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Abstract— In this paper, we present BAMF-SLAM, a novel
multi-fisheye visual-inertial SLAM system that utilizes Bundle
Adjustment (BA) and recurrent field transforms (RFT) to
achieve accurate and robust state estimation in challenging
scenarios. First, our system directly operates on raw fisheye
images, enabling us to fully exploit the wide Field-of-View
(FoV) of fisheye cameras. Second, to overcome the low-texture
challenge, we explore the tightly-coupled integration of multi-
camera inputs and complementary inertial measurements via a
unified factor graph and jointly optimize the poses and dense
depth maps. Third, for global consistency, the wide FoV of
the fisheye camera allows the system to find more potential
loop closures, and powered by the broad convergence basin of
RFT, our system can perform very wide baseline loop closing
with little overlap. Furthermore, we introduce a semi-pose-
graph BA method to avoid the expensive full global BA. By
combining relative pose factors with loop closure factors, the
global states can be adjusted efficiently with modest memory
footprint while maintaining high accuracy. Evaluations on
TUM-VI, Hilti-Oxford and Newer College datasets show the
superior performance of the proposed system over prior works.
In the Hilti SLAM Challenge 2022, our VIO version achieves
second place. In a subsequent submission, our complete system,
including the global BA backend, outperforms the winning
approach.

I. INTRODUCTION
Simultaneous Localization and Mapping (SLAM) is being

widely deployed to real-world applications in various do-
mains such as mobile robotics and augmented reality. In the
active field of SLAM research, Visual-Inertial SLAM (VI-
SLAM) has emerged as a highly robust and accurate solution.
Despite significant progress in VI-SLAM research [1], [2],
[3], [4], emerging challenging datasets and new industrial
applications [5], [6] present new formidable challenges that
demand increased accuracy and robustness from state-of-the-
art VI-SLAM systems. For example, monitoring construction
sites requires centimeter-level accuracy in low-texture envi-
ronments with rapid lighting changes and motion. To address
these challenges, we opt for the use of multiple fisheye
cameras in combination with the complementary Inertial
Measurement Unit (IMU) as sensor setup. This provides the
system with sufficient sensing information, about both the
environment and ego motion to handle challenging cases,
resulting in more robust and efficient environment mapping.

1Institute for Photogrammetry, University of Stuttgart, Germany
wei.zhang, norbert.haala@ifp.uni-stuttgart.de

2Audiovisual Lab, Huawei Munich Research Center, Germany
wei.zhang3, sen.wang@huawei.com

3CAMP, Technical University of Munich, Germany
sen.wang@tum.com

4Central Media Technology Institute, Huawei 2012 Laboratories, China
dongxingliang, guorongwei@huawei.com

Left 

Front

Right

Fig. 1. Estimated point cloud and trajectory by the proposed system on
exp09 sequence of Hilti-Oxford dataset. The start and end points of the
trajectory are marked with red rectangles.

Bundle adjustment [7] has become the gold standard in
modern SLAM systems. In feature-based approaches [3], [4],
the objective is to minimize the reprojection errors of the
detected sparse features. In contrast, the photometric errors
of dense pixels are minimized instead in direct approaches
[8], [9]. With the increase of computational power and
advances in deep learning, recent works [10], [11], [12]
tend to combine the strengths of both worlds, which is to
minimize the reprojection errors of dense depth maps using
the prediction of RFT as targets. Based on this scheme, we
built our system and extended it to a multi-camera VI-SLAM
setup, which includes a unified joint factor graph formulation
to fuse the inputs of multi cameras and IMU measurements
in a tightly-coupled manner.

One major limitation of most visual SLAM systems is
its reliance on visual appearance inside the camera view.
They struggle to track the camera pose when the camera
view is obstructed, contains too little texture, or has low
overlap due to rapid movements. The great advantage of a
multi-fisheye VI-SLAM system is that, on the one hand, the
large FoV of fisheye cameras reduces the likelihood of low
textures and increases the view overlap. When one view is
fully obstructed, the other cameras or the IMU measurements
can still provide redundancy and prevent the system from
tracking failure or catastrophic drifting.

