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Abstract— A factored Nonlinear Program (Factored-NLP)
explicitly models the dependencies between a set of continuous
variables and nonlinear constraints, providing an expressive
formulation for relevant robotics problems such as manipula-
tion planning or simultaneous localization and mapping. When
the problem is over-constrained or infeasible, a fundamental
issue is to detect a minimal subset of variables and constraints
that are infeasible. Previous approaches require solving several
nonlinear programs, incrementally adding and removing con-
straints, and are thus computationally expensive. In this paper,
we propose a graph neural architecture that predicts which
variables and constraints are jointly infeasible. The model
is trained with a dataset of labeled subgraphs of Factored-
NLPs, and importantly, can make useful predictions on larger
factored nonlinear programs than the ones seen during training.
We evaluate our approach in robotic manipulation planning,
where our model is able to generalize to longer manipulation
sequences involving more objects and robots, and different
geometric environments. The experiments show that the learned
model accelerates general algorithms for conflict extraction (by
a factor of 50) and heuristic algorithms that exploit expert
knowledge (by a factor of 4).

I. INTRODUCTION

Computing values for a set of variables that fulfil all the
constraints is a key problem in several applications, such as
robotics, planning, and scheduling. In discrete domains, these
problems are generally known as Constrained Satisfaction
Problems (CSP), which also include classical combinatorial
optimization like k-coloring, maximum cut or Boolean sat-
isfaction (SAT). In continuous domains, the dependencies
between a set of continuous variables and nonlinear con-
straints can be modelled with a factored nonlinear program
(without cost term or with a small regularization), which have
applications in manipulation planning [1] or simultaneous
localization and mapping [2].

When a problem is over-constrained or infeasible, a funda-
mental challenge is to extract a minimal conflict: a minimal
subset of variables and constraints that are jointly infeasible.
These conflicts usually provide an explanation of the failure
that can be incorporated back into iterative solvers, for
example in the conflict-driven clause learning algorithm for
SAT problems [3], [4], or conflict based solvers for Task and
Motion Planning in robotics (TAMP) [5], [6], [7], [8], [9].

In continuous domains, extracting conflicts requires solv-
ing multiple nonlinear programs (NLPs) adding and remov-
ing constraints. While the number of NLPs required to solve
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(a) Input Factored-NLP (b) Neural message passing

(c) Output variable scores (d) Infeasible subgraphs

Fig. 1: Overview of our approach to detect minimal infeasible
subgraphs in a Factored-NLP. (a) The input of the model
is a Factored-NLP. Circles represent variables and squares
are constraints. (b) We perform several iterations of neural
message passing using the structure of the NLP. (c) The
network outputs the probability that a variable belongs to a
minimal infeasible subgraph. (d) We extract several minimal
infeasible subgraphs with a connected component analysis.

grows logarithmically with the number of nonlinear con-
straints, each call to a nonlinear solver is usually expensive.

In this paper, we propose a neural model to predict
minimal infeasible subsets of variables and constraints from
a factored nonlinear program. The input to our model is
directly the factored nonlinear program, including semantic
information on variables and constraints (e.g. a class label)
and a continuous feature for each variable (which, for
instance can be used to encode the geometry of a scene
in robotics). The graph structure of the factored nonlinear
program is exploited for performing message passing in the
neural network. Finding the minimal infeasible subgraph (i.e.
a subset of variables and constraints of the Factored-NLP)
is cast as a variable classification problem, and the predicted
infeasible subsets are extracted with a connected components
analysis. An overview of our approach is shown in Fig. 1.
The prediction of the graph neural network can be naturally
integrated into an algorithm to detect minimal infeasible
subgraphs, providing a significant speedup with respect to
previous methods, both using general conflict extraction
algorithms or expert algorithms with domain knowledge.

