
Interaction-Aware Trajectory Planning for Autonomous Vehicles with
Analytic Integration of Neural Networks into Model Predictive Control

Piyush Gupta1,2* David Isele2 Donggun Lee3 Sangjae Bae2

Abstract— Autonomous vehicles (AVs) must share the driving
space with other drivers and often employ conservative motion
planning strategies to ensure safety. These conservative strate-
gies can negatively impact AV’s performance and significantly
slow traffic throughput. Therefore, to avoid conservatism, we
design an interaction-aware motion planner for the ego vehicle
(AV) that interacts with surrounding vehicles to perform com-
plex maneuvers in a locally optimal manner. Our planner uses
a neural network-based interactive trajectory predictor and
analytically integrates it with model predictive control (MPC).
We solve the MPC optimization using the alternating direction
method of multipliers (ADMM) and prove the algorithm’s
convergence. We provide an empirical study and compare our
method with a baseline heuristic method.

I. INTRODUCTION

Motion planning for autonomous vehicles (AVs) is a
daunting task, where AVs must share the driving space
with other drivers. Driving in shared spaces is inherently
an interactive task, i.e., AV’s actions affect other nearby
vehicles and vice versa [1]. This interaction is evident in
dense traffic scenarios where all goal-directed behavior relies
on the cooperation of other drivers to achieve the desired
goal. To predict the nearby vehicles’ trajectories, AVs often
rely on simple predictive models such as assuming constant
speed for other vehicles [2], treating them as bounded
disturbances [3], or approximating their trajectories using a
set of known trajectories [4]. These models do not capture
the inter-vehicle interactions in their predictions. As a result,
AVs equipped with such models struggle under challenging
scenarios that require interaction with other vehicles [5], [6].

AVs can be overly defensive and opaque when interacting
with other drivers [7], as they often rely on decoupled pre-
diction and planning techniques [8]. The prediction module
anticipates the trajectories of other vehicles, and the planning
module uses this information to find a collision-free path.
As a result of this decoupling, AVs tend to be conservative
and treat other vehicles as dynamic obstacles, resulting in
a lack of cooperation [9]. Figure 1 shows two scenarios in
which the ego vehicle intends to merge into the left lane,
but the inter-vehicle gaps are too narrow. In such scenarios,
conservative AVs with decoupled prediction and planning are
forced to wait for a long duration. In contrast, we propose
an interaction-aware AV that can open up a gap for itself by
negotiating with other agents, i.e., by nudging them to either
switch lanes (Fig. 1a) or change speeds (Fig. 1b).

1 Michigan State University, East Lansing, MI, 48824, USA.
{guptapi1}@msu.edu *Corresponding Author

2 Honda Research Institute, San Jose, CA, 95134, USA.
{piyush gupta, disele, sbae}@honda-ri.com

3 Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
{donggun}@mit.edu

This work has been supported in part by Honda Research Institute, USA,
and NSF Award ECCS-2024649.

(a) (b)

Fig. 1: Dense traffic scenarios where the ego vehicle (green) intends to
merge to the left lane. The red and green trajectories show the nominal
(conservative) and interaction-aware trajectories for the ego vehicles, re-
spectively, and correspondingly, their impact on the other vehicles. Due to
interaction with the ego vehicle (green trajectory), in scenario (a), the blue
vehicle switches lanes, and in scenario (b), the blue vehicle slows down to
create space for the ego vehicle to perform a safe lane-change maneuver.

Reinforcement learning (RL) techniques [10] have been
used to learn control policies under interactive or unknown
environments. For example, adversarial RL is designed to
reach the desired goal under uncertain conditions [11], and
a model-free RL agent is developed for lane-changing con-
trol in dense traffic environments [12]. However, these RL
methods are not yet appropriate for safety-critical AVs due
to their low interpretability and reliability.

Designing interaction-aware planners presents a significant
challenge, as predicting the reactions of surrounding vehicles
to the ego vehicle’s actions is complex and non-trivial.
Data-driven approaches, such as those using recurrent neural
network architectures, have been effective in capturing the
complex interactive behaviors of agents [13], [14], especially
in predicting driver behavior with high accuracy and com-
putational efficiency [14]. Therefore, it is desirable to utilize
these data-driven methods to predict other vehicles’ inter-
active behavior while maintaining safety through rigorous
control theory and established vehicle dynamics models.

We propose a model predictive control (MPC) based
motion planner that incorporates AV’s decision and sur-
rounding vehicles’ interactive behaviors into safety con-
straints to perform complex maneuvers. In particular, we
provide a mathematical formulation for integrating the neural
network’s predictions in the MPC controller and provide
methods to obtain an (locally) optimal solution. However, the
neural network integration and non-linear system dynamics
make the optimization highly non-convex and challenging
to solve analytically. Thus, prior efforts [6], [15], [9] that
integrate neural network prediction into MPC are numerical
in nature and rely on heuristic algorithms to generate a finite
set of trajectory candidates. In [6] and [15], the authors
generate these candidates by random sampling of control
trajectories, and by generating spiral curves from source
to target lane, respectively. In [9], the authors utilize a
predefined set of reference trajectory candidates. Instead of
solving the optimization, these approaches evaluate the cost
of each candidate and choose the minimum cost trajectory
that satisfies the safety constraint. Optimality is therefore

ar
X

iv
:2

30
1.

05
39

3v
2

 [
cs

.R
O

]
 2

 M
ar

 2
02

3

restricted to trajectory candidates only, and the planner’s
performance depends on the heuristic algorithm design. In
contrast to these prior efforts, we avoid heuristics, detail a
proper formalization, and solve the optimization with prov-
able optimality. The optimal solution provides key insights
to design better planners and can be leveraged to compare
trajectories obtained by other heuristic methods.

