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Planning with SiMBA: Motion Planning under Uncertainty for
Temporal Goals using Simplified Belief Guides

Qi Heng Ho, Zachary N. Sunberg, and Morteza Lahijanian

Abstract— This paper presents a new multi-layered algorithm
for motion planning under motion and sensing uncertainties for
Linear Temporal Logic specifications. We propose a technique
to guide a sampling-based search tree in the combined task
and belief space using trajectories from a simplified model of
the system, to make the problem computationally tractable.
Our method eliminates the need to construct fine and accurate
finite abstractions. We prove correctness and probabilistic
completeness of our algorithm, and illustrate the benefits
of our approach on several case studies. Our results show
that guidance with a simplified belief space model allows for
significant speed-up in planning for complex specifications.

I. INTRODUCTION

As robots become more advanced, the expectation for
them to perform tasks with higher complexities increases. It
is thus an essential challenge to enable efficient planning for
complex requirements. In addition, real-world robots must
be able to reason about both motion and sensor uncertainty
while executing such tasks. For instance, an autonomous
underwater rover often has noisy motion due to water
currents and gets accurate GPS measurements only at the
surface; under the surface sensor readings are highly noisy.
The combination of accounting for these uncertainties with
the need to provide guarantees for task completion makes
the planning problem very difficult. This paper focuses on
this challenge and aims to develop an efficient framework
for planning under uncertainty with complex specifications.

Linear Temporal Logic (LTL) is a principled formalism
for expressing complex temporal tasks for robotic systems
[1]–[3]. For instance, a robot tasked with “visit A and B
in any order, and then go to C while avoiding D” can be
expressed precisely as an LTL formula. The primary existing
LTL motion planning frameworks for continuous state and
action spaces are designed for deterministic systems [4]–[7].

To address LTL synthesis problems for systems with un-
certainty, works [8]–[10] focus solely on motion uncertainty.
They first abstract the evolution of the robot in the environ-
ment into a finite Markov Decision Process (MDP), and then
synthesize a policy that maximizes the probability of suc-
cessfully completing the LTL specification. For observation
uncertainty, LTL synthesis on Partially Observable MDPs
(POMDPs) have recently been proposed for moderately-
sized discrete space problems [11], or through finite state
abstraction of continuous spaces [12]. However, a common
limitation of these works is the need for a finite abstraction
from continuous states and actions to discrete ones. There
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Fig. 1: Planning with SiMBA Framework

are currently no methods that can give practically useful
guarantees for general continuous-space POMDPs.

For continuous spaces, recent works in motion planning
under uncertainty combine the power of sampling-based
methods [13] with point-wise chance-constraints on the prob-
ability of safety [14]–[20]. This is a relaxation of maximizing
success probability, but it allows for fast and scalable motion
planning with robustness guarantees. Most works focus on
motion uncertainty [14], [15], [21], but recent works [17]–
[20] introduce extensions to account for sensor uncertainty.
While they provide efficient planning under uncertainty, they
are limited to simple task of A-to-B planning. Recent work
[22] extends chance constrained planning to LTL tasks and
minimizes the probability of task failure, but their approach
is limited to systems under motion uncertainty.

A main challenge in dealing with both uncertainty and
complex specifications is the need to simultaneously account
for both the belief and task spaces. Doing so results in
extremely large search spaces. Principled guidance of a low-
level motion tree has been shown to improve tractability in
the deterministic setting for both single and multi-temporal
goals planning, using layers of planning [4], [5], [23], [24] or
heuristic guidance [6]. For stochastic systems, [25] proposes
a heuristic to guide tree extension, but their framework is
only designed for dynamics noise. Extending these tech-
niques to settings with both motion and measurement uncer-
tainty is non-trivial because of the difficulty in constructing
a guidance mechanism that captures belief dynamics well.

In this paper, we present a multi-layered framework to
synthesize motion plans for LTL tasks for systems under
both motion and measurement uncertainty. The LTL tasks are
defined in the belief space with a user-defined robustness re-
quirement. We show that our framework provides guarantees
on task completion and probabilistic completeness.

