 600 800 1000
Steps

0

2

4

6

8

10

B
as

el
in

e
re

w
ar

d

Orientation

0 200 400 600 800 1000
Steps

0

2

4

6

8

10

B
as

el
in

e
re

w
ar

d

Joint Regularization

0 200 400 600 800 1000
Steps

0

2

4

6

8

10

B
as

el
in

e
re

w
ar

d

P
ot

en
ti

al
-b

as
ed

 r
ew

ar
ds

0.1x
0.5x
1.0x
2.0x
5.0x
10.0x

0 200 400 600 800 1000
Steps

0

2

4

6

8

10

B
as

el
in

e
re

w
ar

d

0 200 400 600 800 1000
Steps

0

2

4

6

8

10

B
as

el
in

e
re

w
ar

d

Fig. 6: To compare the robustness of using potential-based shaping against direct reward shaping, we train policies with the
baseline rewards in combination with either the height, orientation, or joint regularization reward. From a tuned nominal
value, we then sweep across the weights of that reward from 0.1× to 10× the nominal value. The potential-based rewards
were far less sensitive to large changes in scaling compared to the shaping rewards.

between t = 3 and t = 10 s in Fig. 5. While the DRS
policy tracks the desired velocity most closely, this metric
alone does not account for all the other terms defined as
part of the ”baseline reward”, which overall, is higher for
the potential-based policy.

We also compare the average base heights of the DRS
and PBRS through the trajectory. As expected, the average
height of the DRS policy is 0.596 m, close to the specified
desired height of 0.60 m. However, with the same reward
used in a potential-based form, the average height of the
PBRS is 0.639 m, corresponding to a change of almost
5% of the total height of the robot. While both PBRS
and DRS learn comparable policies, the policy appears to
be more strongly biased by the DRS terms than PBRS
terms. By formulating these rewards in their potential based
forms, we retain the advantages of being able to guide the
policy towards desirable states while relaxing how much it
is affected by the rewards.

C. Sensitivity Analysis
We perform a sensitivity analysis of both DRS terms

and PBRS terms by sweeping from 0.1 to 10 times the
nominal weights. As shown in Fig. 6, learning with PBRS
terms is substantially more consistent across the weights and
individual shaping rewards chosen. When the weights of the
DRS terms are increased, the policy overfits to the specified
reward and sacrifices the performance of the baseline rewards
to do so. In particular, rewarding a fixed, upright orientation
is particularly detrimental to the baseline rewards. This is
unsurprising, given the significant banking and oscillations
of the torso that naturally occur during running motions.

By placing shaping rewards in potential based form, the
range of weights that can produce desirable behavior is much
larger. This significantly eases the burden of iterating on sets
of reward weights for an acceptable policy.

V. CONCLUSION AND OUTLOOK

We find that PBRS terms are beneficial for learning on
high-dimensional, continuous systems such as legged robots;
unlike previous studies [7], [9], [10], which have mostly
focused on gridworld or low-dimensional systems, we find
that the main benefit is not in accelerated convergence (which
in our case is only marginal) but rather on ease of tuning.
We note that RL implementations in robotics often only
use rewards of the form r(sk); this type of reward can be
trivially converted into PBRS form, and from our findings,
we advocate using the PBRS form of rewards when possible.

While we found that PBRS terms are relatively robust to
weighting, we also note that these terms are implicitly scaled
through the dynamics by the control timescale ∆t. In future
work, we plan to more closely investigate this relationship,
especially in the context of hierarchical RL. Since control
timescales are a natural approach to choosing hierarchical
levels (typically, higher levels in a hierarchy will reason on
a longer horizon, with a larger ∆t), it may be possible to
automatically assign rewards for different tasks to different
hierarchy levels based on their relative scaling.

Another promising avenue in the context of hierarchical
RL is to use value functions as PBRS, as originally proposed
by Ng, Harada, and Russell [6]. Although finding a good
approximation for a value function is often daunting, in a
hierarchy of world models, it may be possible to solve a
cascade of problems using a hierarchy of simplified world-
models, and use the obtained value function to shape the
reward of each successive stage.

REFERENCES

[1] Z. Xie, P. Clary, J. Dao, P. Morais, J. Hurst, and
M. Panne, “Learning locomotion skills for cassie:

Iterative design and sim-to-real,” in Conference on
Robot Learning (CoRL), 2020.

[2] A. Marco, P. Hennig, J. Bohg, S. Schaal, and S.
Trimpe, “Automatic lqr tuning based on gaussian
process global optimization,” in IEEE international
conference on robotics and automation (ICRA), 2016.

[3] J. Randløv and P. Alstrøm, “Learning to drive a
bicycle using reinforcement learning and shaping.,” in
ICML, 1998.

[4] M. A. Müller and K. Worthmann, “Quadratic costs do
not always work in mpc,” Automatica, 2017.

[5] M. Andrychowicz, A. Raichuk, P. Stańczyk, M.
Orsini, S. Girgin, R. Marinier, L. Hussenot, M. Geist,
O. Pietquin, M. Michalski, S. Gelly, and O. Bachem,
“What matters in on-policy reinforcement learning? a
large-scale empirical study,” in International confer-
ence on learning representations (ICLR), 2021.