For global consistent mapping, we propose an approach
called semi-pose-graph BA to jointly optimize poses and the
depth maps involved by detected loop closures. Compared
to the full BA, our method does not rely on reprojection
factors to connect all keyframes, but instead converts the
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reprojection factors computed by the frontend into relative
pose edges to build a pose graph. In contrast to pose graph
optimization (PGO), our method optimizes not only the poses
but also the depth maps of keyframes involved in detected
loop closures, which are represented by reprojection factors.
Thus our method is more accurate than PGO while also being
more efficient than full BA.

In summary the main contributions of this work are:
‚ A state-of-the-art multi-fisheye VI-SLAM system called

BAMF-SLAM that utilizes full image information from
multiple fisheye cameras as well as complementary
IMU measurements.

‚ A unified factor graph formulation that tightly-couples
multi-camera inputs and IMU measurements to jointly
optimize poses and depth maps.

‚ A semi-pose-graph bundle adjustment scheme that
leverages relative pose edges and loop closures as
reprojection factors to achieve efficient loop closing
while maximizing global consistency.

II. RELATED WORK

Both visual-inertial SLAM and multi-camera SLAM have
received extensive research. To fuse visual and inertial mea-
surements, most works, including this one, use the preinte-
gration method of [13] to reduce the number of variables
and efficiently solve the bundle adjustment problem. For a
fixed computation cost of frontend, the marginalization of
old states [1] has been popular to model their uncertainty,
whereas another line of works [3], [14] includes the old
states as fixed prior in local BA. This work adopts the latter
approach due to its simplicity and effectiveness.

Several works have explored the use of multiple cameras
in SLAM systems. [15] proposes a general design for multi-
camera SLAM system including an initialization strategy and
keyframe selection. MultiCol [16] extends the ORB-SLAM2
[17] for the use with multiple fisheye camera inputs via
bundle adjustment. [18] proposes a panoramic camera model
for combining the images of a multi-camera rig, but only
applicable when the camera centers have a slight offset. Our
sensor configuration does not meet the requirement and thus
cannot use the panoramic model.

While there have been a few previous attempts to com-
bine multi-camera inputs and inertial measurements, most
methods rely on feature-based tracking across cameras. For
instance, VILENS-MC [19] leverages cross-camera feature
tracking to exploit camera overlaps. In contrast, our system
does not track feature points, but instead establishes dense
pixel-wise correspondences based on depth map representa-
tion. Furthermore, our system includes a global optimization
backend resulting in further improvements in accuracy and
robustness compared to previous works.

III. PRELIMINARY ON RECURRENT FIELD TRANSFORMS

The concept of recurrent field transforms can be traced
back to RAFT [20], a deep network architecture for optical
flow estimation. Inspired by this success, RAFT-3D [21] and
RAFT-Stereo [22] adopted this concept for the tasks of scene
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Fig. 2. Network structure for the update operation of recurrent field
transforms borrowed from [10].

flow estimation and stereo matching respectively. Later, the
concept of RFT was adopted for the dense SLAM system,
DROID-SLAM [10], which combines RFT with BA to solve
poses and depths from optical flows. RFT predicts the dense
pixel-wise correspondences between co-visible views based
on the feature maps extracted from the input images using a
residual-style network. The feature correlation can be looked
up using the optical flow derived from the latest pose and
depth estimates. As depicted in Fig. 2, the inputs to the GRU
module include, the current correlation, the context features,
the last flow update, and the last hidden state. They are
concatenated together to compute the update of the next flow
revision and the associated confidence values.

To improve RFT-BA cooperation, DROID-SLAM en-
hances the training process by incorporating BA as a differ-
ential layer, allowing the loss function to be directed at pose
and depth map estimates rather than optical flow and achieves
the state-of-the-art accuracy on multiple benchmarks. This
work builds based on DROID-SLAM and extends it to a
multi-camera VI-SLAM system to deal with more challeng-
ing scenarios encountered in real-world applications.

Despite only being trained on the dataset [23] of pinhole
images, the pre-trained model by [10] has excellent gener-
alization ability on fisheye images. Therefore, we use the
pre-trained model without further finetuning.