Our approach has two novel characteristics: First, we
introduce a method to plan over an automaton that represents
the LTL task directly that avoids the need for fine abstraction,
by pruning infeasible edges. Second, in order to make the
problem computationally tractable, we propose to use a sim-
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plified model that accounts for both motion and measurement
uncertainty. We refer to this notion as Simplified Models with
Belief Approximation (SiMBA), which we use to rapidly find
a continuous path that heuristically guides the search for a
satisfying motion plan for the full system. Our evaluation
shows that the addition of SiMBA for guidance improves
solution time significantly. To the best of our knowledge,
this is the first work that uses trajectories from a simplified
model in the belief space to bias sampling-based search for
stochastic systems under complex tasks.

In summary, the contributions of this paper are five-fold:
(i) a framework for planning under LTL specifications for
continuous systems under motion and measurement uncer-
tainty with (ii) guarantees on task completion and probabilis-
tic completeness; (iii) planning over a pruned automaton that
alleviates the state explosion problem in abstraction-based
methods; (iv) improving efficiency by using a simplified
model in the belief space to provide continuous trajectory
guides for belief planning, and (5) a series of illustrative
case studies and benchmarks.

II. PROBLEM FORMULATION

Consider a robot with both motion and sensing uncer-
tainty tasked with a complex navigation task in a bounded
workspace W ⊂ Rd, d ∈ {2, 3}. We are interested in
computing a motion plan for the robot to achieve its task
with guarantees. Below, we formalize this problem.

The robot has linear or linearizable motion and measure-
ment models given by:

xk+1 = Axk +Buk + ωk, ωk ∼ N (0,Q),

zk = Cxk +Duk + νk(xk), νk(xk) ∼ N (0,R(xk)),
(1)

where xk ∈ X ⊂ Rn is the state, uk ∈ U ⊂ Rm is the input,
and zk ∈ Rp is the measurement with their corresponding
matrices A ∈ Rn×n, B ∈ Rn×m, and C ∈ Rn×p. Noise
terms ωk and νk are i.i.d. random variables with zero-
mean Gaussian distributions and covariance matrices Q and
R(xk), respectively. Note that covariance R(xk) depends
on state xk, i.e., it is state-varying measurement noise. This
describes problems common in robotics where measurements
may be available only in parts of the environment or mea-
surement quality depends on the location (state) of the robot.

The evolution of the robotic system in (1) can be described
by a discrete-time Gauss-Markov process [26]. The robot
state xk at each time step is a random variable with a
Gaussian distribution, i.e., xk ∼ bk = N (x̂k,Σk), where
bk ∈ B is referred to as the belief of the robot state,
B is the belief space, and x̂k and Σk are the state mean
and covariance matrix, respectively. A belief trajectory b =
b0b1b2 · · · bf is a sequence of beliefs.

A. Linear Temporal Logic over Finite Traces for Belief Tasks

The robot is tasked with a temporal specification over
the belief space, similar to [12], [27]–[30]. Let P =
{p1, · · · , pn} be a set of convex polytopic regions in the
state space X , i.e., pi ⊂ X for all 1 ≤ i ≤ n. Further,
let αi ∈ [0, 1] be a probability threshold (chance constraint)
on pi. Then, we define atomic proposition παii associated

with region pi as follows: παii is true for belief bk iff
P (xk ∈ pi) > 1−αi. This definition states that a proposition
is true if the probability that a belief state is in a region pi
is at least 1 − αi. Hence, the set of atomic propositions is
Π = {παii | i = 1, · · · , n}.

We define a labeling function L : B → 2Π that maps a
belief b ∈ B to the set atomic propositions in Π that are
true for b. Then, a belief trajectory b = b0 · · · bf generates
an observation trace (word) σ = σ0 · · ·σf via the labeling
function such that σi = L(bi) for all 0 ≤ i ≤ f . Each
σi ∈ 2Π is called a symbol.

Definition 1 (LTLf Syntax [1]). Let Π be a set of atomic
propositions. Then, an LTLf formula over Π is recursively
defined by

φ := πα | ¬φ | φ ∨ φ | Xφ | φUφ

where πα ∈ Π is an atomic proposition, ¬ (“negation”) and
∨ (“or”) are Boolean operators, and X (“next”) and U
(“until”) are the temporal operators.

