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Abstract— Modern robotic manipulation systems fall short of
human manipulation skills partly because they rely on closing
feedback loops exclusively around vision data, which reduces
system bandwidth and speed. By developing autonomous grasp-
ing reflexes that rely on high-bandwidth force, contact, and
proximity data, the overall system speed and robustness can
be increased while reducing reliance on vision data. We are
developing a new system built around a low-inertia, high-speed
arm with nimble fingers that combines a high-level trajectory
planner operating at less than 1 Hz with low-level autonomous
reflex controllers running upwards of 300 Hz. We characterize
the reflex system by comparing the volume of the set of
successful grasps for a naive baseline controller and variations
of our reflexive grasping controller, finding that our controller
expands the set of successful grasps by 55% relative to the
baseline. We also deploy our reflexive grasping controller with
a simple vision-based planner in an autonomous clutter clearing
task, achieving a grasp success rate above 90% while clearing
over 100 items.

I. INTRODUCTION

Achieving human-like versatility in robotic manipulation
will depend on developing hands that are as nimble and
reactive as human hands. Much work has been done on
developing taxonomies and design requirements for hands
[1], [2]. Still, state-of-the-art manipulation systems have not
yet been able to replicate the human hand’s functionality.

Instead, many modern approaches rely on hardware ini-
tially intended for slow and precise tasks and deploy learning
algorithms that depend on large amounts of vision data to
carefully plan grasps [3]–[5]. These algorithms can plan
the entire manipulation process, from arm motion down
to fingertip contacts, but the high latency introduced by
the vision systems results in grasping controllers that are
unable to react while interacting with objects, which requires
high control bandwidth. Even if the planning algorithms
use contact and force data, the bandwidth of the vision
system limits the execution speed and usually requires that
the manipulation plan is quasi-static.

We summarize the challenges faced by robotic manip-
ulation systems as the “last centimeter problem”, inspired
by the “last mile problem” for delivery of goods. In our
“last centimeter problem”, the unpredictability of contact
with neighboring objects and the environment during the
final stages of a grasp attempt and the risk of excessively
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Fig. 1. Manipulation platform with reflexes for autonomous grasp-
ing. Our reflexive grasping controllers utilize our manipulation platform’s
high-bandwidth actuation and low-latency sensing modalities to perform
autonomous grasping tasks, such as clearing a cluttered shelf.

disturbing the object to be grasped can impose harsh con-
straints on the entire manipulation plan, resulting in slow or
conservative actions. The dependence of many robotic ma-
nipulation systems on vision data exacerbates this challenge,
as the cameras that record manipulation scenes often become
occluded during the final stages of manipulation plans.

To address this problem, we propose a holistic method
of designing manipulation systems while considering both
hardware and controller requirements, starting from low-
level, high-bandwidth behaviors, which we call reflexes. For
fast and robust manipulation, precise trajectory planning is
insufficient: the real world is too messy and noisy and
inevitably requires repetitive planning. Furthermore, given
enough high-bandwidth robustness, precise planning is also
not necessary. To achieve this robustness, we focus on
increasing the control bandwidth of a low-level, reflexive
controller that is fully decoupled from a simple and imprecise
high-level planner. As reflexes are constructed to reason
about contact interactions, finger motions, and potentially
arm motions, the scope of a higher-level planner is reduced
to reasoning only about the manipulation task. The reflexes
layer in robustness and resilience through redundancy and
are reminiscent of the subsumption architecture pioneered
by Brooks [6]. In our current system, we use these reflexes
to close the grasping feedback loop locally in the hand
without needing vision data or adding unnecessary planning
complexity. Fig. 2 compares traditional manipulation system
architectures with our proposed system.

We introduce a reflexive manipulation algorithm for au-
tonomous grasping and deploy it on our manipulation plat-
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Fig. 2. Manipulation control architectures. Traditional, monolithic
control architectures (a) are bottle-necked by the sampling frequency of the
slowest sensor. Despite efforts to speed up frame rates and signal processing,
bandwidths of vision-based control loops are typically limited to below
30 Hz. Our proposed control architecture (b) is decoupled into a slow, high-
level planner and a layer of fast, autonomous reflexes that do not depend
on vision data to achieve control bandwidths above 300 Hz.

form, which has high actuation bandwidth, dexterous fin-
gers, and low-latency multimodal tactile sensors [7]. To
demonstrate the performance of the reflexes, we present two
experiments. Our first experiment compares our reflexive
grasping controller to a naive baseline grasp controller on a
pick-and-place task. In our second experiment, we integrate
our controller with a simple vision-based planner to complete
an autonomous clutter-clearing task.