The major contributions of this work are twofold: (i) we
reformulate a highly complex MPC problem with a non-
convex neural network and non-linear system dynamics,
and systematically solve it using the Alternating Direction
Method of Multiplier (ADMM) [16] with generic assump-
tions (Section III), and (ii) we investigate the mathematical
properties of the ADMM algorithm for solving the MPC
with an integrated neural network. Specifically, we provide
sufficient conditions on the neural network such that the
ADMM algorithm in non-convex optimization converges to
a local optimum (Section IV). It is one of the first attempts
in the literature toward provable mathematical guarantees for
a neural network-integrated MPC.

II. PROBLEM FORMULATION AND CONTROLLER DESIGN

We design an MPC controller that leverages interactive
behaviors of surrounding N ∈ N vehicles conditioned on the
ego vehicle’s future actions. The key to leverage interactions
is to integrate a neural network and interactively update
controls with step-size ∆t ∈ R>0 based on its inference
(i.e., predicted positions during updates). This section further
details the mathematical formulation of the MPC with the
neural network.

Motivated by [17], we use bicycle kinematics. The corre-
sponding states are [xy-coordinates, heading angle, speed]
denoted by z(τ) = [x(τ), y(τ), ψ(τ), v(τ)]> for all τ ∈
{0, . . . , Tp} and the control inputs are [acceleration, steering
angle] denoted by [a(τ), δ(τ)] for all τ ∈ {0, . . . , Tp − 1}
with the planning horizon Tp ∈ N. For brevity, let g(τ)
denote any general function g(·) at discrete time-step τ ∈
Z≥0 with respect to (w.r.t) time t, i.e. g(τ) ≡ g(t+ τ∆t).

Then, at any time t, we solve the MPC to obtain the opti-
mal control trajectories ∆∗(t) ∈ D ⊂ RTp and α∗(t) ∈ A ⊂
RTp , and corresponding optimal state trajectory Z∗(t) ∈
Z ⊂ R4Tp , where:

∆∗(t) =
[
δ∗(0), . . . , δ∗(Tp − 1)

]>
, D = [δmin, δmax],

α∗(t) =
[
a∗(0), . . . , a∗(Tp − 1)

]>
, A = [amin, amax],

Z∗(t) =
[
z∗(1), . . . , z∗(Tp)

]>
, Z = [zmin, zmax].

A. Objective function

The controller’s objective is to move from the current lane
to the desired lane as soon as possible while minimizing
control effort and ensuring safety and smoothness. Let xref

denote the maximum longitude coordinate until when the
ego must transition to the target lane. Let ‖ · ‖ denote the
Euclidean norm. For x < xref, we utilize the following
objective (cost) function J(∆(t),α(t),Z(t)) similar to [15]:

J =

Tp∑
τ=1

λdiv‖y(τ)− yref‖2 +

Tp∑
τ=1

λv‖v(τ)− vref‖2 (error)

+

Tp−1∑
τ=0

λδ‖δ(τ)‖2 +

Tp−1∑
τ=0

λa‖a(τ)‖2 (control effort)

+

Tp−1∑
τ=0

λ∆δ‖δ(τ)− δ(τ − 1)‖2 (steering rate)

+

Tp−1∑
τ=0

λ∆a‖a(τ)− a(τ − 1)‖2, (jerk)

where ∆(t) ∈ D, α(t) ∈ A, and Z(t) ∈ Z are the planned
steering, acceleration, and state trajectories, respectively.
yref ∈ R and vref ∈ R>0 are the reference latitude coordinate
of the desired lane and desired velocity, respectively, pro-
vided by a high-level planner [18]. For a detailed description
of each term, we refer the interested readers to [15].

B. State Dynamics

Let δ̃, ã and z̃ be the last observed steering input, ac-
celeration input and state of the ego vehicle, respectively.
At any time t, we linearly approximate the discrete-time
kinematic bicycle model [17] of the form z(τ + 1) =
f(δ(τ), a(τ), z(τ)) about (δ̃, ã, z̃) to obtain the equality
constraints for the optimization problem. We have

f(δ(τ), a(τ), z(τ)) ≈ Ãδ(τ) + B̃a(τ) + C̃z(τ) + D̃, (1)

where Ã ∈ R4, B̃ ∈ R4, C̃ ∈ R4×4, and D̃ ∈ R4 are constant
matrices given by Ã := ∂f

∂δ

∣∣∣
(δ̃,ã,z̃)

, B̃ := ∂f
∂a

∣∣∣
(δ̃,ã,z̃)

, C̃ =

∂f
∂z

∣∣∣
(δ̃,ã,z̃)

, and D̃ := f(δ̃, ã, z̃)−Ãδ̃−B̃ã−C̃z̃, respectively.

Hence, the linearized system dynamics is given by:

z(τ + 1) = Ãδ(τ) + B̃a(τ) + C̃z(τ) + D̃

=⇒ Ãδ(τ) + B̃a(τ) + C̃z(τ)− z(τ + 1) + D̃ = 0. (2)

The equality constraints based on the system dynamics over
the Tp planning time-steps can be written as:

F (∆,α,Z) := A∆ +Bα+ CZ +D = 0, (3)

where A ∈ R4Tp×Tp , B ∈ R4Tp×Tp , C ∈ R4Tp×4Tp , and
D ∈ R4Tp are constant matrices given by:

A =

Ã 0 0 · · ·
0 Ã 0 · · ·
...

...
... · · ·

 , B =

B̃ 0 0 · · ·
0 B̃ 0 · · ·
...