IV. SYSTEM OVERVIEW
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Fig. 3. Overview of the proposed system.

The task of our proposed system is to estimate the state
of the sensor platform as accurately and robustly as possible
by utilizing the onboard multi-fisheye cameras and an IMU
sensor. Figure 3 depicts a high-level overview of our system.
Following the design of modern SLAM frameworks, we



divide our system into frontend and backend. The frontend
is responsible for processing the input images and IMU
measurements, determining which are keyframes, keeping
track of the most recent keyframes in a sliding window, and
performing alternative RFT and local BA optimization. On
the backend, it manages a data buffer of all keyframes estab-
lished by the frontend and converts the intermediate results of
reprojection factors into relative pose factors to build a global
pose graph. Finally, to improve overall accuracy and global
consistency, the backend employs loop closure detection and
global semi-pose-graph BA.

V. METHOD

This section describes the proposed system’s methodology
in detail. We begin by discussing the application of the
fisheye camera model to leverage the wide fisheye FoV in
Sec. V-A. Sec. V-B covers the crucial IMU initialization
process, which enables our system to combine visual-inertial
information. Next, we present the factor graph formulation
and explain each type of factors that are employed for
fusing multiple inputs in Sec. V-C. Finally, we introduce
our proposed semi-pose-graph BA method (Sec. V-D) that
achieves global consistency and improved accuracy by identi-
fying long-term loop closures and maximizing the agreement
between relative pose and loop closure constraints.

A. Fisheye Camera Model

Conventional SLAM methods often assume an ideal pin-
hole camera model, which requires pre-processing of input
images to remove distortion. However, when it comes to
fisheye images, this can result in a loss of useful information
due to cropped borders or sampling artifacts caused by the
interpolation of objects at the edges. This negates the benefits
of the wide FoV that fisheye images offer. To address this
issue, our proposed system uses the Kannala-Brandt fisheye
camera model [24] as in [3] throughout our framework. The
model is used for image pixel projection and unprojection,
as well as the analytical computation of the Jacobians in the
(uni-)projection functions. Unlike [3], we use depth maps
instead of sparse features and implement a custom CUDA
kernel to parallelize the operation for all pixels.

B. IMU Initialization

To enable the smooth integration of IMU observations, a
set of new states that are not estimated in vision-only system
need to be initialized, including gravity direction, scale,
body velocity and biases of gyroscope and accelerometer.
Following the best practice in [3], it is preferable to start
with vision-only BA for a short sequence with sufficient
motion before initializing IMU. To summarize, our IMU
initialization procedure consists of the following four steps:

1) Vision-only BA to establish the initial poses of the first
K keyframes.

2) (Optional for static start) Least-square optimization for
an initial gravity direction Rwg and accelerometer bias
ba using the constraint ḡ´ ba “ Rwgp0, 0, GqT , where
G is the gravity magnitude and ḡ is obtained by aver-
aging the accelerometer measurements at standstill.

3) Inertial-only BA to jointly optimize velocity, scale,
biases bg as well as refine the estimates of the last
two steps, namely Rwg and ba using the preintegrated
IMU factors (See Sec. V-C).

4) Visual-Inertial BA to finally optimize all variables
using both visual reprojection and IMU preintegration
factors.

In step 2, we determine whether the initial phase is
stationary by examining the magnitude of the gyroscope
measurement. If the initial phase is indeed stationary, the
accelerometer data in this phase can provide strong prior
information about the gravity direction.

The scale can typically be observed directly through a
known stereo baseline via offline calibration and does not
require optimization as a variable. However, our empirical
study found that multi-camera calibration often lacks accu-
racy, and the inclusion of a scale variable can reduce the
impact of calibration errors.

C. Factor Graph Formulation

The core to our bundle adjustment based system lies in
the formulation of a factor graph that incorporates all types
of factors to optimize the system states and 3D structure
jointly. The 3D structure is represented by the depth maps
of keyframes. The system state is defined in the IMU frame
denoted by B and the state at time ti can be defined as
follows:

xi “ rTi,vi,b
a
i ,b

g
i sT (1)

where Ti “ rRi,pis P SE(3) is the body pose, vw
i is

the velocity, and ba
i , bg

i are the IMU accelerometer and
gyroscope biases respectively.