II. RELATED WORK

Manipulation performance depends on the robot hardware
and the control and planning systems. Our hardware is
uniquely high-bandwidth, enabling faster performance than
typical systems. Our reflex-based grasping controller replaces
low-level primitives, which can be simple routines or more
complex reactive controllers, and can integrate with other
planning algorithms, like those used in end-to-end grasping
pipelines.

A. Hardware for Manipulation

Hardware platforms for grasping and manipulation are
typically designed to be highly precise and are best suited for
the factory floor. Typical off-the-shelf robot arms, such as the
UR5 [8] or Kuka iiwa [9], have high gear ratios and are not
backdrivable. Instead, torque sensors are needed at each joint
to close the force control loop, which limits the bandwidth
and makes the systems stiff to collisions. To achieve reflexive
manipulation at human-level performance, we developed a
fast proprioceptive manipulation platform [7] based on the
design principles developed for the Mini Cheetah [10]. The
LIMS platform [11] achieves similar design goals; however,
it uses a cable-driven design which significantly increases
complexity.

Parallel-jaw grippers are commonly used in manipulation
research [12]–[14]. These are simple to integrate; however,
they are often not backdrivable and have limited or low-
bandwidth force control. Robotic hands with more degrees of

freedom, including the Shadow hand [15], Allegro hand [16],
and the DLR hand [17], offer a wider range of capabilities
but suffer from similar issues. They are fragile and have
low force control bandwidths, resulting in a poor ability to
handle collisions. Recently, Lin, Thomasson, Uribe, Choi,
and Cutkosky [18] and Bhatia, Johnson, and Mason [19]
have studied reducing reflected inertia in grippers for impact-
capable manipulation. These design philosophies are critical
for manipulation systems to operate in the real world, where
they will face unexpected collisions and changes in the
environment. The hardware platform we present in this paper
uses similar design principles applied to a higher degree-of-
freedom system.

Tactile sensing plays a vital role in the abilities of manip-
ulation systems. Recently, the most common tactile sensors
used have been vision-based systems such as Gelsight, Digit
and the Soft-Bubble grippers [20]–[22]. These offer large
amounts of data and are well suited to integration into learn-
ing pipelines. However, they suffer from high latency, and a
large amount of computation power is necessary to process
the video stream. Traditional force-torque sensors offer low
latency and high accuracy sensing but are too large for
manipulation systems and suffer from acceleration-induced
noise. We have presented a multimodal tactile sensor with
low-latency force, contact location and proximity data [23],
which we use to enable our reflexive grasping controllers.

B. End-to-end Software Pipelines for Grasping

Manipulation systems are typically structured as end-to-
end pipelines focusing on planning with vision data from
both traditional cameras and vision-based tactile sensors.
These pipelines are generally built with supervised learn-
ing or reinforcement learning (RL) algorithms [24]. While
these systems are capable of a wide range of manipulation
tasks [4] [14], they face key bottlenecks when moving from
the research lab to the real world. Their planned trajectories
often executed open-loop [13], which means they cannot
adjust to environmental changes. Even in systems that use
closed-loop control, feedback is limited by camera frame
rates and high processing times needed to parse the vision
data, ultimately leading to end-to-end control bandwidths
ranging from 5-50 Hz [25]–[27]. The bandwidth of the
dynamics of the environments that these platforms interact
with, mostly small and relatively lightweight objects, can be
orders of magnitude higher than this, making it challenging
to respond in real-time to unforeseen changes in the environ-
ment. This mismatch in dynamic bandwidth leads to systems
operating quasi-statically to avoid disturbing the environment
and taking as long as 20 to 60 seconds to complete a single
grasp, which is significantly slower than a human. To avoid
this mismatch, we are proposing a new structure built from
fast and reactive reflexes that are not constrained by the
bandwidth of a higher-level, vision-based planner.