...
... · · ·

 ,

C =


−I 0 0 · · ·
C̃ −I 0 · · ·
0 C̃ −I · · ·
...

...
... · · ·

 , D =


D̃ − C̃z(0)

D̃

D̃
...

 , (4)

0 and I denote the zero and identity matrix, respectively.
Remark 1: To simplify the optimization, we linearly ap-

proximate the system dynamics before solving the MPC.
This is possible because the control inputs obtained through
the MPC are only applied for a single time-step, using a
receding horizon control approach [19]. As a result, any
linearization errors from previous time-steps do not affect
the MPC optimization.

C. Safety Constraints

The safety constraints for collision avoidance depend on
the nearby vehicles’ trajectory prediction and the vehicle
shape model. Let V denote the set of nearby vehicles
surrounding the ego vehicle. Let φ(τ) be a trained neural
network that jointly predicts the future trajectories of the ego
vehicle and its surrounding vehicles for Tpred time-steps into
the future based on their trajectories for Tobs time-steps in
the past. φ(τ) is given by:

φ(τ) :


(x(τ), y(τ)) · · · (xN (τ), yN (τ))

...
...

...
(x(τ − Tobs + 1),
y(τ − Tobs + 1))

· · · (xN (τ − Tobs + 1),
yN (τ − Tobs + 1))


↓[

(x̂(τ + 1), ŷ(τ + 1)) · · · (x̂N (τ + 1), ŷN (τ + 1))
]
,

with Tpred = 1, where the first column represents the
positions of the ego vehicle followed by the positions of
N surrounding vehicles. Given the buffer of Tobs past
observations until time-step τ , the coordinates of vehicle
i ∈ V at time-step τ + 1 are represented as:

x̂i(τ + 1) = φi,x(τ), ŷi(τ + 1) = φi,y(τ). (5)

Some examples of the neural network φ(τ) include social
generative adversarial network (SGAN) [14] and graph-based
spatial-temporal convolutional network (GSTCN) [20].

Remark 2: Interactive predictions over planning horizon
Tp are computed recursively using φ(t) with Tpred = 1 based
on the latest reactive predictions and ego vehicle positions
from the MPC’s candidate solution trajectory.
We model the vehicle shape using a single circle to obtain a
smooth and continuously differentiable distance measure to
enable gradient-based optimization methods. Let (x, y) and
(x̂i, ŷi) be the position of the ego vehicle and the predicted
positions of the surrounding vehicles i ∈ V (obtained using
φ(τ)), respectively. Let r, ri ∈ R>0 be the radius of circles
modeling ego vehicle and vehicle i, respectively. The safety
constraint for the ego vehicle w.r.t vehicle i then reads:

di(x, y, x̂i, ŷi) = (x− x̂i)2 + (y − ŷi)2

− (r + ri + ε)2 > 0, (6)

where ε ∈ R>0 is a safety bound.
Remark 3: Using the single circle model, the safety con-

straints can be conservative, and consequently, the feasible
solutions could be restrictive in some situations. We use it for
its simplicity and to reduce the number of safety constraints.
Some other alternatives for modeling the vehicle shape
include the ellipsoid model [21] and three circle model [6].

D. Formulation of the Optimization problem

We now present the complete optimization problem for
the receding horizon control in a compact form:

min
∆,α,Z

J =Φ1(∆) + Φ2(α) + Φ3(Z), (7)

subject to F (∆,α,Z) = 0, bi(Z) > 0, i ∈ V, (8)
∆ ∈ D,α ∈ A,Z ∈ Z, where (9)

Φ1(∆) =

Tp−1∑
τ=0

λδ‖δ(τ)‖2 +

Tp−1∑
τ=0

λ∆δ‖δ(τ)− δ(τ − 1)‖2,

Φ2(α) =

Tp−1∑
τ=0

λa‖a(τ)‖2 +

Tp−1∑
τ=0

λ∆a‖a(τ)− a(τ − 1)‖2,

Φ3(Z) =

Tp∑
τ=1

λdiv‖y(τ)− yref‖2 +

Tp∑
τ=1

λv‖v(τ)− vref‖2,

bi(Z) =

 di(x(1), y(1), φi,x(0), φi,y(0))
...

di(x(Tp), y(Tp), φi,x(Tp − 1), φi,y(Tp − 1))

 .
In the next section, we solve the optimization using ADMM
to determine a safe and interactive ego vehicle’s trajectory.

III. SOLVING MPC WITH ADMM

There are many mathematical challenges associated with
the MPC problem in Section II. Namely, it has the non-
linear system dynamics, non-convex safety constraints, and
dependence of the neural network predictions on its predic-
tions in previous time steps (Tobs 6= 1). We now detail the
systematic steps to solve the complex problem using ADMM,
addressing the aforementioned mathematical challenges.

First, we construct a Lagrangian by moving the safety
constraints, bi(Z) > 0, i ∈ V , in the optimization objective:

min
∆,α,Z

J =Φ1(∆) + Φ2(α) + Φ3(Z)−
N∑
i=1

λTs bi(Z), (10)

subject to F (∆,α,Z) = 0, (11)
∆ ∈ D,α ∈ A,Z ∈ Z, (12)

where λs ∈ RTp

>0 is the vector of Lagrange multipliers.
Remark 4: For theoretical analysis, we incorporate safety

constraints into the optimization objective, but for our sim-
ulation study, we enforce them as hard constraints.
The optimization problem (10)-(12) is separable and the op-
timization variables ∆,α,Z are decoupled in the objective
function. Following the convention in [22], the augmented
Lagrangian is given by:

Lρ(∆,α,Z) = Φ1(∆)+Φ2(α)+Φ3(Z)−
N∑
i=1

λTs bi(Z)+

µ>F (∆,α,Z) +
(ρ

2

)
‖F (∆,α,Z)‖2, (13)

where ρ > 0 is the ADMM Lagrangian parameter and µ
is the dual variable associated with the constraint (11). The
complete algorithm is given by the Algorithm 1. Next, we
provide details for solving each of the local optimization
problems at iteration k, for solving the MPC.