Fig. 4 depicts the factor graph formulations for the fron-
tend and backend respectively. On the frontend, we maintain
a sliding graph and optimize only the variables within a
dynamic window. Upon a new keyframe, we first optimize
the state of the incoming keyframe and its depth map, using a
window size of 1, which we refer to as the tracking process.
Next, the local BA is performed with a larger window size
of n keyframes. Through empirical observation, we have
observed that directly running local BA on new keyframe
requires more iterations to converge. However, if we perform
local BA after tracking, which is significantly faster than
local BA, it only takes two iterations to converge. This
approach results in a significant improvement in runtime
performance, as discussed in Sec. VI-E. Moreover, a few
vertices outside the window linked by reprojection factors
are included in the optimization as fixed priors.

To incorporate IMU measurements, we utilize the IMU
preintegration method [13] to compute IMU preintegration
factors that connect consecutive keyframes. For reprojection
factors, we distinguish between the mono and stereo types.
Mono factors connect a pair of keyframes with common
view, where vertex pose estimates are used to transform the
coordinates during reprojection. In the stereo case, cross-
camera reprojection is computed using the known camera
extrinsics. Let Π denote the fisheye projection function, a
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Fig. 4. Illustration of the proposed joint factor graph formulation. a) A sliding graph with a window size of three keyframes and one fixed keyframe
served as prior. b) Semi-pose-graph with a long-term loop closure between two distant keyframes shown as an example.

point pi can be reprojected with an estimated depth d̂i using
the following equation:

p̂ij “ ΠpT̂ijΠ
´1ppi, d̂iqq (2)

where T̂ij “ TCBT̂
´1
j T̂iT

´1
CB refers to the relative trans-

formation from keyframe i to keyframe j in the mono case.
In the stereo case, it refers to the extrinsic TCiCj between
camera i and camera j.

For the reprojection targets, the RFT predicts the flow
revision δij to add on the last optical flow p̂ij . Thus, the
updated optical flow, namely the dense correspondences, is
obtained as follows:

qpij “ p̂ij ` δij (3)

To mitigate the impact of false correspondence and oc-
clusion, the confidences wi is predicted for each pixel by
RFT. Low confidences are assigned to pixels that do not
have a counterpart in the target view or are ambiguous. The
reprojection error then can be formulized as follows:

rij “ }qpij ´ ΠpT̂ijΠ
´1ppi, d̂iqq}2wi

(4)

As a special case in our multi-camera setup, one keyframe
has multiple depth maps pointing to different view directions.
In this case, the reprojection errors are computed for all depth
maps, which we refer to as the multi-reprojection factor.
For Newer College and Hilti-Oxford dataset, we include the
depth maps of the left and right views in addition to the front
view.

D. Semi-Pose-Graph BA

Keyframe #1984 Keyframe #25

1

0

Fig. 5. Example of a wide baseline loop closure with color-coded
confidence values predicted by the RFT network. Note that values lower
than 0.01 are omitted for clarity.

Performing global full BA is computationally expensive
and requires a large memory footprint as it optimizes the
system states and depth maps of all keyframes using all
reprojection factors by the frontend. Additionally, since the
frontend already provides states with high relative accuracy
and local consistency, it may not be necessary to optimize
the already very accurate relative pose. To this end, we
have determined that the frontend’s reprojection factors can
be converted into relative pose factors using the dense

correspondences established by local BA. A pose graph
can then be constructed using these relative pose factors.
The geometry constraints underlying the reprojection factors
is primarily represented by the relative pose factors and
their associated covariances. We compute these relative pose
factors and covariances using the Gauss-Newton method [25]
as follows:

H∆x “ JTWJ∆x “ b (5)

Cov “ pJ∆x ´ rqTWpJ∆x ´ rqH´1 (6)

where J is the Jacobian of the reprojection function w.r.t the
relative pose, r is the last reprojection error vector and W
is the weight matrix composed by the confidence predicted
by RFT. The update to the relative pose is denoted as ∆x.

The trajectory estimate by the frontend is prone to odome-
try drift, which accumulates over long distances traveled. To
mitigate drift error, the backend searches for potential loop
closures to add as additional constraints. The backend starts
by computing the frame distances between all keyframes,
which is determined by the mean optical flow calculated
based on the last pose and depth map estimates. A relaxed
frame distance threshold is typically used to allow for more
potential loop closures with wider baselines. While this may
lead to the inclusion of wrong loop closures, their impact
is insignificant because the RFT network is highly reliable
and assigns low confidence to the wrong matches. Fig. 5
depicts a wide baseline loop closure, where the same room
is revisited after a long trip. The wide FoV of the fisheye
camera used in our system enables the detection of such loop
closures even with little overlap at the image border.