C. Reactive Grasping Controllers

Reactive grasping controllers have been explored previ-
ously, using both tactile and proximity data to make quick



adjustments to the system [28], [29]. The most common
reaction during grasping is slip control, which typically uses
a tactile sensor to determine when the object is slipping out
of the hand [30], [31]. Additionally, reactions based on local
analog proximity signals have been used to guide fingers
around an object to ensure an enveloped grasp [32]. In our
prior work, we developed a slip detection reflex and an
antipodal re-grasping reflex with a single degree-of-freedom
gripper [7] to achieve higher speed and robustness during
teleoperated manipulation. For these types of reflexes to
work effectively, they require low-latency sensing and high-
bandwidth force control at the gripper. In this work, we
present several reflex designs in an integrated system that
can handle various disturbances and scenarios.

III. MANIPULATION PLATFORM

Our manipulation system is shown in the left of Fig. 1.
It consists of a low-inertia, high-speed arm and a dexterous
two-finger gripper. Each fingertip has a multimodal contact
and proximity sensor.

The arm has seven degrees of freedom: three at the shoul-
der, one at the elbow, and three at the wrist. The three wrist
joint axes intersect at the same point, creating a spherical
joint. To include the seventh degree of freedom at the wrist,
we added a Dynamixel XM540 actuator to the wrist of the
design presented in our previous work [7]. The additional
degree of redundancy in the wrist pose is important for
autonomous grasping as it allows for optimization of arm
configurations given planned grasp locations or poses, as
opposed to having at most one inverse kinematics solution
for the desired grasp pose.

The gripper has two cable-driven fingers, each with four
degrees of freedom. Fig. 3 shows the fingers with labeled
joint axes. Each finger joint is driven by an antagonistic pair
of tungsten cables routed through the finger to Dynamixel
XM430 actuators. All actuators are packed as close as
possible to the axes of the wrist to minimize inertia while
maintaining a wide range of motion. While cable trans-
missions can become mechanically complex, using cables
allows the fingers to be much slimmer and stronger than
if actuators were placed directly at each joint. The finger
linkages are made of 7075-T6 aluminum alloy, with ball
bearings supporting every joint shaft and routing pulley.
The fingers are lightweight and low-friction, enabling nimble
manipulation actions. The total gripper mass, including the
wrist roll actuator, is approximately 1.2 kg. We use a custom
PCB for the gripper to receive commands from the control
computer over a CAN bus, perform current control for the
Dynamixel actuators, and send back gripper states and sensor
information to the control computer.

Each joint in the arm and fingers, represented by qi, is
torque-controlled using a proportional-derivative (PD) con-
troller with a feedforward torque term:

τ
i
command = Ki

p(q
i
des−qi)+Ki

d(q̇
i
des− q̇i)+ τ

i
f f (1)

The control computer updates the desired positions, desired
velocities, and torque commands at roughly 300 Hz. The
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Fig. 3. Dexterous gripper with multimodal sensors. Our system uses a
two-fingered gripper with multimodal fingertip sensors. The contact sensor
areas, time-of-flight proximity sensor directions, and joint axes are also
labeled. (a) The nominal pose for the baseline grasping controller in Sec. V-
A. The finger width is set based on the cup diameter plus a clearance
threshold. (b) The nominal pose for the reflex controllers in Sec. V-A.
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Fig. 4. Reflexive grasping controller. As the arm moves the gripper
to the target location, the autonomous reflexes attempt to grasp the object.
The high-level planner only needs to provide the target object location to
the controller.

controllers for the arm actuators run at 1 kHz, and the
controllers for the Dynamixels run at 500 Hz.

Each fingertip has a multimodal sensor that can return
contact force, location, and proximity data [23], shown in
Fig. 3. The sensor measures the 2-D contact location over
its spherical surface, parameterized by the angles θ and
φ , and estimates the 3-D contact force at that location,
F = [ fx, fy, fz]. The z-component of the contact force is
the contact normal force, and the x- and y-components are
the contact shear forces. In addition to the contact data,
the fingertip sensors capture pre-touch information from
proximity data along three outward directions. We also use
a proximity sensor in the palm, and the vector of proximity
data is given by:

d = [dl
out ,d

l
f orward ,d

l
in,dpalm,dr

in,d
r
f orward ,d

r
out ] (2)

The individual sensors are sampled at 200 Hz, with minimal
time for processing overhead.



IV. REFLEXIVE GRASPING ALGORITHM

Fig. 4 shows a flowchart detailing our reflexive grasp-
ing controller. The only high-level plan necessary for our
controller is the current location of an object to be grasped
and its desired final location. Once the controller receives a
target grasping location, the arm moves the gripper towards
the target, activating individual reflexes or combinations of
reflexes along the way. The reflexes use the arm and finger
kinematics, force and proximity data, and contact kinematics
to autonomously perform fast and robust grasping.