Our approach follows a promising trend in robotics to
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combine optimization and learning [10], [11], [12], [13],
[14]. In this paradigm, a dataset of solutions to similar
problems is used to accelerate optimization methods, making
expensive computations tractable and enabling real-time so-
lutions to combinatorial and large scale optimization. There-
fore, we assume that a dataset of labeled factored nonlinear
programs (generated offline with an algorithm for conflict
extraction) is available. Each example consists of a factored
nonlinear program and a set of minimal infeasible subgraphs.

As an application, we evaluate our method in robotic
sequential manipulation. Finding minimal conflicts is a fun-
damental step in conflict-based solvers, usually accounting
for most of the computational time.

From a robotics perspective, our novel contribution is to
use the structure of the nonlinear program formulation of
manipulation planning for message passing with a graph
neural network. To this end, we first formulate the motion
planning problem that arises from a high-level manipulation
sequence (symbolic actions such as pick or place) as a
factored nonlinear program [1]. Variables correspond to the
configuration of objects and robots at each step of the motion
and the nonlinear constraints model kinematics, collision
avoidance and grasping constraints. When combined with our
learned model, we get strong generalization capabilities to
predict the minimal infeasibility of manipulation sequences
of different lengths in different scenes, involving a different
number of objects and robots.

Our contributions are:
• A neural model to predict minimal conflicts in factored

nonlinear programs. We formulate the detection of
minimal infeasible subgraphs as a variable classification
problem and a connected components analysis.

• An algorithm that integrates the prediction of our neural
model and non-learning conflict extraction methods,
providing a significant acceleration.

• An empirical demonstration that the formulation of
manipulation planning as a factored nonlinear program,
together with our neural model, enables scalability and
generalization.

II. RELATED WORK

A. Minimal Infeasible Subsets of Constraints

In the discrete SAT and CSP literature, a minimal infeasi-
ble subset of constraints (also called Minimal Unsatisfiable
Subset of Constraints or Minimal Unsatisfiable Core) is
usually computed by solving a sequence of SAT and MAX-
SAT problems [15], [16], [17].

In a general continuous domain, a minimal infeasible
subset can be found by solving a linear number of prob-
lems [18]. This search can be accelerated with a divide
and conquer strategy, with logarithmic complexity [19]. In
convex and nonlinear optimization, we can find approximate
minimal subsets by solving one optimization program with
slack variables [20]. In contrast, our method uses learning
to directly predict minimal infeasible subsets of variables
and constraints, and can be combined with these previous
approaches to reduce the computational time.

B. Graph Neural Networks in Combinatorial Optimization

We use Graph Neural Networks (GNN) [21], [22], [23] for
learning in graph-structured data. Different message passing
and convolutions have been proposed, e.g. [24], [25]. Our
architecture, targeted towards inference in factored nonlinear
programs, is inspired by previous works that approximate
belief propagation in factor graphs [26], [27], [28].

Recently, GNN models have been applied to solve NP-
hard problems [29], Boolean Satisfaction [30], Max cut [31],
constraint satisfaction [32], and discrete planning [33], [34],
[35]. Compared to state-of-the-art solvers, learned models
achieve competitive solution times and scalability but are
outperformed in reliability and accuracy. To our knowledge,
this is the first work to use a GNN model to predict
the minimal infeasible subgraphs of a factored nonlinear
program in a continuous domain.

C. Graph Neural Networks in Manipulation Planning

In robotic manipulation planning, GNNs are a popular ar-
chitecture to represent the relations between movable objects,
because they provide a strong relational bias and a natural
generalization to including additional objects in the scene.

For example, they have been used as problem encoding
to learn policies for robotic assembly [36], [37] and ma-
nipulation planning [38], to learn object importance and
guide task and motion planning [39], and to learn dynamical
models and interactions between objects [40], [41]. Previous
works often use object centric representations: the vertices
of the graph represent the objects and the task is encoded in
the initial feature vector of each variable. Alternatively, our
model performs message passing using the structure of the
nonlinear program of the manipulation sequence, achieving
generalization to different manipulation sequences that fulfil
different goals.