With the use of relative pose factors, a pose graph can be
constructed. In addition, the detected loop closures can be
presented in the form of reprojection factors, which extend
the pose graph into a semi-pose-graph that includes depth
maps involved in loop closures, as shown in Fig. 4,b).
The semi-pose-graph BA is more efficient than full BA, as
the number of variables to be optimized is much smaller.
Moreover, the relative pose factors, which are derived from
the reprojection factors established by the frontend, are
highly accurate and robust due to the significant overlap of
keyframes within the frontend sliding window. As a result,
the semi-pose-graph BA is both efficient and accurate.

VI. EXPERIMENTS

Extensive evaluations has been carried out on our proposed
system using diverse datasets. To validate the effectiveness
of our system in stereo+IMU setup, we evaluate in various
indoor scenes from TUM-VI dataset [5]. We further evaluate
the multi-camera setup on the challenging Newer College
dataset [26], which contains indoor and large-scale outdoor
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a) Side view b) West staircase zoomed

Fig. 6. Qualitative results on TUM-VI dataset. As groundtruth only covers a single room, we transform all results to the groundtruth frame for consistency
check. Estimated trajectories are depicted in colors and point clouds are accumulated. Red-box marked region is zoomed in on the right from the side look
to provide a better illustration. Notably our results demonstrate high consistency in cleanly separating floors and clear-cut edges of stairs.

scenes, and the Hilti-Oxford dataset [6], which includes
challenging sequences collected on construction sites and
a historical theatre. For all evaluations, both VIO and VI-
SLAM results are provided to differentiate the performance
in terms of odometry drift by frontend and overall per-
formance with global optimization. Finally, we present an
analysis of the processing time and demonstrate the potential
of real-time capability.

A. Implementation Details
The framework is implemented in Python/CUDA using

PyTorch and Eigen libraries, and tested on a desktop PC with
an Intel i9-12900K CPU and an Nvidia RTX 3090Ti GPU.
Input images are downsampled to 440ˆ440 and 384ˆ512
resolution for TUM-VI and the other two datasets respec-
tively. To reduce the memory footprint, a ring buffer data
structure is implemented for storing image feature maps and
intermediate results of keyframes. This way, only a fixed
amount of GPU memory needs to be allocated regardless of
data length, and the data of each new incoming keyframe
is written to the beginning of the buffer. Our system can
run on GPUs with 11GB of memory for both the frontend
and the backend, which ensures high performance even for
large-scale datasets.

B. Performance on TUM-VI Dataset
The TUM-VI [5] dataset was collected using a handheld

device equipped with two fisheye cameras in a stereo setup
and an IMU. We selected four challenging scenes, including
low-texture (slides), rapid rotation (corridor), and large-scale
multi-story building (magistrale), to evaluate our approach.
Tab. I summarizes the quantitative evaluation results and the
comparison to the previous works. We compared our VIO
setup against BASALT [27] and the VIO version of OKVIS2
[4], both of which are feature-based VIO methods without
loop closure. Our method outperforms all other methods in
terms of averaged ATE across all four scenes.

For the evaluation on VI-SLAM systems, the trajectory
optimized globally with loop closures is evaluated. Our full
SLAM system outperforms both OKVIS2 [4] and ORB-
SLAM3[3], achieving the lowest ATE. Notably, our system’s
ability to detect and close loop closures with little overlap
allows us to reach an ATE of 1cm for almost all sequences.
Fig. 5 shows a wide baseline loop closure from the sequence
corridor 1. On the sequence magistrale 3, due to the larger
odometry drift and thus a greater frame distance, loop
closures cannot be successfully found.

TABLE I
ABSOLUTE TRAJECTORY ERROR (ATE) IN METERS ON THE TUM-VI

DATASET [5]. BEST RESULTS ARE IN BOLD.