A. Collision Avoidance and Contour Following

As the hand approaches the target grasping location, the
fingers hold a nominal “open hand” pose, shown in Fig. 3.
The data from the proximity sensors are used to create
virtual potential fields around the fingertips, with different
stiffnesses and activation distances for each sensing direction
from the fingertip: outwards, forwards, and inwards. The sum
of the forces from the individual potential fields yields a net
force on the fingertip, given by:

Fi = αoutKout(dout −ddes
out )eout

+α f orwardK f orward(d f orward−ddes
f orward)e f orward

+αinKin(din−ddes
in )ein

(3)

where each αi is an activation coefficient, each ei is a unit
vector along the corresponding direction from the fingertip,
and stiffnesses and measured distances are represented by Ki
and di, respectively. The coefficients αi are determined by
the threshold conditions:

αout = (dout < dthresh
out )

α f orward = (d f orward < dthresh
f orward)

αin = (din < dthresh
in )

(4)

The virtual potential fields are activated as soon as the
measured distance goes below the corresponding threshold.
For the outward and forward directions, the nominal distance
for the potential fields, ddes, is the same as the activation
threshold, dthresh. For these directions, the forces on the
fingertips are only repulsive, and enable reactive collision
and obstacle avoidance. The potential fields due to the inward
proximity sensors can be attractive and repulsive, as the
activation threshold is not the nominal distance. Once an
object is within the activation threshold, the fingertip will
attempt to maintain the desired distance from the object’s
surface, which yields a contour following behavior that
allows the fingertips to react to object shapes and to passively
wrap around objects while the hand is advancing to the target
grasp position.

ddes
out = dthresh

out

ddes
f orward = dthresh

f orward

ddes
in < dthresh

in

(5)

TABLE I
ALGORITHM PARAMETERS

Purpose Symbol Value

Potential field distances (dthresh
out ,dthresh

f orward ,d
thresh
in ,ddes

in ) (9,9,9,6) cm

Potential field stiffnesses (Kout ,K f orward ,Kin) (20,30,12) N
m

Grasp triggering thresholds (dnear,d f ar,docclude) (5,9,4) cm

Antipodal angle threshold γa 20°

Re-grasping radius threshold rpower 3 cm

Grasp success thresholds (γv,γF ) (0.2 m
s ,0.5 N)

Grasp termination time t f ail 3.0 s

B. Triggering and Evaluating Grasp Attempts

While the hand is moving towards the target grasp loca-
tion, several conditions can trigger an early grasp attempt
based on the proximity data and finger kinematics. These
conditions are represented by βi:

βnear = (dpalm < dnear)

β f ar = (dpalm < d f ar)

βtips = (ql
tip < θclose)∧ (qr

tip < θclose)

βocclude = (dl
f orward < docclude)∨ (dr

f orward < docclude)

(6)

where ql
tip and qr

tip are the fingertip angles in the gripper
frame. The conditions βnear and β f ar are based primarily on
the palm proximity measurement and indicate that the object
is between the fingers and close enough to the palm to be
grasped. With the condition βtips, a grasp can be triggered
if the fingertips have wrapped around the object. Finally, for
βocclude, if the forward proximity measurement is too low,
the finger is occluded and cannot proceed with the grasp.
Since the controller can initiate a re-grasping attempt, it can
rely on the re-grasping if a finger is blocked rather than
causing the grasp attempt to fail. If the gripper reaches the
final grasp target without a grasp already being triggered, a
grasp attempt is initiated anyways.

C. Re-grasping Decisions

Once a grasp has been attempted, the controller determines
if the grasp was successful or if a re-grasp needs to be
attempted. Using the measured contact frames, the controller
approximates the object as a circle and estimates the radius
and location in the gripper frame, rob j and (xob j,yob j,zob j).
Based on the differences between the x-coordinates of the
fingertip locations, xl

tip and xr
tip, and the estimated object

location, xob j, in the gripper frame, the controller plans one
of three re-grasps:

• If xob j > xl
tip and xob j > xr

tip, the re-grasping trajectory
pinches the object and pulls it closer to the palm. Then,
the fingers are moved forward to achieve an antipodal
pinch grasp, based on the new object location and the
estimated radius, rob j. (7)