From this definition, one can derive other standard temporal
operators, e.g., the ♦ (“eventually”) and � (“globally”)
operators are given by ♦φ ≡ >Uφ and �φ ≡ ¬♦¬φ.

LTLf formulas are interpreted over finite words in (2Π)∗.
The semantics of LTLf can be found in [1]. We say a finite
trace σ satisfies formula φ, denoted by σ |= φ, iff σ, 0 |=
φ. Additionally, we say that a belief trajectory satisfies a
specification φ, written b |= φ, if its observation trace (word)
σ = L(b0)L(b1) · · ·L(bn) satisfies φ, i.e., σ |= φ.

Note that, for a small α, παi requires being in region pi
with a high probability. The negation of it, ¬πα = P (xk ∈
pi) ≤ 1− α, still allows being in region pi with a relatively
high probability for α � 1. In many applications, however,
one may be interested in expressing a task for being in a
region with high probability in one part of a formula and
then avoiding the same region also with high probability in
another part of the formula. Similar to [31], we can do this
by capturing the more intuitive converse of παi by adding
new atomic propositions. This can be done by associating to
each pi a new atomic proposition π̃αi that is true for belief
bk iff P (xk /∈ pi) ≥ 1− α, such that π̃αi represents ¬π1−α

i .

B. Planning Problem

We seek a motion plan that satisfies a given LTLf formula
φ. Assuming that the robot is equipped with a feedback
trajectory-following controller, a motion plan can then be
characterized as a sequence of control inputs coupled with
its corresponding nominal state trajectory. Let Ǔ0,t =
(ǔ0, ǔ1, . . . , ǔt−1) be a sequence of control inputs. Then,
given an initial belief b0, a nominal trajectory X̌x0,xt =
(x̌0, x̌1, . . . , x̌t) is obtained by applying Ǔ0,t to the nominal
system dynamics x̌k+1 = Ax̌k + Bǔk. This motion plan
(Ǔ0,t, X̌x0,xt) is then executed online, given online state es-
timates x̂k, via the stabilizing, trajectory-following controller

uk = ǔk−1 −K(x̂k − x̌k), (2)

where K is the feedback control gain.



Problem 1. Given System (1), a set of probabilistic atomic
propositions Π = {πα1

1 , . . . , παnn } defined over regions P ,
LTLf formula φ defined over Π, and closed-loop control
gain K, find a motion plan (Ǔ , X̌) as a pair of sequence
of nominal controls Ǔ = (ǔ0, . . . , ǔk−1) for some k ≥ 1
and its resulting nominal trajectory X̌ = (x̌0, . . . , x̌k) such
that when executed via the controller in (2) the resulting
belief trajectory b satisfies the LTLf formula, i.e., b |= φ.

The main challenge in this problem is that the search
space is extremely large. This is because planning must
be performed in the composition of the belief space with
the task space (representation of the set of all satisfying
words). For an n-dimensional state space, the Gaussian belief
space adds O(n2) dimensions, and for a task formula of
size |φ|, the size of the task can be as large as 22|φ|

[1].
Hence, to make the problem computationally tractable, the
search must be performed with informed guidance. Existing
methods for guiding search in the state space through,
e.g., discrete abstractions or geometric planning, fail to
capture belief information, leading to uninformative guides.
To address these challenges, we aim to design a framework
that reduces dependence on fine, discrete abstractions, while
efficiently searching in the belief space. Specifically, we seek
to generate informed guidance via simplified models.

III. BELIEF SPACE PLANNING WITH SIMPLIFIED BELIEF
APPROXIMATIONS

We present a modular framework to solve Problem 1. The
framework is inspired by [5], [21], [23] and consists of three
main layers: task planning layer, SiMBA guide layer, and
belief search layer, as depicted in Fig. 1.

We first translate the LTLf formula φ into a minimal
Deterministic Finite Automaton (DFA). Then, we prune
unrealizable transitions of the DFA, and use the pruned DFA
for task planning. At each iteration, we find the shortest
path on the DFA that corresponds to a φ-satisfying trace
to use as a task plan. Next, at the SiMBA guide layer, we
use a simplified model of the system to rapidly find a path
annotated with DFA states that obeys the task plan. We call
this technique Simplified Models with Belief Approximation
(SiMBA). Finally, at the belief search layer, a belief tree
searches for a satisfying trajectory for the full system. The
growth of this tree is biased to search around the hybrid
annotated path while ensuring the motion plan satisfies φ.