Stereo-VIO Stereo-VI-SLAM

Seq BASALT OKVIS2 Ours ORB-
SLAM3 OKVIS2 Ours Length

[m]

co
rr

id
or

1 0.34 0.54 0.31 0.03 0.02 0.01 305
2 0.42 0.44 0.15 0.02 0.06 0.01 322
3 0.35 0.55 0.21 0.02 0.03 0.01 300
4 0.21 0.11 0.04 0.21 0.10 0.01 114
5 0.37 0.51 0.17 0.01 0.09 0.01 270

avg 0.34 0.43 0.18 0.06 0.06 0.01 262

m
ag

is
tr

al
e

1 1.20 2.03 1.74 0.24 0.07 0.01 918
2 1.11 3.22 1.00 0.52 1.22 0.01 561
3 0.74 2.11 1.53 1.86 0.09 1.39 566
4 1.58 1.94 1.26 0.16 0.25 0.01 688
5 0.60 1.01 0.21 1.13 0.02 0.01 458
6 3.23 2.32 1.66 0.97 0.76 0.01 771

avg 1.41 2.10 1.23 0.81 0.40 0.24 660

ro
om

1 0.09 0.06 0.02 0.01 0.01 0.01 146
2 0.07 0.07 0.07 0.01 0.01 0.01 142
3 0.13 0.06 0.04 0.01 0.01 0.01 135
4 0.05 0.02 0.02 0.01 0.01 0.01 68
5 0.13 0.02 0.02 0.01 0.01 0.01 131
6 0.02 0.02 0.02 0.01 0.01 0.01 67

avg 0.08 0.04 0.03 0.01 0.01 0.01 115

sl
id

es

1 0.32 0.96 0.43 0.41 0.37 0.01 289
2 0.32 0.74 0.51 0.49 0.16 0.01 299
3 0.89 2.51 0.41 0.47 0.13 0.01 383

avg 0.51 1.40 0.45 0.45 0.22 0.01 324

Notably, the groundtruth is only available at the beginning
and end of the sequences, limiting the groundtruth coverage
to motion within a single room. Therefore, the ATE reported
in Tab. I do not fully represent the accuracy of the estimated
trajectory outside of the room. To qualitatively evaluate the
overall accuracy, we transform the results to the groundtruth
frame using SE3 alignment and examine the consistency of
the accumulated point clouds. Fig. 6 shows the accumulated
point clouds along with their respective trajectories, depicted
in different color.

C. Performance on Newer College Dataset
TABLE II

EVALUATIONS ON NEWER COLLEGE DATASET BASED ON RELATIVE

POSE ERROR (RPE) AND ATE (UNIT: METER).

10m RPE ATE

Seq Open ORB- VILENS Ours Our VIO VI-SLAM Length
[m]VINS SLAM3 MC MC-VIO Stereo MC Stereo MC

MATH 0.65 Fail 0.26 0.12 0.47 0.40 0.21 0.20 329
MINE 0.98 Fail 0.20 0.07 0.28 0.45 0.08 0.11 236
QUAD 1.01 0.23 0.31 0.18 0.73 0.64 0.24 0.37 244

STAIRS 0.33 0.20 0.16 0.09 0.09 0.07 0.05 0.04 59
PARK 0.18 0.13 n/a 0.10 4.27 5.08 0.53 1.04 2396

The Newer College dataset [26] includes four fisheye
cameras and an IMU sensor. The difficulty and variety of



the scenes range from narrow staircase, to dark underground
mine, and over 2 km outdoor walk. The groundtruth is
provided for the entire sequence by aligning lidar scans to
detailed prior maps. Tab. II presents the evaluation results
on the Newer College dataset. Following [19], we compare
our VIO system to OpenVINS [28], ORB-SLAM3 [3] and
VILENS-MC [19] based on the metric Relative Pose Error
(RPE) over 10m. Our results demonstrate that our method
outperforms all other methods on all scenarios. Notably,
VILENS-MC, which also uses a multi-camera setup, is the
closest method to our approach, highlighting the benefits of
leveraging multi-camera inputs.

0 50m

Fig. 7. Before and after global semi-pose-graph BA on sequence Park.

In addition to using relative metrics, we also assess
absolute accuracy using the ATE metric. Surprisingly, our
experiments show that the error in the stereo setting is lower
than in the multi-camera (MC) setting. We suspect this dis-
crepancy may be due to errors in the extrinsic calibration and
plan to investigate further in future work. When comparing
the VIO and VI-SLAM results, the VI-SLAM results are
significantly better than the VIO results thanks to the loop
closing and semi-pose-graph BA. It could be argued that the
VIO frontend has provided a fair good starting point for the
backend, with relatively low odometry drift. Based on this,
the backend was then able to identify potential loop closures
by measuring frame distances between keyframes.