III. FORMULATION

A. Factored Nonlinear Program (Factored-NLP)

A Factored-NLP G is a bipartite graph G = (X ∪H,E)
that models the dependencies between a set of variables
X = {xi ∈ Rni} and a set of constraints H = {ha :
Rma → Rm′

a}. Each constraint ha(xa) is a piecewise
differentiable function evaluated on a (typically small) subset
of variables xa ⊆ X (e.g. xa = {x1, x4}). The edges
model the dependencies between variables and constraints
E = {(xi, ha) : constraint ha depends on variable xi}.
Throughout this document, we will use the indices i, j to
denote variables and a, b to denote constraints.

The underlying/associated nonlinear program is

find xi s.t. ha(xa) ≤ 0 ∀xi ∈ X,ha ∈ H . (1)

The constraints ha(xa) ≤ 0 also include equality constraints
(that can be written as ha(xa) ≤ 0 and ha(xa) ≥ 0).

A Factored-NLP G is feasible (F(G) = 1) iff (1) has
a solution, that is, there exists a value assignment x̄i for
each variable xi such that all constraints ha(x̄a) are fulfilled.
Otherwise, it is infeasible (F(G) = 0). This assignment



can be computed with nonlinear optimization methods, such
as Augmented Lagrangian or Interior Points. A minimal
infeasible subgraph M ⊆ G is an infeasible subset of
variables and constraints whose any proper subset is feasible,

M ⊆ G, F(M) = 0, F(M ′) = 1 ∀M ′ ⊂M. (2)

Given a graph G and a subset of variables X ′ ⊆ X ,
a variable-induced subgraph G[X ′] = (X ′ ∪ H ′, E′) with
H ′ = {ha ∈ H : NeighG(ha) ⊆ X ′} is the subgraph
spanned by the variables X ′. Intuitively, G[X ′] contains the
variables X ′ and all the constraints that can be evaluated
with these variables. In this work, we consider only minimal
subgraphs in the form of variable-induced subgraphs, i.e.
M = G[X ′] ⊆ G, because it enables a more compact
representation (our approach can be adapted to predict gen-
eral subgraphs if required, changing the proposed variable
classification to constraint classification in Sec III-B).

A minimal infeasible subgraph is connected and a su-
pergraph M̃ ⊇ M of an infeasible subgraph M is also
infeasible. A factored-NLP G can contain multiple infeasible
subgraphs, and a variable xi ∈ X can belong to multiple
infeasible subgraphs.

B. Minimal Infeasible Subgraph as Variable Classification
Let ΦG = {Mr ⊆ G} be the set of minimal infeasible

subgraphs of a Factored-NLP G. Instead of learning the
mapping ϕ : G → ΦG directly, we propose to learn an
over-approximation ϕ̃ that can efficiently be framed as binary
variable classification.

We first introduce the variable-feasibility function
ψ(xi;G) that assigns a label yi ∈ {0, 1} to each variable
xi ∈ X . yi = 0 if xi belongs to some infeasible subgraph
Mr, and yi = 1 otherwise. Given such a labelled graph, we
can recover the infeasible subgraphs approximately by com-
puting the connected components on the subgraph induced by
the variables with label 0, i.e. G [{xi ∈ X : yi = 0}]. Thus,
we define the approximate mapping as,

ϕ̃(G) = CCA (G [{xi ∈ X : yi = 0}]) , (3)

where CCA denotes a connected component analysis.
The approximate mapping ϕ̃ is exact, i.e. ϕ̃ = ϕ, if

the infeasible subgraphs are disconnected. If two or more
of the infeasible subgraphs are connected, it returns their
union as a minimal infeasible sugraph, i.e. ∪ϕ̃ = ∪ϕ, which
over-approximates the size of the original minimal infeasible
subgraph. Our neural model will be trained to imitate the
labels of the variable-feasibility function ψ.