[6] A. Y. Ng, D. Harada, and S. J. Russell, “Policy
invariance under reward transformations: Theory and
application to reward shaping,” in Proceedings of
the International Conference on Machine Learning
(ICML), 1999.

[7] A. Malysheva, D. Kudenko, and A. Shpilman, “Learn-
ing to run with potential-based reward shaping and
demonstrations from video data,” in International
Conference on Control, Automation, Robotics and
Vision (ICARCV), 2018.

[8] A. Harutyunyan, S. Devlin, P. Vrancx, and A. Nowe,
“Expressing arbitrary reward functions as potential-
based advice,” Proceedings of the AAAI Conference
on Artificial Intelligence, 2015.

[9] S. Devlin and D. Kudenko, “Dynamic potential-based
reward shaping,” in International Conference on Au-
tonomous Agents and Multiagent Systems, 2012.

[10] T. Westenbroek, F. Castaneda, A. Agrawal, S. Sastry,
and K. Sreenath, “Lyapunov design for robust and ef-
ficient robotic reinforcement learning,” in Conference
on Robot Learning (CoRL), 2022.

[11] T. Miki, J. Lee, J. Hwangbo, L. Wellhausen, V. Koltun,
and M. Hutter, “Learning robust perceptive locomo-
tion for quadrupedal robots in the wild,” Science
Robotics, 2022.

[12] A. Rai, R. Antonova, S. Song, W. Martin, H. Geyer,
and C. Atkeson, “Bayesian optimization using do-
main knowledge on the atrias biped,” in IEEE In-
ternational Conference on Robotics and Automation
(ICRA), 2018.

[13] J. Siekmann, Y. Godse, A. Fern, and J. Hurst, “Sim-to-
real learning of all common bipedal gaits via periodic
reward composition,” in IEEE International Confer-
ence on Robotics and Automation (ICRA), 2021.

[14] Z. Li, X. Cheng, X. B. Peng, P. Abbeel, S. Levine,
G. Berseth, and K. Sreenath, “Reinforcement learning
for robust parameterized locomotion control of bipedal
robots,” in IEEE International Conference on Robotics
and Automation (ICRA), 2021.

[15] X. B. Peng, E. Coumans, T. Zhang, T.-W. E. Lee,
J. Tan, and S. Levine, “Learning agile robotic loco-
motion skills by imitating animals,” in Proceedings of
Robotics: Science and Systems (RSS), 2020.

[16] K. Green, Y. Godse, J. Dao, R. L. Hatton, A. Fern, and
J. Hurst, “Learning spring mass locomotion: Guiding
policies with a reduced-order model,” IEEE Robotics
and Automation Letters (RAL), 2021.

[17] D. Reda, H. Y. Ling, and M. van de Panne, “Learning
to brachiate via simplified model imitation,” in ACM
SIGGRAPH Conference Proceedings, 2022.

[18] J. Schulman, P. Moritz, S. Levine, M. Jordan, and
P. Abbeel, “High-dimensional continuous control us-
ing generalized advantage estimation,” International
Conference on Learning Representations, 2016.

[19] E. Wiewiora, “Potential-based shaping and q-value
initialization are equivalent,” Journal of Artificial In-
telligence Research, 2003.

[20] S. Devlin and D. Kudenko, “Theoretical considera-
tions of potential-based reward shaping for multi-agent
systems,” in International Conference on Autonomous
Agents and Multiagent Systems, 2011.

[21] N. Rudin, D. Hoeller, P. Reist, and M. Hutter,
“Learning to walk in minutes using massively parallel
deep reinforcement learning,” in Conference on Robot
Learning (CoRL), 2022.

[22] X. B. Peng, P. Abbeel, S. Levine, and M. van de
Panne, “Deepmimic: Example-guided deep reinforce-
ment learning of physics-based character skills,” ACM
Transactions on Graphics, 2018.

[23] M. Chignoli, D. Kim, E. Stanger-Jones, and S. Kim,
“The MIT humanoid robot: Design, motion planning,
and control for acrobatic behaviors,” in IEEE Interna-
tional Conference on Humanoid Robots, 2020.

[24] J. Siekmann, K. Green, J. Warila, A. Fern, and J.
Hurst, “Blind Bipedal Stair Traversal via Sim-to-Real
Reinforcement Learning,” in Proceedings of Robotics:
Science and Systems (RSS), 2021.

[25] H. Dai, A. Valenzuela, and R. Tedrake, “Whole-
body motion planning with centroidal dynamics and
full kinematics,” in IEEE International Conference on
Humanoid Robots, 2014.

[26] G. Garcia, R. Griffin, and J. Pratt, “MPC-based loco-
motion control of bipedal robots with line-feet contact
using centroidal dynamics.,” in IEEE International
Conference on Humanoid Robots, 2021.

[27] J. Schulman, F. Wolski, P. Dhariwal, A. Radford,
and O. Klimov, “Proximal policy optimization algo-
rithms,” arXiv preprint arXiv:1707.06347, 2017.

[28] M. Grzes and D. Kudenko, “Theoretical and empirical
analysis of reward shaping in reinforcement learning,”
in International Conference on Machine Learning and
Applications, 2009.