Fig. 7 illustrates the effectiveness of our backend, showing
a significant improvement before and after the semi-pose-
graph BA on the long walking sequence Park. Over 2 km
of walking and revisits through parks and corridors, the
estimated trajectory remains smooth and highly consistent,
as evidenced by the clean building edges and park walls in
the point cloud map.

D. Performance on Hilti-Oxford Dataset

TABLE III
ATE IN METER AND OBTAINED SCORES ON HILTI-OXFORD DATASET.

exp01 exp02 exp03 exp07 exp09 exp11 exp15 exp21 score

OKVIS2 0.12 0.18 0.65 0.13 0.25 0.09 0.19 0.41 32.5
Our VIO 0.16 0.28 0.30 0.15 0.38 0.17 0.18 0.30 22.2

Our SLAM 0.10 0.15 0.15 0.14 0.28 0.21 0.17 0.30 40.9

The Hilti-Oxford dataset [6] is part of the Hilti SLAM
challenge 2022, and it features a sensor configuration similar
to that of the Newer College dataset, consisting of five
fisheye cameras and an IMU. To reduce the computational
resources needed, we chose four views from five cameras
for processing, omitting the top view as it has fewer fea-
tures. The dataset provides millimeter-accurate groundtruth
at sparse locations and a web interface for evaluation as well

as a score leaderboard are provided for benchmarking. The
RMSE ATE on sparse groundtruth is used as the evaluation
metric, and the results are summarized in Tab. III. Our VIO
system achieved ATEs ranging from 10 cm to 30 cm. Exp01-
exp03 were collected in a construction site with start and
end points at the same place, allowing for loop closures.
Thus our full-SLAM system shows improvements for these
sequences, resulting in a higher score that outperforms the
winner approach of Hilti SLAM challenge 2022 by OKVIS2.

E. Processing Time
TABLE IV

PROCESSING TIME OF DIFFERENT MODULES (UNIT: MILLISECOND).

IO Extract Check Preintegrate Tracking Local-BA Compute Totalfeature map keyframe IMU rel. pose

Non-keyframe 7 4 2 - - - - 13
Keyframe 7 4 2 3 48 106 8 178

The runtime performance of the system is evaluated on
the TUM-VI dataset for both non-keyframe and keyframe
cases. The results are presented in Tab. IV, which breaks
down the time into different stages. For non-keyframes, the
incoming image is processed up to the keyframe-check step.
The average time taken for non-keyframes is 13 milliseconds.
In contrast, each keyframe is further tracked by running four
iterations single-frame BA followed by two iterations of local
BA. Finally, the relative pose factors are computed for the
keyframes and their associated reprojection factors outside
current sliding window. On average, it takes around 175
milliseconds to process one keyframe.

The system achieves a good balance between processing
speed and accuracy, selecting on average 23.5% of the frames
as keyframes while still processing an average of 25 frames
per second on the TUM-VI dataset, exceeding the recording
time by 25%. However, in multi-camera mode, the increased
computation reduces the processing speed to an average of 22
frames per second on the Newer College and Hilti-Oxford
dataset. On the backend, loop closuring and global semi-
pose-graph BA are carried out once by the end of program,
which can take several seconds to a few minutes for long
sequences such as the Newer College Park sequence.

VII. CONCLUSION
This paper presents a state-of-the-art visual-inertial SLAM

system capable of fusing visual reprojection factors from
multiple fisheye cameras and IMU preintegration factors
into a unified factor graph. To achieve globally consistent
mapping, a novel semi-pose-graph bundle adjustment scheme
has been proposed to replace the computationally expensive
full BA. By running alternative BA optimizations and RFT
predictions, the system can converge to the maximum like-
lihood solution. Extensive evaluations on multiple datasets
validate the accuracy and robustness of our proposed system.
As part of future work, we aim to enhance the robustness in
large-scale outdoor scenes, where noisy pixels like sky and
shadows should be better handled. Furthermore, we plan to
incorporate a global loop closure detection method, such as
Bag-of-Word, to strength the loop closing ability in case of
large odometry drift caused by long-distance travel.
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