A. Belief Propagation and Labeling
Here, we establish the relationship between the evolution

of the distribution over robot state, atomic predicates, and
labels. During offline planning, following [18], [19], given a
stabilizing feedback controller in (2) and online state estimate
x̂k, we parameterize the belief at each time step based on
the closed-loop dynamics as

xk ∼ bk = N (x̌k,Σ
+
k + Λ+

k ), (3)

where Σ+
k is the covariance that represents the online state

estimation error, and Λ+
k is the covariance matrix of x̂k,

which is a random variable when planning offline. It ac-
counts for the uncertainty related to the measurements when

executed online. Analogous to the Kalman Filter, covariance
matrices Σ+

k and Λ+
k can be computed recursively:

Σ−
k = AΣ+

k−1A
T +Q, (4)

Lk = Σ−
k C

T (CΣ−
k C

T +R(x̂k))−1, (5)

Σ+
k = Σ−

k − LkCΣ−
k , (6)

Λ+
k = (A−BK)Λ+

k−1(A−BK)T + LkCΣ−
k . (7)

Given belief bk, its label L(bk) is the set of atomic propo-
sitions in Π that are true in bk, i.e., παii ∈ L(bk) ⇐⇒
P (xk ∈ pi) > 1− α, where

P (xk ∈ pi) =
∫
pi
N (s | x̌k,Σ+

k + Λ+
k )ds. (8)

Since our regions are convex polytopes that can be described
as a conjunction of linear half-spaces, we can efficiently com-
pute bounds for (8), using methods such as those described
in [14], [15], [21], [32].

B. Task Planning with Pruned Automaton

At the task planning layer, an automaton is used to define
a sequence of sub-tasks the robot has to complete.

1) Automaton Construction and Pruning: An LTLf for-
mula φ can be translated into a minimized DFA that rep-
resents precisely the traces that satisfies φ [1]. A DFA is
defined as a tuple M = (Q, q0, S, δ, F ), where Q is a finite
set of states, q0 ∈ Q is the initial states, S = 2Π is a set of
input symbols, δ : Q × S → 2Q is the transition function,
F ⊆ Q is the set of accepting states.

Instead of planning over a product automaton (Cartesian
product ofM with a finite abstraction of the robotic system)
like in [4], [5], [22], [24], [33], we propose to use the
abstraction to prune impossible task sequences of M. To
do this, we construct an adjacency graph of the regions in
P in order to prune impossible transitions in M.

The adjacency graph is constructed by computing adja-
cency and intersections between the regions in P as well as
the remainder region X \ ∪p∈P . Each region is represented
as a node in the adjacency graph, and edges of the graph
represent regions which are geometrically adjacent to each
other or intersecting with one another. This adjacency graph
captures the possible transitions between regions in the
continuous state space, and we use it to remove geometrically
impossible letters in the alphabet, thereby pruning the edges
in M that are not realizable in the state space.

This approach has two advantages. First, it removes the
need for fine abstractions of the problem space and system,
which improves scalability by alleviating the state explosion
problem. Our approach generalizes the method proposed
by [6], by providing a way to prune the automaton using
information about P . Second, our method gives the belief
planners in the subsequent layers the freedom to explore the
belief space without restrictions, which is important for belief
space planning, especially when the measurement noise is
state dependent as in our problem, i.e., R(xk).

Task planning is directly performed on M augmented
with edge weights that represent estimates on motion tree
feasibility. The edge weighting scheme accounts for the
fact that some transitions on the adjacency graph could be



geometrically possible (and thus exist in M) but are not
realizable by the system’s belief dynamics. These weights
are continuously updated during the planning process.

2) Task Planning: In each iteration of task planning, we
compute an accepting run (task plan) T on the pruned and
weighted M. A graph search algorithm, such as A∗, is used
to find the shortest path to an accepting state in F from the
initial state q0. Each task plan is a candidate sequence of
automaton states that the algorithm uses to lead the search
in the subsequent layers. By finding a belief trajectory that
follows T, the robot is guaranteed to satisfy φ.