We emphasize that learning the approximate function ϕ̃
is not a real limitation. First, because the prediction will be
integrated into an algorithm that can further reduce the size
of the infeasible subgraph, if it is not already minimal, as
shown later in Sec. III-D. Second, because in practice finding
small infeasible subgraphs, as opposed to strictly minimal, is
already useful in the applications. Finally, note that ϕ can be
converted to a multiclass variable classification f(xi;G) =
y ⊆ {1, . . . , R}, where each variable can belong to multiple
classes – but this would require a complex, and potentially
intractable, permutation invariant formulation.

i jab

µa→i µa→jµb→i

[µa→i, µa→j ] = Messagea(zi, zj), µb→i = Messageb(zi)
z′i = Update (AGG (µa→i, µb→i) , zi), z′j = Update (µa→j , zj)

Fig. 2: Message Passing in a Factored-NLP with two vari-
ables (i, j) and two constraints (a, b).

C. GNN with the Structure of a Factored-NLP
A fundamental idea of our method is to use the structure

of the Factored-NLP for message passing with Graph Neural
Networks (GNN) to learn the variable-feasibility ψ(xi;G).

Each variable vertex xi ∈ X has a feature vector zi ∈ Rnz

that is updated with the incoming messages of the neighbour
constraints. zi is initialized with z0i to encode semantic
and continuous information of the variable xi (an example
on how to initialize the features in manipulation planning
is shown in Sec. IV-B). The update rule follows a two-
step process: first, each constraint computes and sends back
a message to each neighbour variable, which depends on
the current features of all the neighbour variables. Second,
each variable aggregates the information of the incoming
messages from the constraints and updates its feature vector.
A graphical representation is shown in Fig 2.

[⊕µa→i]i∈N(a) = Messagea([⊕zi]i∈N(a)), (4)
z′i = Update(AGGa∈N(i) µa→i, zi).

µa→i ∈ Rnµ is the message from constraint a to variable
i. [⊕zi]i denotes concatenation. N(a) = NeighG(ha) is
the ordered set of variables connected to the constraint ha.
N(i) = NeighG(xi) is the set of constraints connected to
variable xi. AGG is an aggregation function, e.g. max, sum,
mean or weighted average. We use max (element-wise) in our
implementation. Update and Messagea are small MLPs
(Multilayer Perceptron) with learnable parameters. Likewise
the nonlinear constraints in the Factored-NLP are not per-
mutation invariant or symmetric, the features zi have to be
concatenated in a predefined order N(a) when evaluating
Messagea.

The function Update is shared by all vertices (which
generalizes to Factored-NLPs with additional variables). The
function Messagea is shared between different constraints
of the Factored-NLP that represent the same mathematical
function, i.e. Messagea = Messageb iff ha(x) = hb(x)
(which generalizes to Factored-NLPs with additional con-
straints). For example, in manipulation planning, all con-
straints that model collisions between objects will share the
same Message MLP.

The message passing update (4) is performed K times,
starting from the initial feature vectors z0i . The feature
vectors after K iterations are used for feasibility prediction
with a small MLP classifier.

ŷi = Classifier(zKi ) (5)

The parameters of the classifier, message and update net-
works are trained end-to-end to minimize the weighted



Algorithm 1: Conflict Extraction with a GNN
Input: Factored-NLP G , GNN Model, Solve, Reduce
Result: M ⊆ G ▷ Minimal infeasible subgraph

1 {ŷi} = GNN Model(G)
2 δ ← 0.5, δr ← 1.2 , found← 0
3 while not found do
4 Xδ = {xi ∈ X : ŷi < δ} ▷ Candidate infeasible variables
5 for g ∈ Connected components(G[Xδ]) do
6 feasible← Solve(g)
7 if not feasible then
8 M ← Reduce(g)
9 found← 1

10 break

11 δ ← δ × δr

12 return M

binary cross entropy loss between the prediction ŷi and the
variable-feasibility labels yi.

D. Algorithm to Detect Minimal Infeasible Subgraphs

To account for the approximation of our variable clas-
sification formulation, and small prediction errors, we can
integrate the learned classifier into a classical algorithm to
detect minimal infeasible subgraphs.