A. Update ∆(k+1) = argmin∆∈D Lρ(∆,α(k),Z(k))

The sub-optimization problem for ∆(k+1) is given by

argmin∆

Tp−1∑
τ=0

λδ‖δ(τ)‖2 +

Tp−1∑
τ=0

λ∆δ‖δ(τ)− δ(τ − 1)‖2

+ µk>A∆ +
(ρ

2

)
‖A∆− c(k)

∆ ‖
2, (14)

subject to δ(τ) ∈ [δmin, δmax],

Algorithm 1: MPC with ADMM
Init : states z = z0, controls δ = δ0, a = a0

Surrounding vehicles’ position:
(xi, yi) = (xi,0, yi,0) for all i ∈ V

1 while x < xref and y 6= yref do
2 Find the optimal control that minimizes the

cumulative cost over horizon Tp
Init : ∆̂ = ∆0, α̂ = α0, Ẑ = Z0, µ̂ = µ0

3 while convergence criterion is not met do
4 ∆̂← argmin∆ Lρ(∆, α̂, Ẑ)

5 α̂← argminα Lρ(∆̂,α, Ẑ)

6 Ẑ ← argminZ Lρ(∆̂, α̂,Z)

7 µ̂← µ̂+ ρ(F (∆̂, α̂, Ẑ))
8 end
9 Update the states through non-linear state

dynamics with first elements of controls
10 z ← f([∆̂]0, [α̂]0, z)
11 Observe positions of other vehicles at the current

time t
12 (xi, yi)← (xi(t), yi(t)) for all i
13 end

where c(k)
∆ = A∆(k) − F (∆(k),α(k),Z(k)). It is a convex

problem; hence, we can use a canonical convex optimization
algorithm [22] to find the optimal solution.

B. Update α(k+1) = argminα∈A Lρ(∆(k+1),α,Z(k))

The sub-optimization problem for α(k+1) is given by

argminα

Tp−1∑
τ=0

λa‖a(τ)‖2 +

Tp−1∑
τ=0

λ∆a‖a(τ)− a(τ − 1)‖2

+ µk>Bα+
(ρ

2

)
‖Bα− c(k)

α ‖2, (15)

subject to a(τ) ∈ [amin, amax],

where c(k)
α = Bα(k)−F (∆(k+1),α(k),Z(k)). It is a convex

problem; hence, we can use a canonical convex optimization
algorithm [22] to find the optimal solution.

C. Update Z(k+1) = argminZ∈Z Lρ(∆(k+1),α(k+1),Z)

The sub-optimization problem for Z(k+1) is given by

argminZ

Tp∑
τ=1

λdiv‖y(τ)− yref‖2 +

Tp∑
τ=1

λv‖v(τ)− vref‖2

−
N∑
i=1

λTs bi(Z) + µk>CZ +
(ρ

2

)
‖CZ − c(k)

Z ‖
2, (16)

subject to z(τ) ∈ [zmin, zmax], (17)

where c
(k)
Z = CZ(k) − F (∆(k+1),α(k+1),Z(k)). Due to

the nonconvexity of the neural network in bi(Z), the ob-
jective function (16) is non-convex. We prefer the Quasi-
Newton method for optimization to avoid expensive Hessian
computation at each step. Hence, we utilize BFGS-SQP
method [23], which employs BFGS Hessian approximations
within a sequential quadratic optimization, and does not
assume any special structure in the objective or constraints.
For a solver, we use PyGranso [24], a PyTorch-enabled port

of GRANSO, that enables gradients computation by back-
propagating the neural network’s gradients at each iteration.

Remark 5: The state trajectory Z update has a larger
complexity in the problem due to the presence of the non-
convex neural network predictions. To expedite the Z update,
an offline-trained function approximator such as a neural
network can be utilized to estimate the gradients of the
original neural network. The training dataset for gradient ap-
proximator can be generated using automatic differentiation
or central differences approximations with original network.

Henceforth, we refer to our method as ADMM-NNMPC.

IV. CONVERGENCE OF MPC WITH ADMM
Due to the inherent non-convexity of the neural network,

the rigorous convergence analysis of ADMM in [16] is
not readily applicable. Thus, we extend the convergence
analysis of ADMM with an integrated neural network, i.e.,
the convergence of the inner while loop in Algorithm 1. We
first make the following assumptions on the neural network:
(A1) At any time-step τ ∈ [0, Tp], the neural network’s out-

puts are bounded, i.e. |φi,x(τ)| ≤ sx and |φi,y(τ)| ≤
sy , i ∈ V , where sx, sy ∈ R>0 are constants.

(A2) At any time-step τ ∈ [0, Tp], the gradients of the
neural network’s outputs w.r.t the input ego trajectory
exist and are bounded, i.e. ‖∂φi,x(t)

∂Z ‖∞ ≤ θx and
‖∂φi,y(t)

∂Z ‖∞ ≤ θy for all i ∈ V , where θx, θy ∈ R>0

are constants and ‖ · ‖∞ is the max. norm of a vector.
(A3) At any time-step τ ∈ [0, Tp], the neural network’s

outputs are Lipschitz differentiable, i.e. ||∇φi,x(Z1)−
∇φi,x(Z2)|| ≤ L∇φ||Z1 − Z2|| and ||∇φi,y(Z1) −
∇φi,y(Z2)|| ≤ L∇φ||Z1−Z2|| for all i ∈ V , Z1,Z2 ∈
Z , where L∇φ ∈ R>0 is the Lipschitz constant for the
neural network’s gradient.