To define the feasibility edge weights ofM, we first assign
a weight to each state, similar to [4]. For state q ∈ Q,

w(q) = (cov(q)+1)
DistFromAcc(q)·(numsel(q)+1)2 , (9)

where cov(q) is the number of motion tree vertices associated
with q, numsel(q) is the number of times q has been
selected, and DistFromAcc(q) is the shortest unweighted
path from q to an accepting state in F . DistFromAcc(q) can
be computed using an unweighted graph search algorithm
such as Djikstra’s Algorithm and can be computed once
beforehand. For a minimized DFA, a path to an accepting
state always exists from any state. Then, the edge weight
between states q, q′ ∈ Q is w(q, q′) = (w(q) ·w(q′))−1. This
weighting scheme promotes search in unexplored areas of the
task space and suppresses search in areas where attempts at
finding a solution have repeatedly failed.

C. Hybrid Tree Search: Gaussian Belief Trees with DFAs

For belief space planning with both the simplified model
and full constrained model, we use Gaussian Belief Trees
(GBT) in [19] as our base belief space planner in a hybrid
discrete-continuous tree search planner. The hybrid planner
is similar to the frameworks for deterministic LTL planners
in [4], [5], [24], but it directly plans with automaton states
instead of product automaton states. Also, it reasons about
robot uncertainty while planning. For completeness of pre-
sentation, we provide a brief overview of this method.

Given a task plan T, we compute the set of DFA states QT
that exist in T and contain at least one tree vertex at every
iteration. The hybrid tree search expands in QT . In each
iteration, a DFA state q is sampled from QT . A tree vertex
vs is sampled among vertices that have discrete components
q, and one iteration of GBT is performed to obtain a
new vertex vn. A tree vertex is a tuple v = (x̌,Σ,Λ, q).
An iteration of GBT involves selecting a tree vertex vsel,
sampling a valid nominal control ǔ ∈ U , and propagating
the continuous belief components in vsel to obtain the new
belief (x̌n,Σn,Λn), according to (1) and Sec. II-B. The new
discrete state component qn of vn is obtained by propagating
the automaton with the label of the new belief.

Vertex vn is valid and added to the tree if both its
continuous and discrete state components are valid. The
continuous component vn.b = (vn.x̌, vn.Σ, vn.Λ) is valid
if it obeys the constraints of (1). The discrete component
v.q is valid if it exists in the DFA. Finally, if vn.q is an

accepting state, the motion plan (Ǔ , X̌) and corresponding
tree vertices v ending with vn is returned as a solution.

D. SiMBA Layer for LTLf Guides

Once a task plan T is generated, we can directly use the
hybrid tree search with GBT on System (1) to attempt to
satisfy the task sequence constraints, as described above.
However, a naive method of tree search is computationally
inefficient in the absence of a way to guide the search to
promising areas of the large search space. To address this
issue, we take inspirations from [21] and utilize trajectory
biasing, and seek to rapidly find a path that satisfies the
task plan. We propose to do this by using a simplified
motion model of the system and include approximate belief
dynamics (SiMBA). By simplifying the dynamics while still
retaining some belief information, we are able to obtain a
calculated trade-off between speed of finding a simplified
solution path for guidance and informative guides in the
belief space. Below, we formalize this idea for SiMBA.

First, we create a lower dimensional state space X̃ which
is a subspace of the state space X based on the projection
x̃ = Proj(x) where Proj : X → X̃ maps x ∈ X to x̃ ∈ X̃ .
This simplified state space can be arbitrarily chosen, with
the only condition being that the new subspace X̃ contains
the subspace of all the polytopic regions P , i.e., pi ⊆ X̃
∀pi ∈ P . If the polytopic regions require all dimensions of
the state space, SiMBA can still be used, albeit with x̃ = x.

Second, we design a simplified motion model and mea-
surement model for x̃. These models can also be arbitrarily
chosen, but a general rule is to have simpler models for
x̃ than x, since the purpose of SiMBA is to compute
approximate solutions rapidly in order to guide the belief
search layer. Some generally applicable examples of sim-
plified models are those with simple first order dynamics
and kinematic models. One could also use simplifications
such as: (i) geometric planning that ignores uncertainty,
(ii) System (1) without the process and measurement noise
terms, and (iii) System (1) without measurement noise.