• If xob j < xl
tip and xob j < xr

tip, the fingertips have
successfully wrapped around the object, but the grasp
has not been declared successful. If the object radius is



Fig. 5. Experimental setups. (a) The 12.5 mm grid and sample cup
used to characterize the reflexive grasping controllers. (b) The variety of
kitchen objects used for the autonomous clutter-clearing experiment. (c)
The manipulation platform and shelf used for the experiiments.

less than a threshold, rob j < rpower, the controller plans
an antipodal pinch grasp by moving the fingertips back
towards the palm. (8)

• Otherwise, the controller plans to extend the fingers to
wrap around the object into a more secure power grasp.
If the signs of the differences between the fingertip
x-coordinates and the object x-coordinate do not match,
the controller also plans a wrapping power grasp. (9)

After the re-grasping trajectory is completed, the resulting
grasp is evaluated again.

D. Evaluating Grasp Attempts

Grasp attempts are evaluated using information from fin-
gertip and palm proximity measurements, contact forces, and
contact kinematics. Once grasp has been triggered, the con-
troller will continue to attempt the grasp until success or until
a set amount of time, t f ail , has passed. The controller declares
a successful grasp when both fingertips have stopped moving,
both contact normal forces are above a threshold, and the
object is seen by the palm proximity sensor, represented as:

βsuccess = (vl
tip < γv)∧ (vr

tip < γv)∧
(|F l

z |> γF)∧ (|Fr
z |> γF)∧β f ar

(10)

V. EXPERIMENTS

We present two grasping experiments using our reflexive
grasping system. In the first experiment, we characterize the
difference in grasping capabilities between variations of our
reflexive controller and a naive baseline controller. In the
second experiment, we use the reflexes to achieve robust
autonomous grasping for a clutter-clearing task.

A. Reflex Characterization

For this experiment, we command the robot to repeatedly
perform a pick-and-place task at a nominal grasp location.
To characterize the robustness of the grasping controllers, we
record the set of successful grasps as the object is moved
further and further from the nominal grasp location along a
12.5 mm grid. Displacing the object without changing the
commanded grasp location isolates the effectiveness of the

controllers from the measurement noise inherent to vision-
based systems. For a successful grasp, the gripper must grasp
the object and then transport it to a predetermined “place”
position. Fig. 5a shows the experiment setup with the fixed
grid and the sample object, a cup that is roughly 110 mm
tall and 65 mm in diameter.

We characterize the performance of three grasping con-
trollers. The first controller is a naive baseline that performs
a simple closing maneuver without any feedback informa-
tion from the fingers or the fingertip sensors. The distance
between the fingertips is chosen to be slightly wider than the
cup diameter, as if the grasp command included the desired
location and gripper width [25].

The second controller, called the partial-reflex controller,
uses the collision avoidance and contour following reflexes
but does not use the re-grasping reflex. The third controller
uses all of the reflexes, including re-grasping, so it is called
the full-reflex controller. For these controllers, the fingertips
are spread wider apart to improve the effectiveness of the
contour following. The collision avoidance reflex mitigates
any collisions that could happen during grasping with unde-
sired objects or the environment due to the wider pose.

Fig. 6 shows the set of successful grasps for each of the
three controllers. Due to some inconsistencies in hardware
initialization and joint frictions, the controller plots are not
perfectly symmetric. Nevertheless, the overall trends are
clear. The contour following in the partial-reflex controller
increases the width of the set near the nominal grasp location.
The re-grasping capabilities of the full-reflex controller are
necessary to expand the set of successful grasps further
away from the nominal location. Based on the area covered
by each controller, the set of successful grasps for the
partial-reflex controller is 29.2% larger than the set for
the baseline controller. The full-reflex controller achieves a
20.4% increase relative to the partial-reflex controller and
a 55.6% increase relative to the baseline controller. Each
increase in the volume of the set of successful grasps can be
interpreted as an increase in overall grasp robustness since
the input to each controller is identical.