Assumptions (A1)-(A3) are sufficient conditions under
which the objective function (10) is Lipschitz differentiable,
i.e., it is differentiable and its gradient is Lipschitz con-
tinuous. This allows us to establish the convergence of
Algorithm 1. Assumption (A1) is satisfied for a trained neural
network for a bounded input space. Furthermore, neural
network outputs can be clipped based on the feasible region.
Lastly, neural networks with C2 activation functions such
as Gaussian Error Linear Unit (GELU) [25] and Smooth
Maximum Unit (SMU) [26] satisfy assumptions (A2)-(A3).

Remark 6: Assumptions (A1)-(A3) are sufficient condi-
tions and not necessary conditions. If the neural network
architecture is unknown or it doesn’t satisfy the assumptions,
knowledge distillation [27] can be used to train a smaller
(student) network that satisfies the assumptions from the
large (teacher) pre-trained network.

Theorem 1: [Convergence of MPC with ADMM] Under
the assumptions (A1)–(A3), the inner while loop in Algo-
rithm 1 converges subsequently for any sufficiently large
ρ > max{1, (1 + 2σmin(C))LJM}, where σmin(C) is the
smallest positive singular value of C in (4), LJ is the
Lipschitz constant for J in (10), and M is the Lipschitz
constant for sub-minimization paths as defined in Lemma 2.
Therefore, starting from any ∆(0),α(0),Z(0), µ(0), it gener-
ates a sequence that is bounded, has at least one limit point,
and that each limit point ∆∗,α∗,Z∗, µ∗ is a stationary point
of Lρ satisfying ∇Lρ(∆∗,α∗,Z∗, µ∗) = 0.

(a) t = 0 (b) t = 5 (c) t = 11 (d) t = 13

Fig. 2: Two lane scenario: (a)-(d) shows the ADMM-NNMPC solution
in a two-lane scenario after 0, 5, 7, and 13 time steps, respectively. The ego
vehicle (red) opens a gap by nudging the vehicles to change their speeds.

(a) t = 0 (b) t = 3 (c) t = 5 (d) t = 9

Fig. 3: Three lane scenario: (a)-(d) shows the ADMM-NNMPC solution
in a three-lane scenario after 0, 3, 5, and 9 time steps, respectively. The ego
vehicle (red) opens a gap for itself by nudging the vehicles to transition
into the left-most lane.

We prove Theorem 1 using Lemmas 1-3.
Lemma 1: [Feasibility] Let Q := [A,B]. Then Im(Q) ⊆

Im(C), where Im(·) returns the image of a matrix, and A,B,
and C is defined in (4).

Proof: See Appendix A for the proof.
Lemma 2: [Lipschitz sub-minimization paths] The fol-

lowing statements hold for the optimization problem:
(i) For any fixed α,Z, H1 : Im(A) → RTp defined by

H1(u) , argmin∆{J(∆,α,Z) : A∆ = u} is unique
and a Lipschitz continuous map.

(ii) For any fixed ∆,Z, H2 : Im(B) → RTp defined by
H2(u) , argminα{J(∆,α,Z) : Bα = u} is unique
and a Lipschitz continuous map.

(iii) For any fixed ∆,α, H3 : Im(C) → R4Tp defined by
H3(u) , argminZ{J(∆,α,Z) : CZ = u} is unique
and a Lipschitz continuous map,

where A,B, and C is defined in (4). Moreover, H1, H2, H3

have a universal Lipschitz constant M > 0.
Proof: See Appendix B for the proof.

Lemma 3: [Lipschitz Differentiability] Under the as-
sumptions (A1)-(A3), the objective function J(∆,α,Z)
in (10) is Lipschitz differentiable.

Proof: See Appendix C for the proof.
Proof of Theorem 1: See Appendix D for the proof. �

V. SIMULATION STUDY

We now present the simulation results for ADMM-
NNMPC. Figure 2 and 3 show the vehicles’ positions at
different time steps in two scenarios in which the ego vehicle
(red) intends to merge into the left lane which is occupied by
four other vehicles (blue) with a narrow inter-vehicle gap. In
the two-lane scenario (Fig. 2), other vehicles can only change
their speeds, while in the three-lane scenario (Fig. 3), other

Param Description Value
λdiv Weight on divergence from target lane 1.0
λv Weight on divergence from target speed 1.0
λδ Weight on steering angle 0.6
λa Wight on acceleration 0.4
λ∆δ Weight on steering rate 0.4
λ∆a Weight on jerk 0.2
ρ ADMM Lagrangian parameter 100

TABLE I: Objective function coefficients

Two-Lane Scenario Three-Lane Scenario
NNMPC ADMM-NNMPC NNMPC ADMM-NNMPC

tmerge Fails after 17 9 29 7
Cmax 80.9 62 114.6 53.3
dmin 0.91 2.41 2.97 2.66

TABLE II: Simulation results for ADMM-NNMPC and NNMPC in the
two-lane and three-lane scenario. tmerge are the number of time steps taken
by the ego vehicle to merge into the target lane. Cmax and dmin are the
maximum cost and minimum distance between the ego vehicle and other
vehicles at any point of the simulation, respectively.