We assume the user provides the Solve and Reduce
routines, that respectively check if a Factored-NLP is feasible
and compute a minimal infeasible subset of an infeasible
graph. Reduce is an expensive routine, as it requires solving
several nonlinear programs adding and removing constraints.
The number of evaluated NLPs (and therefore the computa-
tion time) depends on the size of the input graph: linear on
the total number of variables using [18], or logarithmic [19].

Our algorithm is shown in Alg. 1. The GNN model is
evaluated on the input Factored-NLP and computes a feasi-
bility scores ŷi for each variable. Iteratively increasing the
classification threshold δ, we select the candidate infeasible
variables Xδ using the current threshold δ. We generate
candidate infeasible subgraphs with a connected component
analysis on the variable-induced subgraph G[Xδ], that are
evaluated with Solve. Once an infeasible subgraph is found,
we use Reduce to get a minimal infeasible subgraph.

A non-learning approach runs solve and reduce di-
rectly on the input Factored-NLP. Therefore, the acceleration
in our algorithm comes from evaluating these routines with
small (ideally minimal) candidates. Alg. 1 can be extended to
compute several minimal infeasible subgraphs by removing
the break instruction (line 10) and adding a special check
before solving a candidate subgraph (line 6), to avoid solving
for a supergraph of a found infeasible subgraph.

IV. FACTORED-NLP FOR MANIPULATION PLANNING

In this section, we present a factored nonlinear program
formulation for robotic manipulation planning that enables
our model to generalize to problems with longer manip-
ulation sequences, more objects and robots, and different
geometric environments.
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Fig. 3: Factored-NLP in manipulation planning. Circles are
variables and squares are constraints. Each column represents
a keyframe of the manipulation sequence. q, w are the
configurations of two robots; A,B are the absolute position
of two objects, and a, b are the relative pose of these objects
with respect to their parent in the kinematic tree (e.g. the
table, a gripper or another object). See main text for details.

A. Structure of the Factored-NLP

A Factored-NLP models the motion of robots and objects
that is implied by a sequence of high-level actions (such
as pick and place) as a nonlinear optimization/feasibility
problem. It contains variables that represent the configu-
ration of objects and robots at each time step. We focus
on the keyframe or mode-switch problem, that considers
only the configurations at the beginning and end of each
motion phase (e.g. when picking or placing an object), but
not the trajectory between them. This follows a common
problem decomposition used in Task and Motion Planning,
where path feasibility is evaluated afterwards with trajectory
optimization or sampling based motion planning [42], [1].

We include three types of variables: robot configurations,
object absolute positions and object relative positions with
respect to the parent frame. Nonlinear constraints model
grasping (Grasp in Fig. 3), kinematic switches (Kin), valid
placements (Pos), collision avoidance (brown squares), refer-
ence position (Ref ), time consistency (Equal), and geometric
consistency between relative and absolute pose (PoseDiff ).
The structure of the NLP is similar to previous factored
formulations [7], [42], [43], [44] but less compact (one can
formulate the nonlinear program without explicitly intro-
ducing the absolute position of objects). However, this is
necessary to formulate Factored-NLPs of diverse manipula-
tion sequences using only few types of nonlinear constraints.
Because each type of constraint will correspond to a different
Message network, this formulation is crucial to enable
generalization of the GNN model. In Fig. 3, we show the
Factored-NLP that corresponds to the sequence (pick object
B with robot Q), (pick object B with robot W from robot Q),
(place object B on top of object A with Robot W).

B. Encoding of the Problem in the Initial Feature Vectors

The structure of the Factored-NLP implicitly encodes the
number of objects, robots and the high-level action sequence



Fig. 4: Manipulation Scenarios. Obstacles are brown, blocks
are colorful and tables are white. Left: Train Data, Middle:
+ Blocks, Right: + Robots.