B. Autonomous Grasping for Clutter-Clearing

For this experiment, we combine our reflexive grasping
controller with a vision algorithm for object identification
to autonomously grasp objects from a cluttered shelf. An
Intel Realsense D435i camera is used to capture an image
of the cluttered shelf, and the YOLOv7 [33] object classifier
is used to detect graspable objects within the RGB image.
A point cloud is extracted from the depth image for the
closest identified object. Outlier points, defined by the top
and bottom 10% of depth measurements, are removed from
the object point cloud, and the mean (x,y,z) location of the
remaining points in the world frame is sent as the target
grasping location. During grasping, the desired wrist pose is
set so that the gripper stays in the horizontal plane and that
the inverse kinematics for the rest of the arm joint angles can
be quickly solved analytically. After startup, the only human
involvement in the system is placing more objects into the



Fig. 6. Characterizing the reflexive grasping controller. As reflexes are added to the baseline grasp controller, the set of successful grasps expands.
On the left-most plot, the base of each finger is marked by a red dot and the workspace is shown in red. The set of successful grasps for the baseline
controller is shown in light grey on each grid plot, and the nominal grasp location is shown in dark grey. The expanded set of grid locations covered by
the partial-reflex controller is shown in light blue, and the further expanded set of grid locations covered by the full-reflex controller is shown in green.
The set of successful grasps for the baseline controller covers 11250 mm2. The total areas for the partial-reflex and full-reflex controllers are 14530 mm2

and 17500 mm2, respectively.

TABLE II
GRASPING SUCCESS RATES

Object Trials Successes Success Rate
Apple 26 25 96%
Coffee 25 24 96%
Cup 26 24 92%
Can 24 22 92%
Bowl 16 11 68%
Total 117 106 90.6%

environment. The objects used, shown in Fig. 5b, include an
apple, a bowl, a can, a bag of coffee grounds, and a cup.

Table II shows the grasping success rates for each object.
Across 117 total attempted grasps, the success rate is 90.6%.
While the bowl has by far the lowest grasp success rate at
68%, the other objects have an average grasp success rate of
94%. Across all of the successful grasps, the average time per
grasp was 7.1 seconds, measured from the system receiving
the estimated object location to the fingers releasing the
object at the desired location. This time included an average
of 4.5 seconds for picking the objects, including the approach
trajectory, and an average of 2.6 seconds for placing the
objects. For context, the objects were placed approximately
35 cm away from the start of the grasping trajectory, which
is within one human arm-length.

VI. DISCUSSION AND CONCLUSION

Our experiments demonstrate improved robustness at three
levels. First, the reflexes improve grasping robustness to
environmental uncertainties, such as noisy or occluded vision
data, unstable objects, or unusual object shapes. Second,
the reflexes improve robustness to trajectory plans, allowing
for simpler and lower-frequency planning. This allows the
planner to focus on high-level tasks instead of providing
precise visual servoing. Finally, our system achieves high-
speed manipulation at a human scale with minimal impulses
and collisions, which is critical for safe interaction that does
not damage the environment or the robot.

There are several improvements to be made to the system.
From an engineering perspective, the control frequency of
the reflexes can be increased further with better system

integration and low-level motor control for the Dynamixel
actuators. We plan to push this loop frequency to at least
1 kHz to stabilize the fastest finger motions and further
increase the reactive capabilities of the system. Furthermore,
our current set of reflexes has been designed ad-hoc for
everyday household objects, which fit very well into a
relatively limited range of sizes and shapes. In future work,
we aim to expand the range of reflexes to account for broader
classes of objects with different properties. For example,
softer objects, from a loaf of bread to a bag of chips, would
require fundamentally different re-grasping approaches and
grasp evaluation criteria, perhaps based on not damaging
the objects or grabbing them by initially wiggling fingers
underneath and then lifting. In our current object set, the
bowl has the lowest success rate by a wide margin. This is
due to how the system approaches and tries to grasp it from
the side, causing the fingers to push the bowl up and out of
the grasp, rather than approaching from a vertical direction
and pinching the side. There is a logical path forward for
adding reflexes and capabilities, but currently the thresholds
for contact forces, potential field distances, and grasping
attempt triggers are all experimentally tuned. We believe that
building toward general manipulation capability, reliability,
and flexibility will require layering many decoupled reflexes
to address different scenarios in parallel instead of deploying
a single do-it-all controller. To effectively scale the system,
learning approaches may be used to automate tuning and
increase robustness across more object classes.

We have shown a reflexive grasping algorithm that allows
for robust autonomous grasping, even with a simple high-
level planner. The reflexes are designed to exploit our low-
inertia manipulation platform and high-bandwidth sensors,
and by decoupling the reflexive control from manipulation
planning, the planner is able to operate at a much lower
frequency than the reflex controllers: it is not responsible
for solving the “last centimeter” problem.
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