(a) (b)

Fig. 4: (a) compares the trajectory (top) and cost (bottom) of the ADMM-
NNMPC and NNMPC solutions in the two-lane (left) and three-lane (right)
scenarios until xref = 25. (b) compares the steering (top) and acceleration
(bottom) trajectories for ADMM-NNMPC and NNMPC solutions in the
two-lane (left) and three-lane (right) scenarios.

vehicles can also move laterally to transition into the leftmost
lane. The other vehicles’ positions at different time steps
match the neural network’s predictions, and hence, the ego
vehicle’s actions affect the trajectory of the other vehicles.
In both scenarios, the ego vehicle is able to interact with the
other agents and open a gap for itself to merge into.

We compare ADMM-NNMPC with a baseline method
called NNMPC [15] on the two-lane and three-lane scenarios
by utilizing the same cost function (cost function coefficients
listed in Table I) and Tp = 8 time steps. NNMPC generates
trajectory candidates by computing a finite set of spiral
curves from the source lane to the target lane and selects
the candidate with minimum cost. In both methods, we
use a trained SGAN neural network [14] for interactive
motion prediction of the other vehicles. Table II compares
the simulation results for the baseline NNMPC and ADMM-
NNMPC in the two-lane and three-lane scenarios. In the
two-lane scenario, while the ADMM-NNMPC successfully
merges in the left lane, the NNMPC method fails to make
a lane change due to limited trajectory candidates. In the
three-lane scenario, ADMM-NNMPC successfully switches
lanes much faster than NNMPC. Furthermore, ADMM-
NNMPC outperforms NNMPC in terms of maximum cost
and minimum distance from other vehicles in both scenarios.

Figure 4a compares the trajectory (top) and cost (bottom)
of the ADMM-NNMPC and NNMPC solutions in the two-
lane (left) and three-lane (right) scenarios until xref = 25. In
both scenarios, while ADMM-NNMPC successfully merges
into the left lane, NNMPC fails to switch lanes before
xref due to limited trajectory candidates. Furthermore, the
ADMM-NNMPC’s cost is lower than the NNMPC solu-
tion at every time step since ADMM-NNMPC solves the
optimization. Figure 4b compares the steering (top) and
acceleration (bottom) trajectories for ADMM-NNMPC and
NNMPC solutions in the two-lane (left) and three-lane (right)
scenarios. Since ADMM-NNMPC solves for the optimal
solution, it actively interacts with the other vehicles to open

a gap for itself to merge into. Therefore, the steering tra-
jectory in ADMM-NNMPC is more aggressive that the NN-
MPC. Lastly, the acceleration gradually changes in ADMM-
NNMPC to reach the desired speed while minimizing jerk.

A. Limitations and Future Works
Although we reduce the problem complexity by decom-

posing it into smaller sub-problems, these sub-problems
are still complex which makes the approach non-scalable.
Furthermore, due to the large neural network size and re-
computation of gradients at each iteration, our current imple-
mentation runs slower than real-time. Nevertheless, having
a slow offline optimization is useful, as it can serve as a
benchmark when developing faster heuristic methods, ide-
ally, we would like to increase the efficiency. Our approach
can be made faster by training another neural network to
estimate the original neural network’s gradients and develop-
ing faster optimization libraries. Thus, future works include:
(i) designing a smaller network trained with knowledge
distillation [27], or (ii) expediting neural network’s gradient
estimation using an offline-trained function approximator
such as a neural network.

VI. CONCLUSIONS

With the importance of motion planning strategies being
interaction-aware, e.g., lane changing in dense traffic for
autonomous vehicles, this paper investigates mathematical
solutions of a model predictive control with a neural network
that estimates interactive behaviors. The problem is highly
complex due to the non-convexity of the neural network,
and we show that the problem can be effectively solved by
decomposing it into sub-problems by leveraging the alter-
nating direction method of multipliers (ADMM). This paper
further examines the convergence of ADMM in presence of
the neural network, which is one of the first attempts in the
literature. The simple numerical study supports the provably
optimal solutions being effective. The computational burden
due to the complexity is still a limitation, and improving
the computation efficiency remains for future work. That
said, having a provably optimal solution is valuable as a
benchmark when developing heuristic methods.

APPENDIX

A. Proof of Lemma 1
C in (4) is a lower triangular matrix with diagonal entries

as −1. Hence, C is a full rank matrix of rank 4Tp, and
Im(C) = R4Tp . We have, Im(Q) = {y ∈ R4Tp | y = Qx =
[A,B]x such that x ∈ R2Tp} ⊆ R4Tp = Im(C). �

B. Proof of Lemma 2
A and B are full column rank matrices of column rank Tp.

Furthermore, C is a full rank matrix of rank 4Tp. Therefore,
their null spaces are trivial, and hence, H1, H2, H3 reduces
to linear operators and satisfies the Lemma. �

C. Proof of Lemma 3
Φ1(∆), Φ2(α), and Φ3(Z) are C2 functions, and hence,

Lipschitz differentiable. Therefore, to show the Lipschitz
differentiability of J , it is sufficient to show that bi(Z),
i ∈ V , is Lipschitz differentiable for any τ ∈ {1, . . . , Tp}.
For brevity of space, we define our notations in terms of

w ∈ {x, y} where w can either be x or y. Let qw(τ) :=
2(w(τ)− φi,w(τ − 1)). We have

∂bi(Z)

∂x(k)
=


−qx(τ)

∂φi,x(τ−1)
∂x(k) −

qy(τ)
∂φi,y(τ−1)
∂x(k) , for k ≤ τ − 1

qx(τ), for k = τ

0, for k ∈ {τ + 1, . . . , Tp}.