(e.g. which robots pick which objects). The geometric de-
scription of the environment is encoded locally in the initial
feature vector of each variable z0i . Specifically, the initial
feature vector includes the information of unary constraints
(i.e. constraints evaluated only on a single variable, which
are then not added to the message passing architecture),
additional semantic class information (for example, whether
the variable represents an object or a robot, but without
including a notion of time index or entity), and geometric
information that is relevant for the constraints (for example,
the size of the objects). The dimension of z0i is fixed, and
shorter feature vectors are padded with zeros.

For example, suppose that the Factored-NLP of Fig. 3
is evaluated in a scene where robot Q is at pose TQ =

[ 0.32, 0.41, 0.56, 0.707, 0, 0, 0.707] , the start position of ob-
ject A is TA = [0.35, 0.4, 0.5, 0.707, 0, 0, 0.707] and object
A is a box of size SA = [0.2, 0.3, 0.2]. Then z0 of variables
{q0, q1, q2, q3} is [1, 0, 0, 0, 0, 0, TQ] where the first 6
components are a one-hot vector to indicate that it is a
robot. The z0 of {a0, a1, a2, a3} is [0, 1, 0, 0, 0, 0, TA] ,
where first components indicate that it is a relative pose with
respect to the reference position. The z0 of {A0, A1, A2, A3}
is [0, 0, 1, 0, 0, 0, SA, 0, 0, 0, 0] to indicate that it is an
absolute position of an object of size SA.

V. EXPERIMENTAL RESULTS

A. Scenario

We evaluate our model in robotic sequential manipulation.
The high-level goal is to build towers and rearrange blocks
in different configurations, in scenarios that contain several
and varying number of blocks, robots and movable obstacles,
at different positions, see Fig. 4 and 5. The following setting
is used to generate the train dataset (4800 Factored-NLPs):

• Five movable objects: 3 blocks and 2 obstacles. Both
types of objects have collisions constraints, but obstacles
are bigger and usually block grasps or placements. • Two
robots: 7-DOF Panda robot arms, that can pick and place
objects using a top grasp. • Different geometric scenes: the
position of the objects, robots and tables is randomized. •
Manipulation sequences of length 4 to 7.

To evaluate the generalization capabilities of the learned
model, we consider three additional datasets:

• +Robots: we add an additional robot. • +Blocks:
we add two additional blocks. • +Actions: it contains
Factored-NLPs with longer manipulation sequences (length
of 8 to 10).

TABLE I: Classification Accuracy. Each pair indicates the
accuracy in predicting feasible and infeasible variables.

Train Data + Blocks + Robots + Actions

GNN (94.7, 95.4) (96.1, 95.2) (95.7, 95.3) (94.6, 94.1)

MLP (93.0, 82.2) (93.4, 80.8) (93.0, 80.8) (91.0, 48.0)

MLP-SEQ (83.5, 88.1) (82.3, 88.8) (82.1, 88.8) (74.0, 75.3)

B. Data Generation

For training the GNN model we need a set of Factored-
NLPs with labelled variables to indicate whether they belong
to a minimal infeasible subset. First, we generate a set of
interesting high-level action sequences. Second, we evaluate
the manipulation sequences on random geometric scenes to
generate Factored-NLPs (including the initial feature vec-
tors). To compute the feasibility labels, we adapt the conflict
extraction algorithm of [7] to find up to 10 minimal infeasible
subgraphs.

C. Accuracy of the GNN Classifier

We compare our model (GNN) against a Multilayer Per-
ceptron (MLP) and a sequential model (MLP-SEQ), trained
with the same dataset.

The MLP computes ŷi = MLP(z̃0i , A,C). z̃
0
i = [z0i , ti, ei]

is the feature vector of the variable we want to classify. It
concatenates the feature vector z0i used in the GNN, with
the time index ti of the variable, and a parametrization
that defines the entity ei (for instance, we represent an
object with its starting pose – one hot encodings could
not generalize to more objects). A is the encoding of the
whole action sequence, using small vectors to encode each
token, e.g. {“pick”, “block1”, “l gripper”, “table”}. To ac-
count for sequences of different length, we fix a maximum
length and add padding. C is the scene parametrization
and contains the position/shapes of all possible objects and
robots. We also evaluate MLP-SEQ, a sequential model
MLP(z̃0i ,SEQ(A), C) that encodes the action sequence with
a recurrent network (Gated Recurrent Units).