For many robotic LTL tasks, the regions of interest are
defined in the workspace. Therefore, we seek to design a
motion model that generates kinematic trajectories. To do
this, we take advantage of the observation that geometric
paths can be interpreted as kinematic trajectories with a fixed
speed in each direction. Thus, we use the maximum speed
vmax of the robot. For the ith component of state x̃ denoted
by x̃(i)

k , the motion model becomes:

x̃
(i)
k+1 = x̃

(i)
k + vi, (10)

such that
∑
v2
i = v2

max. As a simple approximation, we
maintain the covariance propagation of the original system
using (4)-(7). We refer to this SiMBA as Simple Belief
Approximation-SiMBA (SBA-SiMBA).

Definition 2 (Admissible SiMBA). Consider System (1) with
X and its subspace X̃ for a SiMBA. The SiMBA is admissible
if, for every instance of Problem 1 that admits a solution for
System (1), a solution also exists for the SiMBA in X̃ .



Since the purpose of SiMBA is to find a coarse solution
quickly to guide the belief search layer, it is desirable to
use admissible SiMBAs. However, the algorithm can still be
probabilistically complete with an inadmissible SiMBA, as
we discuss in Sec. IV.

In many robotics scenarios, low robot uncertainty is more
desirable than high uncertainty. The intuition is that large
uncertainty leads to higher risks (e.g., collision probability).
However, mathematically, when bad regions (e.g., obstacles)
are small, large uncertainty can reduce risk. To rule out such
unintuitive cases, we make the following assumption, which
we also use to build our SiMBA methodology.

Assumption 1. If ba = N (x̌,Σa), bb = N (x̌,Σb), and Σa <
Σb, then
• for all α < 0.5, πα ∈ L(bb) =⇒ πα ∈ L(ba), and
• for all α > 0.5, πα /∈ L(bb) =⇒ πα /∈ L(ba)

Assumption 1 states that increasing the covariance does
not increase the probability of being in a region at a given
state mean for low α, which corresponds to ‘reach’ regions.
Additionally, increasing the covariance does not increase the
probability of not being in a region at a given state mean for
high α, which corresponds to ‘avoid’ regions.

Lemma 1. SBA-SiMBA is admissible under Assumption 1.

Proof Sketch. Starting from the same x̃0 and the same
covariance, SBA-SiMBA is able to under-approximate the
uncertainty of the belief of the original system at any x̃,
since there are less constraints on its dynamics and it uses the
maximum speed of the original system. From Assumption 1,
a lower covariance at each state leads to better probability
of satisfaction. There exists at least as many accepting belief
trajectories for SiMBA as for the full system.

Finally, the goal is to find a feasible solution for the
SiMBA augmented version of Problem 1 in each iteration
of the planning framework. Using the hybrid search tree in
Sec. III-C, we obtain a kinematic trajectory for the simplified
space X̃ . A SiMBA path is then the hybrid path ξX̃ = (x̃,q)
which is a sequence of pairs of x̃ and M state q.

We note that designing simplified models can generally
be difficult, but our results show that using SBA-SiMBA
significantly reduces planning time for various LTLf tasks.

E. Belief Search Layer

The belief search layer plans for the original constrained
System (1) using GBT to find a solution for Problem 1. To
guide the search, we lift SiMBA path ξX̃ from X̃ to X and
use biased sampling around the lifted trajectory set.

We propose to guide the belief tree search by using the
sub-task relevant segments of ξX̃ . Let v be an existing tree
node in the belief search layer with discrete component v.qi,
and let qi+1 be the successor of qi in task plan T. Then, we
use the segment of ξX̃ with discrete components qi and those
that lead to a transition from qi to qi+1, i.e., the segment is of
the form ξqi

X̃
= (x̃k, qi)...(x̃k+m, qi)(x̃k+m+1, qi+1), where

k is the first time step ξX̃ encounters qi and m ≥ 0.