Let Twk :=
∣∣∣∂bi(Z1)
∂w(k) −

∂bi(Z2)
∂w(k)

∣∣∣ for some Z1,Z2 ∈ Z , and
let (xm(τ), ym(τ)) denote the ego vehicle positions in Zm,
where m ∈ {1, 2}. Let φZm

i,w denote φi,w corresponding to
Zm. Using assumption (A2) and mean-value theorem [28],
the neural network’s outputs are Lipschitz continuous, i.e.,
‖φZ1

i,w − φZ2
i,w‖ ≤ θw||Z1 − Z2||. Let ∆w(τ) = |w1(τ) −

w2(τ)|, ϕw(τ−1) = |φZ2
i,w(τ−1)−φZ1

i,w(τ−1)|, and νwx (τ−

1) =

∣∣∣∣∣∂φZ1
i,w(τ−1)

∂x(k) − ∂φ
Z2
i,w(τ−1)

∂x(k)

∣∣∣∣∣. For any k ∈ {1, . . . , τ − 1}:

T xk ≤ 2∆x(τ)

∣∣∣∣∣∂φ
Z1
i,x(τ − 1)

∂x(k)

∣∣∣∣∣+ 2∆y(τ)

∣∣∣∣∣∂φ
Z1
i,y (τ − 1)

∂x(k)

∣∣∣∣∣+
2|x2(τ)|νxx(τ − 1) + 2ϕx(τ − 1)

∣∣∣∣∣∂φ
Z2
i,x(τ − 1)

∂x(k)

∣∣∣∣∣+
2|y2(τ)|νyx(τ − 1) + 2ϕy(τ − 1)

∣∣∣∣∣∂φ
Z2
i,y (τ − 1)

∂x(k)

∣∣∣∣∣+
2|φZ1

i,x(τ − 1)|νxx(τ − 1) + 2|φZ1
i,y (τ − 1)|νyx(τ − 1)

≤ 2θx∆x(τ) + 2xmaxν
x
x(τ − 1) + 2θxϕx(τ − 1)+

2sxν
x
x(τ − 1) + 2θy∆y(τ) + 2ymaxν

y
x(τ − 1)+

2θyϕy(τ − 1) + 2syν
y
x(τ − 1)

= L1‖Z1 −Z2‖,

where L1 := 2(θx(1 + θx) + θy(1 + θy) + (xmax + ymax +
sx + sy)L∇φ), xmax and ymax are the bounds on the ego
vehicle’s x and y coordinates, respectively.

Similarly, for k = τ , we have:

T xk ≤ 2|x2(τ)− x1(τ)|+ 2|φZ1
i,x(τ − 1)− φZ2

i,x(τ − 1)|
≤ L2||Z1 −Z2||,

where L2 = 2(1 + θx).
Similarly, T yk ≤ L1||Z1−Z2|| for any k ∈ {0, . . . , τ−1},

and T yk ≤ L3||Z1−Z2||, where L3 = 2(1 + θy), for k = τ .
Therefore, ||∇bi(Z1) − ∇bi(Z2)|| ≤ Lg||Z1 − Z2||,

where Lg = Tp(max{L1, L2} + max{L1, L3}). Hence,
J(∆,α,Z) in (10) is Lipschitz differentiable. �

D. Proof of Theorem 1

Since C is a full rank matrix, Im(C) = R4Tp , and hence,
D ∈ Im(C). Recall that the feasible sets for ∆, α, and Z
are bounded, i.e., ∆ ∈ D,α ∈ A, and Z ∈ Z . Using these
results and Lemmas 1-3, the optimization problem satisfies
all the assumptions required for convergence of ADMM in
non-convex and non-smooth optimization [29]. Utilizing [29,
Theorem 2] proves the convergence of Algorithm 1 for any
sufficiently large ρ > max{1, (1 + 2σmin(C))LJM}. �

REFERENCES

[1] S. Ulbrich, S. Grossjohann, C. Appelt, K. Homeier, J. Rieken, and
M. Maurer, “Structuring cooperative behavior planning implemen-
tations for automated driving,” in 18th International Conference on
Intelligent Transportation Systems. IEEE, 2015, pp. 2159–2165.

[2] F. M. Tariq, N. Suriyarachchi, C. Mavridis, and J. S. Baras, “Vehicle
overtaking in a bidirectional mixed-traffic setting,” in 2022 American
Control Conference (ACC). IEEE, 2022, pp. 3132–3139.

[3] A. Gray, Y. Gao, J. K. Hedrick, and F. Borrelli, “Robust predictive
control for semi-autonomous vehicles with an uncertain driver model,”
in Intelligent Vehicles Symposium (IV). IEEE, 2013, pp. 208–213.

[4] R. Vasudevan, V. Shia, Y. Gao, R. Cervera-Navarro, R. Bajcsy, and
F. Borrelli, “Safe semi-autonomous control with enhanced driver
modeling,” in 2012 American Control Conference (ACC). IEEE,
2012, pp. 2896–2903.

[5] B. Brito, A. Agarwal, and J. Alonso-Mora, “Learning interaction-
aware guidance policies for motion planning in dense traffic scenarios,”
arXiv preprint arXiv:2107.04538, 2021.

[6] S. Bae, D. Saxena, A. Nakhaei, C. Choi, K. Fujimura, and S. Moura,
“Cooperation-aware lane change maneuver in dense traffic based on
model predictive control with recurrent neural network,” in 2020
American Control Conference (ACC). IEEE, 2020, pp. 1209–1216.

[7] D. Sadigh, S. Sastry, S. A. Seshia, and A. D. Dragan, “Planning for
autonomous cars that leverage effects on human actions.” in Robotics:
Science and Systems, vol. 2, 2016.