We first evaluate the accuracy of the models to predict if
a variable belongs to a minimal infeasible subset, see Tab.
I. Our GNN model outperforms the alternative architectures,
both in the original Train Data and, specially, in the exten-
sion datasets. Our model keeps a constant ∼95% success
rate across all datasets, while the performance of MLP and
MLP-SEQ drops to 48% and 75%. We also evaluate the
accuracy of our model to predict infeasible subgraphs, using
the proposed method that combines variable classification
and connected component analysis, using the initial threshold
for classification δ = 0.5. Our model outperforms MLP and
MLP-SEQ, and finds between 70% and 57% of the infeasible
subgraphs, and 30%-50% of the predicted subgraphs are
minimal, see Tab. II. Between 34%-48% of the predicted
infeasible graphs are actually feasible (not shown in the table
due to space limitation).

MLP, MLP-SEQ and GNN have the same information to



TABLE II: Prediction of infeasible subgraphs. Each pair
indicates the ratio “found / total” and “minimal / found”.

Train Data + Blocks + Robots + Actions

GNN (71.2, 54.1) (58.9, 33.3) ( 70.2, 55.3) ( 57.1, 41.9)

MLP (58.5, 54.6) (34.5, 53.2) (55.2, 37.6) (22.1, 35.5)

MLP-SEQ (65.7, 26.0) (28.6, 21.2) (61.3, 09.5) (36.3, 11.0)

TABLE III: Finding one minimal infeasible subgraph. Each
pair indicates the number of solved NLPs and the computa-
tional time in 100 Factored-NLPs, normalized by GNN+g1.

Train Data + Blocks + Robots + Actions

GNN+e (1.57, 2.25) (1.44, 2.09) (1.66, 2.14) (1.50, 2.19)

GNN+g1 (1, 1) (1, 1) (1, 1) (1, 1)

Oracle (0.83, 0.97) (0.62, 0.79) (0.83, 0.84) (0.71, 0.86)

Expert (3.66, 4.32) (3.13, 5.06) (4.33, 4.62) (3.33, 4.56)

General 2 (3.50, 64.1) (3.30, 163) (3.50, 66.5) (3.83, 128)

make the predictions. The Factored-NLP is a deterministic
mapping of the action sequence and the geometric scene.
Although a MLP could learn this mapping, our experiments
show that the representation does not emerge naturally – con-
firming that a structured model yields better generalization.

D. Finding Minimal Infeasible Subgraphs

We analyze the time required to find one minimal infeasi-
ble subgraph in an infeasible Factored-NLP with algorithms:

• Oracle, which executes a single call to Solve and
Reduce with a minimal infeasible subgraph as input.

• General {1,2}, which are generic algorithms for conflict
extraction: General 1 uses constraint filtering [18], and
General 2 uses QuickXplain [19].

• Expert is a heuristic algorithm for conflict extraction
in manipulation planning [8]. It exploits the temporal
structure, domain relaxations, and the convergence of
the optimizer to quickly discover the conflicts.

• GNN+{e,g1} combines the prediction of our GNN
model with either Expert or General 1. Expert and
General 1 are used as Reduce in Alg. 1.

Results are shown in Table III. GNN+g1 is 60-120x
faster than General 2 (which is faster than General 1).
This highlights the benefits of our approach in domains
where we can compute a dataset using General offline, and
train the model to get an order-of-magnitude improvement
in new problems. GNN+g1 is 4-5x faster than the Expert
algorithm, and only 1.2x slower than an oracle. Moreover,
the acceleration provided by GNN is maintained in all the
datasets. This confirms the good accuracy and generalization
of the architecture seen in the classification results. As a side
note, Expert is faster than General 2 because it solves a lot of
small feasible NLPs first, until it finds one that is infeasible
(which is faster than solving infeasible NLPs).