The sampling bias technique is as follows. Given a starting
radius d which is incrementally increased, samples are cho-
sen within d radius of ξqi

X̃
with probability pr, and uniformly

in the belief space with probability 1−pr. Biasing sampling
in this way allows the belief search tree to bias growth
towards promising parts of the belief space found by the
SiMBA layer while still allowing exploration.

At each iteration, both SiMBA guide and belief search
layers are given a user-defined time bound to extend the
belief tree. The intuition is to continually feedback feasibility
information from the tree search layers to the task planning
layer. Weights on M are updated based on (9) and the
algorithm continues to the next iteration.

IV. THEORETICAL GUARANTEES

Here, we analyze the theoretical guarantees of our pro-
posed framework.

Theorem 1 (Correctness). Let V∗ = (v0, · · · , vf ) be a
returned solution trajectory from the belief search layer.
Then, the observation trace of its continuous component is
guaranteed to satisfy φ, i.e., σ |= φ.

Proof Sketch. V∗ is only returned as a solution if vf .q ∈
F . Given polytopic regions P , the computation of chance
constraints for labels in (8) is conservative. Since the belief
covariance (Σ + Λ) is computed exactly, the label is con-
servatively computed, i.e., L(bk) is correct. Thus, the belief
components of V∗ (belief trajectory b) correctly returns an
accepting run on M, so b satisfies φ, i.e., b |= φ.

Theorem 2 (Probabilistic Completeness). Given an admis-
sible SiMBA, our framework is probabilistically complete.

Proof Sketch. This follows from Thm 1, the definition of
admissible SiMBA, and the results of [19].M’s edge weights
are continually updated according to feasibility estimates, so
every accepting run inM will be sampled infinitely often in
the limit. In the limit, the search space will be covered by
infinitely dense trees for both SiMBA guide and belief search
layers, from the probabilistic completeness of GBT. From
Thm 1, any returned solution is guaranteed to be correct.

Note that we can still achieve probabilistic completeness
with an inadmissible SiMBA, by setting a separate time
bound to the SiMBA layer and conducting belief search
without a SiMBA guide if no solution is found by the SiMBA
layer. However, admissible SiMBA guides can greatly reduce
computation times, as seen in our evaluation.

V. EVALUATIONS

We demonstrate the effectiveness of our proposed frame-
work, through benchmarks and illustrative case studies.

Simulation Benchmarks: We compare our proposed
framework with (i) a state-abstraction based approach (Abs-
based), similar to extending [5] to the belief space by using
a belief space planner, and (ii) using our framework but
without a SiMBA layer as an ablation study, and using
the full framework with different SiMBAs, (iii) a geometric
SiMBA that plans directly in the state space (Geo-SiMBA),



TABLE I: Benchmarking results for underwater inspection scenario. We report the mean time to solution and standard error of the mean.
Runs are given a maximum time of 120s, with successful runs finding a solution within 120s. The best scores are shown in bold fond.

Algorithm φ1 φ2 φ3 φ4 φ5
Succ. (%) Time (s) Succ. (%) Time (s) Succ. (%) Time (s) Succ. (%) Time (s) Succ. (%) Time (s)

Abs-based 0 NA 0 NA 0 NA 0 NA 0 NA
Simba-free 100 7.7± 0.8 66 71.6± 4.3 63 78.7± 4.0 14 114.1± 1.7 4 117.7± 1.2
Geo-SiMBA 100 6.9± 0.6 89 42.9± 3.6 81 59.3± 4.2 39 103.5± 2.6 32 107.3± 2.4
SBA-SiMBA 100 5.8± 0.5 95 29.3± 2.9 92 34.9± 3.2 73 85.4± 3.0 54 94.5± 3.1

and (iv) SBA-SiMBA which includes belief approximation
as discussed in Sec. III-D.