[8] C. Burger, T. Schneider, and M. Lauer, “Interaction aware cooperative
trajectory planning for lane change maneuvers in dense traffic,” in
2020 IEEE 23rd International Conference on Intelligent Transporta-
tion Systems (ITSC). IEEE, 2020, pp. 1–8.

[9] Z. Sheng, L. Liu, S. Xue, D. Zhao, M. Jiang, and D. Li, “A
cooperation-aware lane change method for autonomous vehicles,”
arXiv preprint arXiv:2201.10746, 2022.

[10] P. Gupta and V. Srivastava, “Deterministic sequencing of exploration
and exploitation for reinforcement learning,” in 2022 IEEE 61st
Conference on Decision and Control (CDC), 2022, pp. 2313–2318.

[11] P. Gupta, D. Coleman, and J. E. Siegel, “Towards Physically Adversar-
ial Intelligent Networks (PAINs) for safer self-driving,” IEEE Control
Systems Letters, vol. 7, pp. 1063–1068, 2023.

[12] D. M. Saxena, S. Bae, A. Nakhaei, K. Fujimura, and M. Likhachev,
“Driving in dense traffic with model-free reinforcement learning,” in
2020 IEEE International Conference on Robotics and Automation
(ICRA). IEEE, 2020, pp. 5385–5392.

[13] C. Choi, A. Patil, and S. Malla, “Drogon: A causal reasoning frame-
work for future trajectory forecast,” in Proceedings of the Conference
on Robot Learning 2020. IEEE, 2020.

[14] A. Gupta, J. Johnson, L. Fei-Fei, S. Savarese, and A. Alahi, “Social
gan: Socially acceptable trajectories with generative adversarial net-
works,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2018, pp. 2255–2264.

[22] S. Boyd, S. P. Boyd, and L. Vandenberghe, Convex Optimization.
Cambridge university press, 2004.

[15] S. Bae, D. Isele, A. Nakhaei, P. Xu, A. M. Añon, C. Choi, K. Fujimura,
and S. Moura, “Lane-change in dense traffic with model predictive
control and neural networks,” IEEE Transactions on Control Systems
Technology, 2022.

[16] S. Boyd, N. Parikh, E. Chu, B. Peleato, J. Eckstein et al., “Dis-
tributed optimization and statistical learning via the alternating di-
rection method of multipliers,” Foundations and Trends® in Machine
learning, vol. 3, no. 1, pp. 1–122, 2011.

[17] J. Kong, M. Pfeiffer, G. Schildbach, and F. Borrelli, “Kinematic and
dynamic vehicle models for autonomous driving control design,” in
2015 IEEE Intelligent Vehicles Symposium (IV). IEEE, 2015, pp.
1094–1099.

[18] B. Paden, M. Čáp, S. Z. Yong, D. Yershov, and E. Frazzoli, “A
survey of motion planning and control techniques for self-driving
urban vehicles,” IEEE Transactions on Intelligent Vehicles, vol. 1,
no. 1, pp. 33–55, 2016.

[19] J. Berberich, J. Köhler, M. A. Muller, and F. Allgower, “Linear
tracking mpc for nonlinear systems part i: The model-based case,”
IEEE Transactions on Automatic Control, 2022.

[20] Z. Sheng, Y. Xu, S. Xue, and D. Li, “Graph-based spatial-temporal
convolutional network for vehicle trajectory prediction in autonomous
driving,” IEEE Transactions on Intelligent Transportation Systems,
2022.

[21] U. Rosolia, S. De Bruyne, and A. G. Alleyne, “Autonomous vehicle
control: A nonconvex approach for obstacle avoidance,” IEEE Trans-
actions on Control Systems Technology, vol. 25, no. 2, pp. 469–484,
2016.

[23] F. E. Curtis, T. Mitchell, and M. L. Overton, “A BFGS-SQP method
for nonsmooth, nonconvex, constrained optimization and its evalua-
tion using relative minimization profiles,” Optimization Methods and
Software, vol. 32, no. 1, pp. 148–181, 2017.

[24] B. Liang and J. Sun, “Ncvx: A user-friendly and scalable package
for nonconvex optimization in machine learning,” arXiv preprint
arXiv:2111.13984, 2021.

[25] D. Hendrycks and K. Gimpel, “Gaussian error linear units (gelus),”
arXiv preprint arXiv:1606.08415, 2016.

[26] K. Biswas, S. Kumar, S. Banerjee, and A. K. Pandey, “Smu: Smooth
activation function for deep networks using smoothing maximum
technique,” arXiv preprint arXiv:2111.04682, 2021.

[27] S. I. Mirzadeh, M. Farajtabar, A. Li, N. Levine, A. Matsukawa, and
H. Ghasemzadeh, “Improved knowledge distillation via teacher assis-
tant,” in Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 34, no. 04, 2020, pp. 5191–5198.

[28] W. Rudin et al., Principles of Mathematical Analysis. McGraw-Hill
New York, 1976, vol. 3.

[29] Y. Wang, W. Yin, and J. Zeng, “Global convergence of admm in
nonconvex nonsmooth optimization,” Journal of Scientific Computing,
vol. 78, no. 1, pp. 29–63, 2019.

	I Introduction
	II Problem Formulation and Controller Design
	II-A Objective function
	II-B State Dynamics
	II-C Safety Constraints
	II-D Formulation of the Optimization problem

	III Solving MPC with ADMM
	III-A Update deltak
	III-B Update ak
	III-C Update zk

	IV Convergence of MPC with ADMM
	V Simulation Study
	V-A Limitations and Future Works

	VI Conclusions
	Appendix
	A Proof of Lemma 1
	B Proof of Lemma 2
	C Proof of Lemma 3
	D Proof of Theorem 1

	References