Fig. 5: Manipulation sequence in + Actions. Robots build a
tower [red, blue, green, orange], moving first an obstacle.

E. Integration in a Conflict-based TAMP Planner

We demonstrate the benefits of neural accelerated conflict
extraction inside the GraphNLP Planner [8] for solving
TAMP problems. The planner iteratively generates high-
level plans, detects infeasible subgraphs, and encodes this
information back into the logical description of the problem.

For this evaluation, we define 10 high-level goals for each
setting corresponding to the +Actions, +Robots, and
+Blocks datasets, and report the total sum (including the 10
goals) of the number of solved NLPs and the computational
time in the conflict extraction component of TAMP solver.
GNN+e (which is more robust than GNN+g1 in this setting)
takes only (8.33s, 511 NLPs), (9.83s, 603 NLPs), and (63.9s,
1979 NLPs) for each scenario, and is between 2 and 3 times
faster than the expert algorithm, which requires (24.2s, 731
NLPs), (38.7s, 1116 NLPs), and (137.9s, 2554 NLPs).

VI. CONCLUSION

In this paper, we have presented a neural model to predict
the minimal infeasible subsets of variables and constraints in
a factored nonlinear program. The structure of the nonlinear
program is used for neural message passing, providing gen-
eralization to problems with more variables and constraints.

We have demonstrated our approach in manipulation plan-
ninFg. A single learned model, combined with a suitable
NLP representation of the motion sequence, can predict
minimal infeasibility of manipulation sequences of different
lengths in different scenes, increasing the number of objects
and robots. Our model achieves high accuracy, and the
predictions can be integrated to guide and accelerate classical
and heuristic algorithms for detecting minimal conflicts.

As future work, we would like to apply our neural for-
mulation to detect conflicts in discrete constraint satisfaction
problems, such as Boolean Satisfaction or k-coloring. From a
robotics perspective, we will further investigate the potential
of graph neural networks to combine logic and geometric
information for guiding task and motion planning.
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[42] C. R. Garrett, T. Lozano-Pérez, and L. P. Kaelbling, “Sampling-based
methods for factored task and motion planning,” The International
Journal of Robotics Research, 2018.

[43] F. Lagriffoul, D. Dimitrov, J. Bidot, A. Saffiotti, and L. Karlsson,
“Efficiently combining task and motion planning using geometric
constraints,” The International Journal of Robotics Research, vol. 33,
no. 14, pp. 1726–1747, 2014.

[44] J. Ortiz-Haro, V. N. Hartmann, O. S. Oguz, and M. Toussaint,
“Learning efficient constraint graph sampling for robotic sequential
manipulation,” in 2021 IEEE International Conference on Robotics
and Automation (ICRA), 2021, pp. 4606–4612.

https://ojs.aaai.org/index.php/ICAPS/article/view/19811
https://arxiv.org/abs/2003.01998
https://arxiv.org/abs/2107.01188
https://ojs.aaai.org/index.php/SOCS/article/view/18555
https://ojs.aaai.org/index.php/SOCS/article/view/18555
https://arxiv.org/abs/2202.11855

	INTRODUCTION
	Related Work
	Minimal Infeasible Subsets of Constraints
	Graph Neural Networks in Combinatorial Optimization
	Graph Neural Networks in Manipulation Planning

	Formulation
	Factored Nonlinear Program (Factored-NLP)
	Minimal Infeasible Subgraph as Variable Classification 
	GNN with the Structure of a Factored-NLP
	Algorithm to Detect Minimal Infeasible Subgraphs

	Factored-NLP for Manipulation Planning
	Structure of the Factored-NLP
	Encoding of the Problem in the Initial Feature Vectors

	Experimental Results
	Scenario
	Data Generation
	Accuracy of the GNN Classifier
	Finding Minimal Infeasible Subgraphs
	Integration in a Conflict-based TAMP Planner

	Conclusion
	References