The scenario is a simplified underwater cave inspection
with obstacles as depicted in Figure 2. Here, the robot
can receive measurements with small noise about its state
near the surface (in white), while it has to rely on noisier
IMU otherwise. The robot has dynamics given by ẋ =
v cos (θ), ẏ = v sin (θ), θ̇ = ω, v̇ = a. We use state feedback
linearization to obtain a linear closed-loop model as in [21],
[34]. We consider the following increasingly complex LTLf
formulas, with a = π0.95

a for region A (in green), b = π0.95
b

for region B (in yellow), c = π0.95
c for region C (in white),

and o = π̃0.95
o for region O (brown and black obstacles):

• φ1 = �¬o ∧ ♦a
• φ2 = �¬o ∧ ♦(a ∧ ♦c)
• φ3 = �¬o ∧ ♦(a ∧ ♦c) ∧ ♦(b ∧ ♦c)
• φ4 = �¬o ∧ ♦(a ∧ ♦(c ∧ ♦(a ∧ ♦c)
• φ5 = �¬o ∧ ♦

(
a ∧ ♦(c ∧ φ3)

)
∧ ♦
(
b ∧ ♦(c ∧ φ3)

)
For each specification, �¬o refers to obstacle avoidance.

φ1 requires to eventually reach region a. φ2 is a sequential
goal problem, with the goal of reaching region a followed
by region c. φ3 states that the robot should visit regions a
and b in any order, before surfacing to region c. φ4 states
that the robot should visit regions a followed by c twice. φ5

states that the robot should satisfy φ3 twice sequentially.
For belief tree planning, we used [19] with RRT. We

provided a time limit of 120s to find a solution for 100
trials. The results are summarized in Table I. From the
benchmarking results, it is evident that the state-abstraction
approach does not work for belief space problems. This
is due to the need to capture measurements affecting the
belief dynamics in the abstraction. Note that it may be
possible to combine abstraction-based approaches with a
biased sampling paradigm, but it is not clear how to do
so effectively. We also attempted to use belief discretization
instead of state discretization, but it also performed poorly
since many transitions in the abstraction are impossible.

Our results show that as complexity of specifications
increases, so does the benefit of our planning scheme and the
importance of SiMBA guides. Even for reach-avoid task φ1,
our planning scheme with both types of SiMBAs show better
performance compared to the other methods, demonstrating
the general efficacy of this approach for belief space planning
with LTLf specifications. Furthermore, the addition of belief
approximation in SiMBA allows for more informative guides
that reason about the belief space, leading to better solution
times for SBA-SiMBA as compared to Geo-SiMBA. Typical
solution trajectories returned by our proposed algorithm are
shown in Figure 2, where the robot intelligently navigates

Fig. 2: Underwater inspection. φ1 (left): the robot moves close to
the surface to localize before completing the task. φ2 (right): the
robot completes sub-task ♦a (red) and nested sub-task ♦c (black).

Fig. 3: Drone delivery, top down (left) and side (right) views.

close to the surface to localize (reduce uncertainty) before
submerging and completing its tasks in the cave, through
which measurements have higher noise values.

Urban Drone Delivery: Next, we demonstrate our
algorithm in a simulated drone delivery problem in an
urban environment, as depicted in Figure 3. Details on the
dynamics can be found in Appendix A.2 of [21]. We consider
a delivery problem, where UAV has to pick up a package at
the foot of a building A (region A in blue), and deliver it
to foot of building B (region B in yellow) while avoiding
obstacles (in gray). Additionally, it can only receive GPS
measurements if it flies above the gray buildings (in light
green), but it cannot fly that high after picking up a package.
In LTLf, this task is φ6 = �¬o∧♦(a∧♦b)∧�(a =⇒ �¬c),
with a = π0.99

a , b = π0.99
b , c = π̃0.99

c , and o = π̃0.99
o . We

conducted 100 trials for this problem with time limit of 120s,
and our algorithm with SBA-SiMBA found a solution with
90% success rate, with mean time to solution of 30 ± 4.1.
A typical solution is shown Figure 3. The UAV first flies
above the buildings to reduce its uncertainty, before flying
to region A and then B, to ensure that its uncertainty is low
enough to reach both regions with high probability.

VI. CONCLUSION AND FUTURE WORK

We presented a modular framework for motion planning
with complex tasks for systems under both motion and
measurement uncertainty. We showed that simplified belief
models provide important information for guiding motion
tree search for planning in belief space. Our proposed
framework is correct by construction and probabilistically
complete. Empirical evaluations demonstrate the efficiency
and efficacy of the planner. Future work aims at analyzing
how to design accurate simplified models for better guides.
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